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“Equilibrium” orientation distributions in systems of rigid,
interacting particles subjected to potential flow

A. ZIABICKI (WARSZAWA)

THE EXISTENCE conditions for “equilibrium” (zero-flux) orientation distributions of rigid particles
subjected to potential flow have been discussed. It has been shown that flow regimes admitting such
distributions are restricted to rotationally symmetric extensional flows and particles with cylindrical
symmetry. Extensional flow combined with external fields and/or intermolecular interactions produ-
ces more complex orientation distributions. A simple way of obtaining closed-form “equilibrium”
distributions has been suggested. Solutions have the Boltzmann form

¥(0©) = constexp{—Uy(0)/kT — U [#(O)]/kT + H(©)},

where Uy denotes arbitrary Emcntial of a particle in external field (s). Uiy, a functional of the
distribution function ¥, describes energy of interaction of the test particle with other particles, treated
in the mean-field approximation, and H is flow field potential. Admissible forms cf Ui [¥(©)] and
H (®) leading to closed-form solutions for the distribution function ¥(0) are discussed.

Przedyskutowano warunki wystgpowania “réwnowagowych” (bezstrumieniowych) rozktadéw orien-
tacji sztywnych czastek w przeptywach potencjalnych. Wykazano, ze sytuacje dopuszczajace takie
rozklady ograniczaja si¢ do osiowo-symetrycznych przeplywéw rozciagajacych i czastek o symetrii
obrotowej. Przeplywy rozciggajgce polaczone z zewngtrznymi polami orientujacymi i/lub oddziatywa-
niami migdzyczasteczkowymi prowadza do bardziej ztozonych rozktadéw orientacji. Zaproponowano
prosta metode otrzymywania “rownowagowych” rozkladéw w postaci zamknigtej. Rozwigzania row-
nania orientacji majg posta¢ rozktadéw Boltzmanna:

W(O) = constexp{—Uy(O)/kT — Ui [#(O®))/kT + H(O)},

w ktoérych Uy oznacza dowolny potencjal czgstki w zewngtrznym polu. Uiy, funkcjonal zalezny od szu-
kanej funkcji rozktadu orientacji, &, opisuje energi¢ oddzialywania z innymi czastkami w przyblizeniu
§redniego pola, a H oznacza potencjal przeptywu. Przedyskutowano dopuszczalne postaci Ujn [¥(9)]
i H(®) prowadzace do zamknigtych rozwiazan na funkcje rozktadu ¥(0).

O6cy»neHbl YCNOBUA NMOABJMEHUA “PaBHOBECHOro” pacnpellefleHUs OPUEHTAUMUMU S_(lvrne-
HaUIEero Hy1esomMy l'lOTOKy} HECTKMUX HacCTHUIl B noJie NoTeHlnalbHOro TEYeHnA. OKa-
3aHO, UTO TaKMe PacnpelieIeHUA BLICTYNAIOT JIMU AJA HaCTULL HHIUHIAPUUECKOH cume-
TPUUA B ONHOOCHOM pacTACMBalOIIEM TEYEeHHUH. P&CTH[‘MB&}OLLLEE TeyeHne, COBMECTHO C
APYFUMU BHEUWIHUMM MONAMU U MEKMOJIEKY JIAPHBIM M B3aUMOIeICTBUAMM, Bhi3biBaeT 6o-
slee cnoxknble pacnpeaenenus opuentaunn. [lpennorxken npocroit cnocob BbiBoNa dyHK-
UMM pacrnpe/icIeHUA OPUECHTALMMU B 3aMKHYTOM Buae. Pemenme npunumaer 6onbumano-
BCKUHM BUJ:
¥(0) = constexp{—Uy(0)/kT — Uin [¥(®)]/kT + H(O)},

rae Uy apnsaercs npon3sosnbHoi NoTeHIMaNbHOW ®Hepryueil UacTHILI BO BHEIIHEM MOJIE,
Uit — eHeprueit B3auMoneficTBUA ¢ APYrMMM 4YacTHLUaAMWU B NpuGIMIKEeHUU CpesHero
nona, 6ynyuedt gpynkumonanom ¢pyukumm pacnpenenenusa ¥. H — aT0 noreHunas nons
Teyenun, O6eymaennr aonycrumble popmbl notedunanos U [#(O)] n ¥(0), npuboaammx
K pelleHUAM B 3aMKHYTOM BHUJE.

1. Introduction

POTENTIAL (irrotational) flows provide an important class of motions. Molecular orienta-
tion of particles or large molecules subjected to such flows affects kinematics and dynamics
of many important processes and controls development of material properties.

A few decades ago, H. A. KRAMERS [1] observed that special form of orientation di-
stribution can be obtained for dilute polymer solutions in potential flows. The distribution
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has a Boltzmann-type form in which flow contributes to the total “potential” of flowing
particles. Kinematics of irrotational flows has been discussed by LEAL and HINCH [2],
and Kramers’ method used by various authors for dilute suspensions of rigid particles
[3], solutions [4, 5] and melts [6, 7] of flexible polymer chains. Two factors make such
orientation distributions important.

i. Closed-form solutions which result from the Kramers’ method make possible an
analysis of nonlinear behavior in strong flows, up to the limit of ideal orientation; such
problems cannot be treated by standard perturbation methods, usually based on expansion
over small intensity of flow or weak interaction.

ii. The distributions seem to describe some kind of equilibrium, in which rotatio-
nal flux of the particles disappears.Extension of this method onto systems with inter-
particle interactions provides a basis for the analysis of flow-affected phase transitions.
Orientation-dependent rod-rod interactions have been used in the theory of isotropic-
nematic transitions [8-12]. Transitions in ferroelectric and ferromagnetic fluids, as well
as crystallization of polar polymers (PVDF) [13] provide additional examples. Last, but
not least, “equilibrium” orientation distributions can be used for the analysis of structure
development and rheological behavior of various materials.

We will analyze in this paper conditions in which “equilibrium” (zero-flux) orientation
distributions are admitted. We will also present a method of obtaining such distributions
for systems of rigid particles subjected to irrotational flow and exhibiting various inter-
particle interactions treated in the mean-field approximation.

2. “Equilibrium” orientation in systems of non-interacting particles

We will discuss orientation of particles in the Riemannian space of Euler angles @ =
v, ¢, ¢ (Fig. 1). First two angles (@, = v, @, = ) characterize orientation of particle
axis, x3, with respect to the laboratory system X X;.X3. 9 is an angle between 23 and X3,
p—angle on the plane X;.X; measured from X to the projection of z3. The third angle,
©3; = 1, describes rotation of the particle around its own axis z3. This axis expressed in
the laboratory system forms a unit vector, u, with Cartesian coordinates

r3 = u = {sind cos ¢, sin¥siny, cosv} .

Orientation distribution ¥ (@, t) in dilute systems of rigid particles subjected to flow is
described by the kinetic (Fokker—Planck) equation

(2.1) /ot + div,[¥ - Oy — D, (grad, ¥ + ¥ grad U/kT)] =0,

where div,, and grad, denote differential operators in the Riemannian space of Euler
angles.

In the multidimensional theory of crystal nucleation [14], we have derived metric cha-
racteristics of the configurational space including int. al. shapes, positions and orientations
of molecular cluster. The space of Euler angles is a subspace of the configurational space
analyzed in Ref. [14]. The covariant metric tensor for the subspace @ (0, = 9, ©; = ¢,
@3 = ) reads:

1 0 0
(2.2) ik = 0 1 cos?
cosv 0 1
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x|

FiG. 1. Definition of coordinates. X ;X5 X3—external (laboratory) system;
x1zox3—local (particle) system. Euler angles, 9, ¢, ¥, indicated.

and the related differential operators:
div, j = (1/sin9)(9/90)(sin 9 - j1) + dja /D + D3/ 00 ,
grad_ " = &)(OF /89) + (e2/ sin> D)[(9F /D) — cos V(IF /)]
(2.3) + (e3/sin® O)[(OF /DY) — cos I(DF [dp)],
rot, q = [0/0f(q3 + q2c08 V) — 0/0Y(q2 + g3 cos V)]e,
+[0q1/0v% — 0/00(q3 + q2cosV)]e;
+[0/90(g2 + gz cos V) — Oq1/dyples,

D, denotes tensor of rotational diffusion in the space ©

pn o0 0
(2.4) D,=| 0 D2 0

0 0 D*

and U(®) is orientation-dependent potential energy of the particle. ©y = {dy, v, ¥o}
denotes convective rotational velocity, i.e. rotational velocity related to unperturbed flow
field.

The tensor of diffusion depends on particle symmetry. Symmetry reflected by D, con-
cerns shape and hydrodynamic properties of the particles. A given class of shape symmetry
does not exclude different symmetry of physical properties. E.g. spherical particles can
exhibit uniaxial or triaxial polarizability, permanent dipole moment, etc.

“Equilibrium” solution of Eq. (2.1) exists in the steady-state (0%/dt = 0) when the
rotational flux disappears, i.e. when

(2.5) w®) — D, (grad, ¥ + ¥ grad U/kT) = 0.

It is evident that Eq. (2.5) is possible only if there exists a scalar potential, (@), which
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satisfies the condition
(2.6) D! @) = grad, H(®).

When Eq. (2.6) is satisfied, “equilibrium” solution of Eq. (2.1) results in the form of
a Boltzmann distribution

2.7 ¥ (O) = constexp[-U(®)/kT + H(O)].

The effective “potential” in Eq. (2.7) consists of the potential energy of the particle,and
the contribution of flow. Since the distribution is normalized, convergence requires that
the total potential, (U — kT H), is positive definite.

Existence .of the “flow potential”, /1, is controlled by two factors: flow field and particle
shape. Flow field, characterized by velocity gradient tensor in the Euclidean space, consists
of a symmetric (A) and an antisymmetric part (£2)

(2.8) VV=A+Q.

It has been shown by JEFFERY [15] that in a rotational flow particles perform periodic
motions and no “equlibrium” (zero-flux) state is admitted. Therefore a necessary (but not
sufficient) condition for “equilibrium” orientation distribution is irrotational character of
flow, i.e. absence of the antisymmetric part of the velocity gradient, & = 0.

Discussing effects of particle symmetry, we will consider ellipsoids which seem to
provide a reasonably general model of smooth rigid particles. Symmetry is characterized
by dimensionless shape factors

(29) Rij = _Rji = ((J:t2 — (;L?)/((Ii2 + a?),
where a,, az, a3, denote semi-axes of the ellipsoids. Components of the rotational diffusion
tensor D,, Eq. (2.4) are functions of particle volume and shape factors R;;.

We will discuss effects of flow geometry and particle shape on the existence of the
potential H(®) from Eq. (2.6). Since rotation of grad. 4 must vanish, Eq. (2.6) yields

(2.10) rot,v(D,"(-'-)(,) =0.

Using rot, operator from Eq. (2.3) we obtain three identities which must be satisfied
independently of orientation

(8/99)(Do/ D) — (8/V)($0/ D* + cos V) - 4/ D¥) = 0,
(8/0¢) (/D) — (8/9)(Wn/DP + cosV - ¢/ D) =0,
(8/09)(¢0/ D? + 030 -,/ D?)

— (8/3¢)(dho/D® + cos? - ¢y /D*) = 0.

We will base our analysis on the classical theory of ellipsoidal suspensions by JEFFERY
[15] who derived general equations for convective rotational velocities in uniform flow.
Using this method we will calculate 7y, ¢y, ¢ for various flows, substitute them into
identities (2.11) and determine conditions admitting existence of the potential /() and,
consequently, “equilibrium” state of orientation.

The method of Jeffery!S permits calculation of the rotational velocities for arbitrary
ellipsoids and arbitrary geometry of flow. Earlier attempts have shown that “equilibrium”
orientation can be reached only in situations exhibiting high degree of symmetry. The-
refore we will confine our analysis to two selected flow conditions: rotation of triaxial
ellipsoids in a uniaxial extensional flow, and behavior of cylindrically symmetrical ellipso-
ids (spheroids) in a general irrotational flow.

(2.11)
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2.1. Effects of particle symmetry

Consider triaxial ellipsoids with all R;; and all D* different. Deformation rate tensor
A expressed in Cartesian coordinates of the laboratory system reads:

An 0 0
(2.12) A=10 Ay 0 }.

0 0 A33

The flow exhibits rotational symmetry with respect to the axis X3. Uniaxial elongation
takes place when A3; > Ay, uniaxial compression — when A33 < Aj1. Components of
@, calculated for flow conditions characterized by Eq. (2.12) read:

Jy = 1/2(As3 — An)sin20[(Ras + Rap)sin® ¢ — R3],
(2.13) oo = —1/2(As3 — Anp) cossin 2¢(Ras + Rai),
o = 1/2(As3 — Ayy)sin 2¢[(Ras + R3jcos® 9) — Rypsin®d].

Substituting Eqs. (2.13) into identities (2.11) and assuming constant components of
diffusion and velocity gradient tensor, we obtain

(Aszs — Ap)(sin ¥sin 2¢/ D*¥)[(D**/ D?* — 3 cos® ¥)(R23 + Rap)
+(1=3cos’¥)Ryy] =0,
(Azz — Ap)(sin20sin2¢:/D3)[(1 + D3 /DM — D¥/D*)(Ra + R3p)

+R]2] = O,

(2.14)

(A33 — A)(cos ¥ sin 21/ D¥)[(cos? ¥ — D33/ D**)(Ra3 + Rai)
+ Ry sin? 7]=0.

It is evident that identities (2.14) are satisfied only for cylindrical particles, for which

(2.15)1 Ryu+ Run=0
and

(2.15); Ri;=0.
For reasons explained below we assume

(2.15)3 Ry #0.

Particles which admit “equilibrium” orientation distribution in uniaxial flow (Eq.
(2.12)) must exhibit two equal semi-axes (a; = a;) and a different third axis, a3. Al-
though from the conditions (2.14) do not follow any explicit restrictions on the rotational
diffusion coeflicients, Eqs. (2.15) stipulate

(2.16) DW= D2 % D3,

Identities Eqs. (2.14) are satisfied also for spherically symmetric particles (a1 = az =
az) with all R;; equal to zero. The case is trivial, because for spherical particles rotational
velocity is equal to zero, potential [7(®) reduces to a constant, and flow does not affect
orientation.
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2.2. Effects of flow geometry

We will consider cylindrically symmetrical ellipsoids (a; = az # a3) in a uniform
irrotational flow characterized by deformation rate tensor

An Ap Anp
(2.17) A=AT = | . Ap An|.
. ‘433

The shapes factors considered

Ryt = —-Ri3 =Ry = —-Ry #0,
Rn=Ri2=0,

imply cylindrical symmetry and yield two equal diagonal components of the diffusion rate
tensor (Eq. (2.16)). Note that the equality D'! = D?? for cylindrical particles does not hold
true if metric tensor of the orientation space is different to one in Eq. (2.2). YAMAKAWA
[16] who analyzed orientation of rodlike particles in a Euclidean space with a different
metric obtained

(2.18)

D" = D¥sin* Y.
Rotational velocities calculated for the flow characterized by Eqs. (2.17), (2.18) read
do = —1/2R35in20[As3 — Ay — (Az — Apy)sin®
—Aj28in2p] + Ry cos2d[Aj3cosp + Azzsing],
o = 1/2R3[(A22 — A1) sin2¢ + 2413 cos 2¢]
+ R3j cot [ A3 cos p — Ajasing],
Yo = —1/2R31cos9[(Ax — A11)sin2p + 2413 cos 2]
—R3jcotd cosv[Azzcosp — Apzsing].

(2.19)

Unlike @y for non-cylindrical particles (Egs. (2.13)), rotational velocities from Eqs.
(2.19) can be expressed as gradients of a scalar potential, Q
(220)  Q(V, ) = —1/2Rasin® O[(Aszs — An) — (A — Ap)sin’ ¢
—Azsin2¢] + 1/2R318in 20( A3 cos p + Az sing)
but this is not sufficient for the existence of the other potential, H(®), and does not satisfy
identities (2.11).
Substitution of @ from Egs. (2.19) with Di* and A;; constants into Eqgs. (2.11) yields
R31(1/D" — 1/D¥)[1/2(Az2 — Ayp) sin 20 sin 2
+(Azzcosp — Apzsing)(1 + sin® 9 — 2sin* 9)/ sin® ¥
+Aqz2sin2dcos2¢] =0,
R3y(1/D" — 1/D¥)[1/2(Az2 = Anr) sindsin 2¢
+(Ap3¢08 ¢ — Apssinp)(1 + sin® ) cos ¥/ sin? ¥
221
( ) + Ajpsindcos2p] = 0,
R31(1/D“ - 1/D33)[(A22 — A“) cos 1 cos 2(,0
—(Agsing + Ajzcosg)cosdcotd] =0.
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It is evident that the above identities are satisfied only for fields with vanishing
non-diagonal components

(2.22) Az =Ap=A3=0,
and two normal components equal to each other
(2.22); An = An ¥ As.

Equations (2.18) and (2.22) provide a non-trivial condition for “equilibrium” orientation.
The conditions are also satisfied for arbitrary flow field when all R;; vanish, which in an
irrotational flow corresponds to zero particle rotational velocity and potential // indepen-
dent of orientation.

Summing up, we arrive at the conclusion that the only flow regime admitting “equi-
librium” orientation distribution, is uniaxial extensional flow (Eq. (2.12)) acting on par-
ticles with cylindrical symmetry (Eq. (2.18)). Neither irrotational motion of the viscous
continuum (€2 = 0) nor potential rotation of particles, @) = grad,_ Q(®), are sufficient
conditions for “equilibrium” orientation. Lower symmetries of suspended particles and/or
more complex geometries of flow invariably lead to non-zero fluxes and exclude the state
of rotational “equilibrium”.

The admissible flow potential, H(J), reads

(2.23) H(@,p,¢) — H(¥) = —1/2R3 sin® 9(Asz3 — Ay,)/ DM
and the related orientation distribution
(2.24) V(,p,¢) = Cexp[-U(d,¢,¢)/ kT + 1/2R3, sin’ D?(Azz — An)/D“].

Although the existence of flow potential, H, is limited to highly symmetric flow regimes,
symmetry of the other potential, /(@) is not restricted. Admissible H is a function of one
angle only (), but other fields (electric, magnetic) can produce more complex orientation
distributions.

3. Orientation-dependent interactions and potential energy

3.1. Field-particle interactions

“Equilibrium” orientation distributions admit any kind of orientation-dependent field-
particle interactions. An example is provided by particles in an electric (magnetic) field,
E. Assume that the particle has a permanent dipole moment, p,, and/or non-spherical
polarizability tensor, a.

The total dipole moment, p, includes a permanent, and an induced contribution

3.1 p=y, +a-E
which yield particle energy
(3.2) Un(®) = — f p-dE=—p,-E-1/2(a E)-E.

The potential is controlled by particle symmetry and orientation of the field E. Pola-
rizability tensor, «, expressed in the local coordinate system zx;z3 associated with the
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particle
a1 0 0
(3.3) a=|0 apn 0|,
O 0 33

in a general case is triaxial (all ov;; different) and p,, can be arbitrarily oriented with respect
to geometrical axes of the particle.

In the special case of cylindrical particles dipole moment is directed along the geome-
trical axis, 23, and the polarizability tensor « is uniaxial (a1; = a3;). Transformation of «
from local coordinates to the laboratory system X X;.X3, in which geometrical axis of the
particle (z3) forms vector u, yields

(331 a=ay -1+ Acu®u,
and the particle-field potential reduces to
(34) U()(lyv ‘P) = —HP(E ’ U) - I/ZAG(E ) U)2 )

Aa = a3z — oy is a measure of polarization anisotropy. For uniaxial particles, Uy is a
function of ¥, and ¢; the third Euler angle, v, appears only when polarizability tensor is
triaxial (all a;; different), and/or when the permanent dipole moment, u, is inclined to
particle axis, u(z3).

The existence of field-particle interactions does not affect the form of the kinetic
equation or the possibility of obtaining “equilibrium” solutions. In the absence of flow,
or in the case of spherical particles (both leading to grad, # = 0) “equilibrium” solution
(Eq. (2.24)) reduces to the true Boltzmann distribution

(2.24), W, p,9) = Cexp[-Un(V, 0, ¥)/kT].

3.2. Particle-particle interactions

The kinetic equation (Eq. (2.1)) changes its form when particle-particle interactions
are taken into account. An exact description of such interactions requires pair orientation
function, ¥@(®, ®', r;) characterizing simultaneous orientation and separation of two
interacting particles. This should be derived from a hierarchy of dynamic equations, and an
appropriate pair interaction potential 3(®, ®’, rj;). LUCKHURST [17] demonstrated how
BBGKY hierarchy can be closed to obtain mean-field approximation of the intermolecular
potential; this will be used also in this paper. ¥?) is replaced by a product of two singlet
orientation distributions, and a correlation function for the separation vector ryz

(3.5) VD@, 0, r12) = V(OW(O') - ga(riz).

The correlation function, gz, and the pair potential, 3, are averaged over ryz, and
interaction energy of a test particle with orientation © is obtained by integration of
the pair potential, 3(®, @', ry;), over orientation of all particles interacting with the test
particle

(3.6) Un(@) = [W(0)d®" [ g2(ri2)draf(®, 0", r12).
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Interaction potentials for particle with cylindrical symmetry can be expanded in series
of Legendre polynomials of the angle a); between particle axes

(3.7) B(©,0,r;2) = const +pi(r2) Py (u - u')
+pa(ri2) Po(u-w') + ...+ pu(ri2) - Po(u-u').

Angle a); can be expressed by unit vectors u and v’ of the particles’ symmetry axes.
Expansion coeflicients, p,(ri2), are related to physical nature of the interactions. Equation
(3.7) can be converted to Euler angles v, 9, ¢, ¢’ by putting

(3.8) cosaiz = u-u' = sindsind’ cos(e — ¢') + cos ¥ cos
and using addition theorem for Legendre polynomials
(3.9) Pr(u-u’) = Pr(cosd)Py(cos?’)
L
+2 Z[(n —m)!/(n + m)!]P[*(cos ) P (cos ¥") cosm(p — '),
m=1
where P[" are associated Legendre polynomials. Because of the assumed cylindrical sym-
metry of the particles, the third Euler angles (4, ¥') do not appear.

Equation (3.7) provides a reasonably general model for orientation-dependent inte-
ractions of cylindrically symmetric particles. Individual terms in Eq. (3.9) can be used
to describe long-range electrostatic interactions in the multipole approximation [18]: P,
term describes dipole, P, - quadrupole, P;, — 2" - pole interactions. MAIER and SAUPE
[9] described dispersion forces with the quadrupole term, P2, COTTER [19] and others
used a combination of P, and P, terms as an approximation for the excluded volume
potential, etc. The original derivation of the hard-rod potential by ONSAGER [8] for a
pair of cylinders each with length, L, and diameter d, averaged over r); yielded

(3.10) [B(O®, O)ave] = 2ckT(L*d)|u x v'|.

Interaction of particles with lower symmetry requires all three Euler angles.
LUCKHURST [17] and STONE [18] suggest expansion in generalized spherical harmonics
(Wigner matrices)

3.11 B, @, ¢, 0, " ' rp2) = u(LL'J,nn',mm' M;r13)DE (9, 0,%)
m,

X Drl;ll‘,n’(ﬁli ‘pj’ wl)YJ,M(e' ¢') )

where DE | are Wigner matrices, and Y 3(©, ®) is a spherical harmonic of polar angles
characterizing orientation of the interparticle vector

(3.12) riz = r;2- {sin@cosP,sin@sin®, cosO} .
Wigner matrices can be presented in the form [20]
(3.13) DE . (0,9,9) = (I,Lmn(t?) exp(—imep) exp(—iny),

where d, | (V) are “reduced” or “small” Wigner matrices tabulated in Ref. [20]. In the
case of cylindrical symmetry (no angle ¢), Dk ., reduce to spherical harmonics

(3.14) Dy 09,0, 9) = Yr,m(9, 9) = P[*(9) exp(—imgp),
and rotational symmetry of the distribution reduces the problem to Legendre polynomials
of one angle, v

(3.15) D9, ¢,9) = Y,0(9, ) = Pr(9).
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3.3. Effect of impingement of particles on rotational diffusion

A special kind of interactions in concentrated systems of rodlike particles consisting
in reduction of the rotational diffusion coefficient by impingement (“entanglement”) has
been proposed by DOI and EDWARDS [21 - 23].

Considering a system of rods with length, L, and number concentration, ¢, and using
the “tube” model, Doi and Edwards propose orientation-dependent diffusion coefficient
D" in the form

(3.16) D'(®)/Dy = const[cL? f (@ )|ux v|dO']2.

Dy is rotational diftfusion coefficient for an isolated rod (¢ = 0). The integral in Eq. (3.16)
is almost identical with the Onsager hard-rod potential (Eq. (3.10) and has the same phy-
sical background: excluded volume interactions between the rods. Equation (3.16) applies
only to concentrated and low-oriented systems, yielding unphysical behavior (D! > D,
D" — oo at ¢L3(|lu x w'|) — 0) for small concentrations and/or high degrees of orien-
tation. According to Eq. (3.16) rotational diffusion coefficient for a rod depends on its
own orientation (@) (vector u), as well as on the average orientation of particles in the
system (function ¥(©’) under the integral). The formula (3.16) has been criticised by va-
rious authors, and alternative expressions for collision-affected diffusion tensor have been
proposed [24 - 28].

Intuitively, reduction of rotational mobility in a concentrated system by interparticle
collisions seems plausible. Direct estimates based on experimental measurements (rela-
xation of birefringence [25], light scattering [28] or numerical simulation [26]) are quali-
tatively consistent with predictions of Eq. (3.16) in the range of medium concentrations,
though quantitative agreement requires correction of the original Doi and Edwards tre-
atment. How modified diffusion tensor should be used in the kinetic equation (2.1) is a
different question, though. Kuzuu and Dot [10] suggest using modified D! from Eq.
(3.16) in the kinetic equation beside the excluded volume potential, considered a part of
Ui (©). Other authors [28, 29] use modified diffusion coeflicients in diffusion equations
free from the excluded volume potential. Physical origin of mobility reduction (Eq. (3.16))
and hard-rod interactions, Uiy (©), is the same: impenetrability of particles and excluded
volume. The same effect should not be counted twice: once in the modified diffusion
tensor, second time as an explicit potential. Therefore, introducing the excluded volume
potential into Eq. (2.1) we will use unperturbed diffusion tensor D, = Dy in the flow
potential H(©®).

4. “Equilibrium” orientation distribution with mean-field intermolecular interactions

Appearance of a functional of the orientation distribution as an interaction term, con-
siderably changed mathematical shape of the orientation problem. Differential equation
(2.1) is converted into an integro-differential one:

(4.1) 9w/t +div,[¥ - Oy — D,(grad, ¥ + ¥ - grad, Uy/kT
+v grad, [ ¥(0)3(0,0)d0")]/kT = 0.
Appearance of the interaction potential in the form of a functional Ui, [#(©)] does

not affect conditions required for “equilibrium” distribution. Whenever the potential H
defined in Eq. (2.6) is admitted, “equilibrium” orientation distribution can be found from
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the integral equation
(4.2) In¥(®) + Uy(®)/kT — H(O) + f v (©")3(©,0")dO' /kT = const .

Equation (4.2) is identical with one obtained by minimization of the free energy functional
A (cf. Ref. [8])

(4.3)  A[¥(®)] = ckTInc+ ckT [#(©)In#(©)d0 +c [ #(©) Uy - kTH)dO
+1/2¢ [w(©)d0 [ ¥(0')de'3(®,0') = minimum .

The distribution ¥ (@) is subject to normalization

(4.4) [w@)do =1.

Variation of A[¥(@®)] with respect to ¥ with the normalization condition yields an
equation equivalent to Eq. (4.2)

(4.5) kT[In(©) + 1]+ Up(®) —kTH(®) + ¢ f V(0)dO'8(O,0)+£ =0,

where £ denotes Lagrange multiplier. Agreement of the “zero-flux” solution obtained
from the kinetic equation with the one corresponding to minimum free energy shows that
we are dealing with some kind of “equilibrium”. Quotation marks account for the fact
that true thermodynamic equilibrium does not exist because the energy is permanently
dissipated. Potential flow, however, contributes to the effective potential of the particles,
and Boltzmann-type orientation distribution.

Special solution of Eq. (4.5) can be obtained by the use of “test functions”. Form of the
function ¥(@) is assumed, and free energy functional A[¥(®)] minimized with respect
to the parameters. ONSAGER [8] using hard-rod potential (Eq. (3.10)) proposed for this
purpose the function

(4.6) W (u) = cosh(au - n)/4x sinh(a),

where n is a unit vector of arbitrary orientation (director). Other authors [10 - 12], using
MAIER-SAUPE potential [9] obtained closed-form solution of Eq. (4.5) in the form

(4.7) ¥ (1)) = constexp[A(u - n)?] = constexp[A cos’ J].

In the latter case an exact solution has been successfully guessed. We shall present
a more systematic approach to finding the “equilibrium” orientation distributions in the
presence of flow, various potential fields, and intermolecular interactions. The basic requ-
irement is that the intermolecular potential, 3(®, @'), a kernel in the mean-field integral,
can be presented in the form

(4.8) B(©,0') = > b [i(©)f;(0).
ij

In the consequence of Eq. (4.8) the integral in Eq. (4.2) can be taken directly, yielding
(4.9) Um(©) = [W(0)dO'3(0,0) = 3" bi; fi(O)f;),
ij
and reducing integral equation to an algebraic expression. (f;) are moments of the distri-
bution function. With Ujy(®) in the form of Eq. (4.9), ¥(®) results directly as
(4.10) In¥(®) = const —Uy(@)/kT + H(®) — Z: bi; fi (©)(f;)/kT .

ij
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The moments, (f;), are to be found from the consistency conditions

(4.10), ;)= [w(©)f;(®)do

and the constant is determined by the normalization condition (4.4).

The crucial condition for the above procedure is Eq. (4.8). When the expansion (4.8)
is infinite, also the solution results as an infinite series of functions f;(®). Especially
attractive is the possibility of obtaining closed-form, nonlinear solutions valid in the entire
range of variables. Such solutions are possible when Ui, (©) is expressible through finite
sums, rather than infinite series of f;(@)

(4.11) B(O©,0) = b;fi(©)f;(®")
ij
reducing solution (4.10) to the closed form.

The above approach can be used for any symmetry of orientation distribution, provided
that the conditions required for the existence of flow potential H(®) are satisfied. In a
general case the natural choice for expansion of intermolecular potentials are Wigner
matrices, DL (¥, ¢, ). Expansion (3.11) guarantees separation of variables ® and ©’,
and commonly performed truncation reduces infinite series to a limited sum.

Interactions of particles with cylindrical symmetry can be adequately described with
spherical harmonics, Y7, (¥, ). Interaction potential (Eq. (3.7)) expanded in Legendre
polynomials of the angle between axes of two interacting particles does satisfy condi-
tion (4.8) and can be expressed by spherical harmonics. Sums of Legendre polynomials
(Eq. (3.7)) cover basic types of interactions between cylindrically symmetrical particles—
electrostatic (any finite order of the multipole expansion), excluded volume (cf. COTTER
[19]) dispersion forces (MAIER and SAUPE [9] etc.). ONSAGER (8] hard-rod potential in its
original form (Eq. (3.10)) does not satisfy Eq. (4.8), but can be approximated by a sum of
even Legendre polynomials [19]. Expansion of other potentials in spherical harmonics or
Wigner matrices does not provide any problem and the majority of physically significant
cases: electric (magnetic) interactions with permanent and induced dipoles (Eq. (3.2)), as
well as the admissible flow field effect (Eq. (2.23)) can be expressed by a limited number
of orthogonal functions.

5. Discussion

The approach suggested in this paper makes possible obtaining “equilibrium” (zero
flux) orientation distributions for systems of rigid particles subjected to extensional flow
and a variety of particle-field and particle-particle interactions. Flow regimes admitting
such distributions are restricted to axially symmetric flow fields (elongational or compres-
sional) and particles exhibiting cylindrically symmetric shapes. Symmetry of other physical
properties of the particles is not restricted. Any symmetry of electric, or magnetic pro-
perties can be considered with a variety of interactions taken into account. The resulting
orientation distributions can exhibit various types of symmetry with one (), two (9, ¢) or
three Euler angles (¢, ¢, %) as independent variables.

As a simple example of the proposed procedure, we will consider cylindrically sym-
metrical, polar particles subjected to uniaxial flow and an electric field parallel to flow
axis. Intermolecular interaction include a dipole-dipole potential,and a hard-rod poten-
tial approximated by second Legendre polynomial in the expansion (3.7). The resulting
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orientation distribution is a function of one angle (J) and will be sought in the form of a
sum of Legendre polynomials P (). All potentials involved exhibit cylindrical symmetry
around axis X3 of the laboratory coordinate system, viz.:

1. Extensional flow introduces a P;(17) term proportional to velocity gradient divided
by rotational diffusion coefficient.

2. Particle energy in the external electric field consists of two terms dependent on the
field intensity, E. P;(«7) term describes energy of permanent dipoles, and P;(2) - dipoles
induced in the field E.

3. The mean-field intermolecular potential consists of two terms derived from Eq. (3.7).
Dipole-dipole interactions reduce to a P(J)(P;) term, and hard-rod excluded volume
potential approximated by Maier-Saupe function yields P;()(P) term.

The integrated kinetic equation (4.10) expressed through functions f; (here: Legendre
polynomials, Pr(:7)) assumes the form

(5.1) Inv@) = hP:(0) + e1 Pi(9) + e2 P2(V) + wi Py(9)(P) + uz Po(¥){P2) + const,

h, €1, ez, u; and u; denote (known) constants determined by material properties and
external conditions. h o (Az3 — Ayy)/ D is related to flow field, e; o (upE) and ez o
(Aa E?) describe energy of permanent and induced dipoles in the electric field. u; oc (cp%)
and uy « (cL?d) represent, respectively, dipole-dipole and hard-rod interactions.

It is evident that orientation distribution can be presented in the form

(5.2) U(J) = exp(C) - exp[A - P2(¥) + B - Pi(0)].
The coeflicients A and B result directly from Eq. (4.10)

(53) A=h+ €2 + uz(Pz) y
B=e + 'lt](P]),

exp(C) is a normalization constant determined by the integral

-1
(5.3n exp(C) = { f sind dd dp dy exp[A - P2(V) + B - Pl(a‘))]} !

and the moments (P;), (P2) may be obtained from the consistency equations
(P1) = exp(C) [ sind v dpdypPi(d) exp[A - Po(9) + B Pi(9)],

54
G (P2) = exp(C) f sin? dd dp dy Pa(9) exp[A - Po(P) + B - Pi(Y)].

More complex “equilibrium” distributions are obtained when particles and/or field con-
ditions exhibit lower symmetry. Orientation distribution dependent on two polar angles
(Y, ¢) expressed by sums of spherical harmonics, Y7, ,, result when cylindrically symme-
tric particles are subjected to extensional flow and an electric or magnetic field inclined
to flow axis. Orientation distributions dependent on three Euler angles (9, ¢, ¥) are ob-
tained when particles, geometrically cylindrical, exhibit triaxial symmetry of electric (or
magnetic) properties. The basis of functions used for expression of intermolecular po-
tentials is provided by generalized spherical harmonics—Wigner matrices, Df, ,,. Deta-
iled solutions and their physical consequences will be presented and discussed separa-
tely.
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