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THE PRESENT investigation represents the analysis of blood flow through an axisymmetric constricted 
artery and the constriction is cosine-shaped. The perturbation method has been applied to study the 
flow field in the tube and the theoretical results obtained in this analysis are given for the velocity 
distribution, wall shearing stress and the separation phenomena. Numerical solution of the theoretical 
results have been shown graphically and the pattern of separation is compared with that of Morgan 
and Young (4]. 

P~prowadzono analiz~ procesu przeplywu krwi przez osiowo-symetryczn<} arteri~ z przew~zeniem 
o profilu cosinusowym. Zastosowano metodct perturbacji dla okreslenia pola pr~dkosci przeplywu w 
arterii, rozkladu naprctzeri stycznych na sciankach i zjawisk oderwania. Na rysunkach przedstawiono 
wyniki obliczeri numerycznych, a postac oderwania strumienia por6wnano z wynikami podanymi przez 
Morgana i Younga [ 4]. 

llpoBe.neu auaJnB npou.ecca Tet.~eHH.R t<pOBH t.~epe3 ocecHMMeTpH4HYIO apTepHIO c cy>t<e
HHeM C KOCHHYCHbiM npOQH1JieM. llpHMeHeH MeTO).l. nepTyp6aU.HH ).l.JI.R onpe).l.elleUH.R non.R 
CKOpOCTH Te4eHH.R B apTepHH, pacnpe).l.eJieHH.R KaCaTellbHbiX Hanp.R>t<eiiHH Ha CTeHKaX 
H .RBJienHH oTpbiBa. Ha pHcyut<ax npe.ncTaBneubl pe3yJibTaTbl 4HCJieHHbiX pa34eTo6, a 
BH).l. oTpbiBa noTot<a cpaBueu c pe3yJibTaTaMH, npHBe.neuubiMH MopranoM H fOuroM [4]. 

1. Introduction 

LOCAL CONSTRICTION in an artery disturbs normal blood flow and frequently results in 
arterial disease. There is much evidence that the importance of hydrodynamic factors 
can play an important role in the development and progression of this disease. The flow 
characteristics which may have medical importance require some alterations. 

The actual cause of stenosis are known but its effects on the flow characteristics have 
been studied by many authors. In one of the earliest papers YOUNG [1] considered a 
highly simplified linear model to analyse blood flow through a mildly constricted tube. 
Then FORRESTER and YOUNG [2] extended the work of YOUNG [ 1] to study the effects 
of flow separation on a mild constriction. LEE and FUNG [3] investigated the problem 
of blood flow through a constricted tube numerically and the solution was applicable to 
both mild and severe contrictions. MORGAN and YOUNG (4] extended and modified the 
work of FO~RESTER and YOUNG (2] by making use of both the integral-momentum and 
integral-energy equations. The solution obtained in their analysis was valid for both mild 
and severe constrictions. 

The present investigation deals with the problem of blood flow through a locally con
stricted tube by means of the perturbation technique. The solution obtained in this analysis 
by considering blood as a Newtonian fluid is shown graphically for the wall shearing stress 
and separation phenomenon. 

2. Mathematical model 

The nondimensional equation of motion that governs the flow field in the constricted 
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tube, is given in terms of a stream functions as 

(2.1) Reb [.!:. o(V
2
1/;' 1/;) - ~ · olj; · V21/;l = V4·1/J 

1 o(r, x) r2 ox 

with the following transformations: 

(2.2) 

u 
Ux =

Uo ' 
r 

1' =
Ro' 

8 = Ro 
io ' 

v 
Ur =

Uo ' 
z 

X =-/o , 

- 2 
1/J = 1/;/UoR(), 
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where Re = U0 R0 / v is the Reynolds number, ( u, v) and ( ux, ur) are the dimensional and 
nondimensional velocity components in the axial and radial directions, respectively, Ro is 
the radius of the normal tube and 10/2 is the length of the constriction (Fig. 1 ), u0 is the 
characteristic velocity; the stream function "¢ is defined by 

(2.3) 

and the operator is given by 

(2.4) 

18"¢ 
u= ---r or' 

1 a¢ 
v= -r oz' 

l 

FIG. 1. Geometry of constriction. 

The boundary of constricted tube is described by 

(2.5) --=1-- 1+cos-R(z) T ( 41rZ) 
Ro 2Ro lo ' 

::: 1 , otherwise , 

whose dimensionless form is 

(2.6) 
€ 

f(x) = 1- 2(1 + cos47rx), 

= 1 , otherwise , 

-~ < z < ~ 4- - 4' 

1 1 --<X<-4- -4' 

where R(x) is the radius of the tube in the constricted region, c is the maximum height 
of the constriction, f = R/ Ro and c = r / R~)· 
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The boundary conditions in terms of nondimensional quantities are 

(2.7) 

(2.8) 

(2.9) 

'llx = 0, 

Ur = 0 at r = f; 

llx = 0 finite at 1' = 0; 

f(x) 

J rllx dr = - ~ . 
() 
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To solve Eq. (2.1), we need some simplifications and use the perturbation technique to 
build up differential equations of different orders together with their boundary conditions. 
In order to do this we expand the stream function ·1/J in ascending powers of b as 

(2.10) '1/;(x, 1', b)= '1/Jo(x, 1·) + b'I/Jt(x, r) + b2'1/;2(x, r) + ... , 

where '1/;0, '1/;1 and '1/;2 are the perturbation quantities of order 0, 1 and 2. Introducing 
Eq. (2.10) into Eq. (2.1) and then equating terms with equal powers of b, we have the 
following set of perturbation equations together with their corresponding boundary con
ditions to the second order: 

Zero-th order 

(2.11) 

(2.12) 

(2.13) 

First order 

(2.14) 

(2.15) 

(2.16) 

Second order 

lP 1 o 
L=----· 

01'2 r or' 

finite, 

'1/Jo = 0 at r = 0; 

-~ o'l/;o = 0 
1' 01' ' 

1 
'1/Jo = - Z at r = f . 

£2'1/;1 = Re-~ OV'o (o3'1/Jo _ ~ o2·1/Jo + ~ o'l/;o) _ Re. o'I/Jo L o,Po 
1' ox 01'3 r {)1·2 1'2 or r or ox ' 

101/Jt . --- = fimte 
r or ' 

1/Jt = 0 at r = 0; 

1/;1 = - ~ o'I/Jt = 0 at r = I . 
r 01' 

(2.17) £2'1/;2 = _ 2L o21/Jo _ Re [o'I/Jo . L (o·I/Jt) + o·I/Jt . L (o'I/Jo)] 
ox r 01· ox or ox 
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(2.17) 
[cont.) 

(2.18) 

(2.19) 

1 81/J2 - finite , ;: 01' -
1/J2 = 0 at r = 0; 

1/J2 = -! oth = 0 at r = f . 
r or 
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3. Solution of the problem 

The solution of the stream functions 1/Jo, 1/J1 and 1/J2 can be obtained by solving their 
respective equations under the corresponding boundary conditions. The solution 1/Jo of the 
zero-th order problem described by Eqs. (2.11), (2.12), (2.13) is 

1 4 2 (3.1) 1/Jo = z(Y -2y ). 

After having the zero-th order solution, the first and second order problems can be easily 
solved and their solutions are 

(3.2) 

(3.3) 

where 

(3.4) 

Re df tPt = 36/ dx (yH - 6y6 + 9y44y2) ' 

1 [ ( df) 
2 

d
2 
/] 2 2 2 Re ( df) 

2 
t/;2 = - 6 5 dx - f dx2 (y - 1) y - 8 dx . F(y)' 

y=r/f, 
1 

F(y) = -(16y12 - 165y10 + 600yH- 1100y6 + 960y4 - 331y2
) 1350 . 

The dimensionless expressions for the velocity components in the axial and radial 
directions are 

2 2 8 Re !' 6 4 2 (3.5) ttx = / 2 (1- y)-~ · (2y - 9y + 9y - 2) 

+62 [3~2(5/'2- /J")(3y4- 4v" + 1) 

Re2 /'2 l + 
540014 

(96y10 - 825yH + 2400y6 - 3300y4 + 1960y2 - 331) , 

(3.6) Ur = - ~~ · J'(lf- Y) 

- ~~;: [!2(9y1
- 42!l + 45!?- 12y)- f f"(y1

- 6!l + 9if- 4y)]. 

The expressions (3.5) and (3.6) show that the leading term of ux is independent of 8 
whereas it contains 8 in ur i.e., the radial velocity component is one order higher than 
the axial velocity component. 
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The wall shearing stress Tw in the form of dimensionless variables retaining the terms 
up to the second order is 

(3.7) T. _ 1 ~ Re !' d [ 1 1,2 1 (51,2 !!") Re
2 

1,2] 
w - - J3 + u 6f4 + u - J3 + 3J3 - - 16/5 . . 

The points of separation and reattachement at the wall are given by Tw = 0, i.e. 

12! [ ~ (3.8) Re = b(
671

,2 _ 15//") 2v5{3(32f'2 -15!/")- [J2(2/'2 _ !!") 

x(67f'2 - 15!f")}~- 15/'] 

4. Discussion 

The theoretical distribution of the shearing stress along the wall of the tube is given 
in Fig. 2 for different values of the Reynolds number. The figure shows that the she
aring stress for any given Reynolds number attains its maximum value just ahead of the 
throat of the tube and then decreases rapidly in the diverging section. At a low Reynolds 
number the stress becomes negative over some length of the tube in the diverging section. 
The reason for such negative distribution of shearing stress indicates the occurrence of 
separation which involves circulation with back flow near the wall. As a result, a high 
velocity core surrounded by the separated region is formed with low shear at the wall. 

110 

r.v 
80 0=1/16 

E•2/3 

40 

0 

-40 
- 0.25 -0.2 - Q1 0 Q1 o.z 0.25 

X 

FtG. 2. Distribution of wall shearing stres.\. 

At a high Reynolds number the negative shearing stress distribution is also observed 
over some upstream length of the tube. The spread of this negative shear in the upstream 
direction is much smaller than that in diverging section indicating large down-stream 
circulation. 

The theoretical locations of the zero shearing stress are plotted against the Reynolds 
number in Figs. 3 and 4. The separation and reattachment points can be obtained from 
the relation (3.8). Figure 3 shows that separation occurs when a critical Reynolds num
ber is reached. If the Reynolds number increases beyond this critical Reynolds number, 
the upstream branch of the curve gives the separation points and the downstream brand 
corresponds to the reattachment points. The separated region is located between these 
two points. At a higher Reynolds number the separation point asymptotically reaches a 
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01 02 0.25 X 

FIG. 3. Separation and reattachment points in the diverging region. 

FIG. 4. Separation and reattachment points in the converging region. 

point somewhere between the original separation point and the throat of the tube, and 
at the same time the reattachement point is nearly proportional to the Reynolds num
ber. The result obtained above is qualitative because the solution has been considered up 
to the second order of o and the general pattern of the solution is the same as that of 
MORGAN and YOUNG [4]. It is also observed that for any given Reynolds number or tube 
constriction the separation point moves towards the throat of the tube and the reattach
ment point moves downstream with the enlargement of the region of separation which is 
physiologically unfavorable. 

Similarly, Fig. 4 clearly explains the separation phenomenon in the converging section 
of the tube. The downstream solution of the curve corresponds to the reattachment points 
and has the same nature as that of the upstream solution of the divergent section. But the 
upstream solution of the convergent section which gives the position of separation points 
slightly differs from downstream solution of the divergent section of the tube. 
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