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Exact solutions of boundary value problems 
for two-velocity models of the Boltzmann equation 

T. PLATKOWSKI (WARSZAWA) 

EXISTENCE and uniqueness of solutions of boundary value problems (BVPs) with general boundary 
data for two-velocity models of the Boltzmann equation are investigated. Explicit examples of the 
nonunique positive solutions are given and their bifuraction from the unique solutions is discussed. 
Stability properties of the solutions are studied numerically. 

Zbadano istnienie i jednoznacznosc rozwi¥an zagadnien brzegowych z og61nymi warunkami brzego
wymi dla dwupr~dkosciowych modeli r6wnania Boltzmanna. Znaleziono przyklady niejednoznacznych 
rozwi¥an dodatnich i przedyskutowano bifurkacj~ rozwi¥ania jednoznacznego. Zbadano numerycz
nie stabilnosc rozwaianych rozwi¥an. 
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1. Introduction 

ONE OF THE CENTRAL problems in the mathematical kinetic theory of gases, important 
for applications and for conceptual reasons, is the problem of existence and uniqueness of 
stationary solutions of the Boltzmann equation in physical domains for general boundary 
data. 

Due to difficulties in dealing with the true Boltzmann equation, various models of 
the equation became popular. In this paper we solve a general boundary value problem 
for a class of the semilinear hyperbolic systems of equations which describe the so-called 
two-velocity models of the Boltzmann equation. The most popular example is the Carle
man model; our results are applicable to the general class of the two-velocity models in 
one space dimension with admissible linear terms corresponding to sources (sinks). The 
system of equations similar to those, considered in this paper, occurs also in mathematical 
models of various physical phenomena in biological systems, chemicals reactions, ecology, 
binary gas mixtures [6]. 

We demonstrate the existence of positive solutions of the related boundary value 
problems for a general class of the boundary conditions, and indicate explicitly the sub
manifolds in the phase space of the parameters, characterizing the boundaries (boundary 
parameters), for which there are exactly two, one or zero solutions. We also discuss exam
ples of existence of exactly two positive solutions for a fixed choice of the boundary data. 
The number of solutions depends on the numerical values of the boundary parameters. In 
the models discussed in this paper one can evaluate the corresponding solutions explicitly, 
due to the particularly simple collision operators. 

We also discuss influence of the linear terms (sources, sinks) on the number of ad
missible solutions, and consider some further related problems, such as solutions in semi-
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116 T. Pt.ATKOWSKI 

bounded domains, and solutions of the relevant linearized problems. 
Finally we discuss some numerical results related to the time evolution of the underly

ing IBVP (initial BVP) for the two-velocity models. The solutions of the considered BVPs 
can be compared with the time asymptotic limits of the related IBVPs in the cases in which 
such solutions exist. In this respect we discuss some numerical results for various choices 
of the initial and boundary data. In the cases of existence of more than one stationary 
state, we give some numerical indications related to their stability. 

2. Formulation of the problem 

We consider the following IBVP for the density functions Ni ( t, x ), i = 1, 2, 

(2.1)a (
0 0 ) 2 2 ot + ox Nt = o:NI + f3NtN2 + 1N2 + ctNt + c2N2 =: Q, 

(2.1 )b (~- ~) N2 = -Q, 
ot ox 

Initial data 

(2.1 )c 

Boundary data 

(2.1)d 

(2.1)e 

where 

and 

(2.1)r 

(2.1)g 

tE[O,oo), xE(-L,L], L>O. 

Ni(O, x) = Nio(x), i = 1, 2. 

N1- = o:tN2- + f3t , 
Nt = o:2Nt + fh , 

N1- =: Nt(t, -L), 

Nt =: Nt(t, +L), 

N2- =: N2(t, -L), 

N2+ =: N2(t, +L), 

with the requirement, that at t = 0 the boundary data match the initial data. 

\ 
\ 

The physical model underlying the problem formulated above can be described in the 
following way. The system of equations (2.1) describes a set of particles, moving with the 
velocities ±1 along the x-axis inside the interval [-L, L]. The functions N1(t, x), N2(t, x) 
are the density functions of the particles travelling with the velocities respectively + 1 and 
-1. The particles undergo collisions between themselves and with the boundaries. The 
intermolecular interaction is described by the collision operator Q, whereas the collisions 
with the boundaries are characterized by the boundary conditions (2.1 )d - (2.1)g· At the 
boundaries we allow multiplication, absorption, and boundary sources (sinks), described 
by the parameters o:~, o:2, {31, {32 in Eqs. (2.1)d and (2.1)e· In the operator Q the quadratic 
terms describe the binary collisions, while the linear terms correspond to bulk sources or 
sinks. The parameters o:~, {31, o:2, {32 will be called the boundary parameters of the IBVP 
(2.1 )a - (2.1 )g. The choice of the rhs in Eqs. (2.1 )a, (2.1 )b gives the conservation of the 
mass flux inside the considered space domain: by adding Eqs. (2.1 )a and (2.1 )b we obtain 
the continuity equation: f!t + (eU)x = 0, where f! = Nt + N2, and eU = Nt - N2. The 
system as a whole is of course not conservative in general, due to the boundary sources 
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EXACT SOLUTIONS OF DOUNDARY VALUE PRODLEMS FOR lWO-VELOCITY MODELS 117 

(sinks) and multiplication or absorption at the boundaries (except some particular cases, 
discussed below). The choice 

a=-1 , ,B=Et=Ez=O, 1=1 

in Eqs (2-1 )a, (2-1 )b corresponds to the Carleman model. Other interesting examples are 
the Ruijgrok-Wu model (a = 0, ,B = 1, 1 = E1 = E2 = 0) [3], and the McKean model 
(a= 0, ,8 = -1,1 = 1,E1 = E2 = 0) [4]. The parameters Et,E2 describe sinks and/or 
sources (in the Ruijgrok-Wu model-annihilation and creation of particles, cf. [3]). 

The choice a 1 = a 2 = 1 and ,81 = ,82 = 0 in Eqs. (2.1)d- (2.1)g corresponds 
to the specular reflection boundary conditions. For the Carleman model this case was 
treated by FITZGIBBON [ 1] by semigroup techniques, and by ILLNER and REED [2], who 
proved a global existence and uniqueness theorem for a large class of initial data, and 
investigated the time asymptotic limit of the solutions. We also note, that the IBVPs and 
the corresponding BVPs for general discrete velocity models were recently investigated 
by KAWASHIMA [7], who proved existence and stability theorem for various configurations 
of initial and/or boundary data (e.g. constant boundary data and initial data close to 
Maxwellian distribution functions). 

In the first part of the paper we discuss the following BVP, related to Eqs. (2.1 )a -
(2.1)g: 

(2.2)a 

(2-2)b 

(2.2)c 

(2 .2)d 

d 
dxN1 = Q' 

d 
- dxNz = -Q, 

N1- = a1N2- + .81 , 

Nt = azNt + .Bz , 

where now Ni = Ni(x), i = 1, 2, x E [-L, L], 

(2.2)c 

(2 .2)r 

ai E R~, 
N1- =: Nt(-L), 

Nt =: Nt(+L), 

and the operator Q is defined in Eq. (2.1 )a· 

,Bi E R1
, 

N2- =: Nz(-L), 

Nt =: Nz(+L), 

In the next two sections we construct explicit solutions of Eqs. (2.2)a - (2.2)d, then 
prove uniqueness of the solutions for some intervals of the boundary parameters and 
nonuniqueness for some other cases. We also discuss dependence of the solutions on the 
boundary parameters (bifurcations of the unique solutions). 

3. Construction of the solution 

The system (2.2)a, (2.2)b of ODE can be solved explicitly. For simplicity we discuss in 
this section the case 

a + ,8 + I = 0 , Ei = 0 , i = 1, 2 , 

corresponding e.g. to the Carleman or the McKean models. An example of the model for 
which the above assumptions is not satisfied, is the RUIJGROK-WU model [3], which will 
be discussed afterwards. 
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118 T. Pt..ATKOWSKI 

Under these assumptions, the general solution (2.2)a- (2.2)b is 

(3.1)a 

(3.1)b 

Nt = -~ + (N- + ~) ea(L+x), 
a 1 a 

Nz = Nt- C , 

where C ::j= 0 and N1- are arbitrary constants (for physical applications N 1- must be 
nonnegative), and 

(3.1)c 

The case C = 0 gives N 1 = N2, which does not match the boundary conditions (2.2)c, 
(2.2)d, unless /3i = 0, ai = 1, i = 1, 2. 

In general, the existence and the number of solutions of the BVP (2.2)a - (2.2)d 
depends on the values of the boundary parameters of the problem, as will be seen below 
from the construction. 

In the following we also assume 

(3 .1)d at t= 1!\az t= 1, at> 0, az > 0. 

REMARK 
The case a 1 = 1, a 2 ::j= 1 and a 1 = a 2 = 0 lead to the unique solution for almost 

all pairs (/31, {32), while a 1 = a 2 = 1 gives in general an indeterminate problem, as can 
be checked out by a straightforward calculation. These, and other particular cases are 
discussed in Appendix. 

We continue with the assumption (3.1)d· To determine the constants N1-, C in 
Eqs. (3.1)a, (3.1)b we proceed as follows. In our problem there exist five unknown con
stants: C, and the four constants N1±, N2±, related by (2.2)c, (2.2)d· Equation (3.1)b written 
at x = =FL give two additional equations 

(3 .2) N 2- = N1- - C , N2+ = N1+ - C . 

The fifth equation is obtained from Eq. (3 .1)a, written at x = + L. After some algebra, 
this set of five equations can be reduced to the following two equations for C and N1-, 

(3.3) e-26LC = at - 1 . -f3z6 + (1- a 21 - 6)C 
az- 1 -/316 + (1- an+ 6at)C' 

(3 .3)a 

where 

(3.3)b 6 = /3 + 2, . 

From this construction we see that the problem of the existence and uniqueness of so
lutions of the BVP (2.2)a - (2.2)d is equivalent to the problem of the existence and 
uniqueness of the algebraic system (3.3), (3.3)a· 

Equation (3.3) can be rewritten in the following form 
m 

(3.4) J(x) =: e-nx- t- --
1 

= 0, 
x+ 

where n, m, t are given functions of the boundary and collisional parameters 

2L62f3t 
(3.4)a n = - , 

(/3 +!)at + 1 
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(3.4)b 

(3.4 )c 

and 

(3.4)d 

A 

y 
8 

D 

m = a1 - 1 . [(]z _ 1(1 - a2)- b l 
0'2- 1 f3t ({3 + l)ai +I ' 

t = O't - 1 . [ (1 - 0'2)1- b l 
a2- 1 ({3 + l)at +I ' 

x= 
-C-(at+1) 

2f3t 
f3I f:- 0 . 

X 

~1 
n>O, f>D, m>D 

X 

n>O, t>O, m<O F 

X 

n< 0, t> a, m>O 

X 

n<O, f> 0, m<O H 

n>O, f<O, m>O 

_ ..... /(I" 
/ 

I 
I 

/ 

FIG. 1. Examples of graphics of e-nx - - - , and t + ~ ---
l+x 

119 

X 

X 

X 

The number of zeros of f(x) in Eq. (3.4) gives the number of different solutions of the 
BVP (2.2)a - (2.2)r. In Fig. 1 we show various possibilities of existence of the solutions 
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to Eq. (3.4 ). Each case corresponds to a submanifold in the phase space of the boundary 
parameters of the problem: at, a 2, /31, {32 . By inspection of Fig. 1 we see that there 
are four possibilities. The number of solutions varies between zero and three; the latter 
case occurs for rather "narrow" intervals of the boundary data, corresponding e.g. to 
Fig. 1E, and originates from different convexity of the relevant functions ( cf. formula 
( 4.1 )a)· Several statements related to the considered BVPs can now be easily proved. We 
prove 

PROPOSITION 1. If 

(3.5)a 

and 

(a1 - 1)(az- 1)[/3 + ! (az + 1)][f3at + 1(a1 + 1)] > 0 , 

(3.5)b (at- 1)(az- 1){f3z[f3a1 +!(at + 1)] + f3t[f3 + !(1 + az)]} > 0 , 

then the BVP (2.2)a- (2.2)d has a unique solution. 

Proof 
The conditions (3.5)a, (3.5)b are equivalent, respectively, to t < 0, m · n < 0, as can 

be easily seen from Eqs. (3.4)a- (3.4)c· The proof follows by inspection of the graphics 
in Fig. 1F, G. o 

REMARK 
For the Carleman and McKean models the sufficient conditions (3.5)a, (3.5)b for the 

existence of the unique solution are equivalent to the conditions 

(at- 1)(az- 1) > 0, f3t(az + 1) + f3z(a1 + 1) > 0 , 

where the first inequality means that both walls simultaneously multiply or reduce the 
number of outcoming particles in the process of the collisions with the walls. Note that 
the second inequality is satisfied automatically if the boundary sources are positive, ( cf. 
Eq. (3 .1)d)· In the latter case we have checked numerically that if, in addition, the re
flection coefficients ai < 1, i = 1, 2, then, in all the considered cases of boundary data, 
the solutions are positive, whereas if ai > 1, i = 1, 2, then there are no positive solu
tions. Physically, in the former case, absorption on the boundaries is compensated by the 
boundary sources, whereas in the latter case, the boundary sources and multiplication of 
particles due to collisions with the boundaries, prevent existence of a positive stationary 
state. 

PROPOSITION 2. If 

(3.5)c 

and 

(3.5)d 

(a1- 1)(az- 1)[/3 + 1(a2 + 1)] · [f3at +·;-(a t + 1)] < 0, 

then the BVP (2.2)a - (2.2)d has exactly two solutions. 

Proof 
As can be easily seen, the inequalities (3 .5)c and (3.5)d are equivalent to respectively 

t > 0 and m · n < 0. The proof follows immediately by inspection of the graphics in 
Fig. 1B, C. o 

Below we specify these general sufficient conditions for the cases of the most popular 
models, i.e. the Carleman and the McKean models. 
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PROPOSITION 2a. If 

(3 .6)a (o t- l)(oz - 1) < 0 , Pt(oz + 1) + Pz(ot + 1) < 0 , 

then there exist exactly two solutions of the BVP (2.2)a- (2.2)d with the Carleman collision 
operator. 

PROPOSITION 2b. If 

(3 .6)b (o t-1)(oz -l)<0 , Ptoz + Pz <O , 

then there exist exactly two solutions of the BVP (2.2)a- (2.2)d with the McKean collision 
operator. 

REMARK 
The first inequalities in (3 .6)a, (3.6)h correspond to the situations in which one of 

the walls multiplies the number of particles in the collision with the wall, whereas on 
the other wall prevails absorption-the collisions with the wall reduce the number of 
outcoming particles. The second inequalities in (3.6)a, (3.6)b require at least one of Pi to 
be negative, i.e. a boundary sink on one of the boundaries. 

An examination of the graphics in Fig. 1A, D, corresponding to 

(3.6)c t > 0 , m · n > 0 , 

indicates that there are other possibilities for the existence of more than one solution. Of 
course, in these cases there are also possibilities of zero or one solution, cf. bifurcation of 
the solutions, discussed in the next section. 

PROPOSITION 3a. If 

(3.6)d n >O , t>O, m >O , t+m<1 , 

then there exist exactly two solutions of the BVP(2). 

PROPOSITION 3b. If 

(3 .6)e n <O , t >O , m<O , t + m >1 , 

then there exist exactly two solutions of the BVP(2). 
As can be easily seen, for the Carleman and for the McKean models these conditions 

again require at least one Pi to be negative, i.e. a boundary sink on one of the wall. In 
the next section we discuss examples, in which there exist exactly two positive solutions 
for all the boundary parameters positive. 

4. Numerical results 

First we consider the Carleman and the McKean model with all the boundary par
ameters positive. This implies n < 0, and m · t < 0, as can be seen from Eqs. (3.4)a
(3.4 )c· These inequalities define submanifolds in the 4-dimensional space of boundary par
ameters, in which we should look for nonunique positive solutions with all the boundary 
data positive. Inspection of Fig. 1 indicates, that the only possibility to obtain nonunique 
solutions with all the boundary parameters positive, is the configuration shown in Fig. 10. 

Positivity of the resulting distribution functions in these and all other cases must then 
be checked from the analytic expressions in Eqs. (3.1)a - (3.1)c· Below we give results for 
some choices of the boundary data, and normalization L = 1. 
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122 T. Pt.ATKOWSKl 

A. The Carleman model, 

(4.1)a at = 1.05, az = 0.7, f3t = 0.07 , f3z = 0.2 . 

The corresponding positive solutions of Eqs. (2.2)3 , (2.2)b are shown in Fig. 2A. Note that 
in this case all the boundary parameters are positive. 

N· 
l 

1 

-1 

A 

1 X 

N· 
I 

15 

5 

B 

FtG. 2A. 1\vo positive solutions, Carleman model. B. Two positive solutions, McKean model. 

B. The McKean model, 

(4.1)b at = 1.05, az = 0.7, f3t = 0.05, f3z = 0.2. 

The corresponding positive solutions (2.2)3 , (2.2)b are shown in Fig. 2B. The boundary 
parameters are also positive. Finally we give an example, in which there exist exactly two 
positive solutions of the BVP (2.2)3 , (2.2)b in spite of a boundary sink on the left wall. 

C. The Carleman model, 

(4.1)c at = 1.1, az = 0.2, f3t = -0.1 , f3z = 0.2. 

In this case there are two solutions of Eq. (3.3) 

(4.1)d Ct S: -0.8 , Cz S: 0.58 . 

The resulting distribution functions, i.e. the solutions of Eqs. (2.2)3 , (2.2)b are positive ( cf. 
[Sa]), and correspond to the configuration of Fig. 1C, as can be seen by a straightforward 
calculation. 

4.1. Bifurcation of the solutions 

The space B of the boundary parameters is 4-dimensional. Analysis of Fig. 1A, D, 
E, H indicates possibilities of bifurcation of solutions in some submanifolds of B . Below 
we discuss 1-dimensional submanifolds, i.e. we fix three boundary parameters, and discuss 
behaviour of the solutions for the varying fourth parameter. We choose the Carleman 
model. 

1. We fix 

az = 0.7 , f3t = 0.07 , f3z = 0.2 . 
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Then there exists 1.05 < a 0 < 1.051 so that for a 1 = a 0 the BVP (2.2)a - (2.2)d has 
exactly one solution, the solution is positive, and for a 1 > a 0 there are no solutions. In 
physical terms, multiplication on the left boundary becomes too large to maintain a steady 
configuration. For 1 < a 1 < a 0 there are two (positive) solutions. In Fig. 3A we plot the 
total densities g of the solutions, where 

p 

30 

20 

10 

2. We fix 

L 

g = J (Nt(x) + N2(x)) dx. 
-L 

p 

30 

FIG. 3. Bifurcation of the unique solution. 

CYt = 1.05, C\'2 = 0.7, f3t = 0.07. 

B 

Then there exists 0.2 < /30 < 0.201 so that for /32 = /30 the considered BVP has exactly 
one solution, the solution is positive, and for /32 > /30 there are no solutions. In physical 
terms, the source on the right boundary is too strong to maintain a steady configuration. 
For {32 < /30 there are two solutions. Their total densities are shown in Fig. 3B. Note that 
one of the solutions becomes negative for a certain value of the boundary sink on the 
right boundary. 

A careful examination of Fig. 1E indicates possibilities of three solutions of (3.4) 
for rather specific configurations of the boundary data. We found some intervals of the 
boundary data, which lead to three positive solutions of the BVP (2.2)a - (2.2)d· This 
comes from different convexity of the graphics of the relevant functions in Fig. 1E, and 
happens e.g. for the Carleman model, if 

(4.1)c CYt = 1.01, C\'2 = 1.01, f3t = -0.8, /32 = -0.9. 

Several interesting problems related to stability of these and, other nonunique solutions, 
and to the underlying time-dependent problems, are under investigation. 
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5. Influence of linear source and sink-type terms 

To investigate the influence of the linear terms of the source and sink type on the num
ber of admissible solutions we discuss below the following generalization of the Carleman 
model 

(5.1)a (
8 ()) 2 2 ' ot + ox N I = - N 1 + N 2 + C} N 1 + C2 N2 = Q ' 

(5.1)b 

with the boundary data: 

(5.1)c 
(5.1)d 

where 

(5.1)e 
and 

(5.1)r 

(5.1)g 

ut -:J Nz = -Q' 

xE[-L,L], L>O, 

N 1- = atN2- + f3t, 

Nt = a2Nt + fJ2, 

ai E R~, f3i E R1 , i = 1, 2, 

N1- := Nt( -L), 

Nt := Nt(+L), 

N2- :=N2(-L), 

Nt :=N2(+L). 

This model is a particular case of the general two-velocity model (2.1 )a, (2.1 )b. 
The procedure similar to that discussed above leads to the result, that the problem of 

the existence and uniqueness of solutions to Eqs. (5.1)a- (5.l)d can be reduced to the 
same problem for the equation 

(5.2) -nC- C- m 
se - t + cz C ' +p +q 

where n, m, s, t, p, q are given algebraic functions of the boundary parameters. Analysis 
of Eq. (5.2) indicates that for some intervals of the boundary parameters there exist more 
than one (at most four) solutions. We omit details. 

The linear terms of the type introduced above appear e.g. in the Wu-RUIJGROK model 
[3] of interactions of elementary particles. Below we briefly discuss stationary solutions of 
this model. 

6. BVP for the Ruijgrok-Wu model 

The RUIJGROK-WU model [3] has different mathematical properties and physical in
terpretation from the models considered in the previous sections. The mathematical differ
ences come from the form of the nonlinearity in the collision term in Eq. (2.1 )a· Therefore 
it seems of some interest to study, how these differences pronounce on the level of exact 
solutions of the boundary value problems. In this section we comment on the following 
BVP for the Wu-Ruijgrok model 

(6 .1)a 

(6.l)b 
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(6 .l)c 

(6 .1)d 

where 

N 1- = atN2- + f3t , 
Nt = a2Nt + !32, 

125 

Ni=Ni(x), i=l,2, xE[-L,L], c<O, c2>0, aiER~, /3iER1
• 

From Eq. (6.1)a, (6.l)b we obtain 

(6.2) 

where ,\ = c1 + c2 - C, C arbitrary. 
Analytical form of the solution of Eq. (6.2) depends on the sign of the parameter 

Ll = ..\2 + 4c2C. For Ll > 0 we obtain 

(6.3) 

where 

(6.4) N - -,\ =f vf.1 
a,b -

2 
, 

A is integration constant. The parameters C, A can be determined from Eqs. (6.1)c, (6.1)d· 
We omit details. 

For Ll < 0 the solution reads 

(6.S) Nt = S · tan[S(x
2
: A)/2]- b , S = ~' 

where A can be obtained from the relevant boundary conditions. As in the models con
sidered previously, the number of solutions depends on the boundary parameters and on 
ct and c2, and nonuniqueness can be seen from the analytical form of the solution. More 
detailed study of the relevant solutions is left as an exercise. 

REMARK 
Recently the Ruijgrok-Wu model has been studied in [8] in the frame of the so-called 

extended kinetic theory, in which the test particles are allowed to interact with a fixed 
background medium, and to undergo absorption or fission-like reactions, along with the 
usual elastic scattering. 

7. BVP on a semiline 

In the previous examples the particles were confined to the bounded domain. As one 
could expect, in the case of unbounded domains the results are qualitatively different. 
As an example we consider the following BVP on a semi line [-L, oo] for the general 
two-velocity model: 

d 
(7 .1 )a dx N1 = Q , 

d 
(7 .1)b - dx N2 = -Q, 

(7 .1)c N1- = a1N2- + f3t, 
where N i = N i(x), i = 1,2, X E [-L,oo], Q is defined as in Eq. (2.1)a, 

(7.1)d Q =aN{+ f3NtN2 + 1N} + ctNt + c2N2. 
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We easily prove, by solving the system of two equations: (3 .1 )b written at x = - L, and 
(7 .1 )c, the following 

PROPOSITION 4. If 

(7.2) ll'J t= 1 , lim (Nt - Nz) = Coo t= 0 , 
X --+ 00 

where Coo is a prescribed constant (flux at infinity), then the BVP (7.1)a - (7 .1)d has a 
unique solution. The solution is given by Eqs. (3 .1)a, (3 .l)b with C = C00 , and 

(7.2)a N
- _ {it - ll'J Coo 
1 - . 

1- ll'J 

Note that in the case of a 1 = 1 and arbitrary {3, the method does not work, and in general 
we obtain a one-parameter family of solutions. 

REMARK 
Nonuniqueness of the BVPs considered in this paper is generated by the boundary 

conditions rather than by the nonlinear structure of the collision operator, as can be seen 
from the following example 

d 
(7.3)a dx Nt = aNt + bN2 = Q2 , 

d 
(7.3)b - dx N2 = -Q2 , 

(7.3)c N1- = a 1N2- + f3t , 
(7.3)d Nt = a2 N2+ + fJ2, 
where Ni = Ni(x ), i = 1, 2, x E (-L, L], a, b E R1• 

Proceeding as in the main example we construct (for a + b t= 0, f3r + f3i t= 0) two 
solutions of Eqs. (7.3)a- (7.3)d for certain intervals of the boundary data. The case a+ b = 
= 0 corresponds e.g. to the Carleman model, linearized around a constant Maxwellian. 
In this case the solution is unique, as can be checked by elementary calculations. We omit 
details. 

8. Initial boundary value problem 

In this section we present results of a numerical study of time evolution for the IBVP 
(2.1 )a - (2.1 )g. Having in mind stability problems, it seems that the most interesting 
configurations of the boundary parameters are those, for which there are at least two 
positive solutions of the related BVP (2.2)a - (2.2)d· As an example, we report results for 
the Carleman model with the boundary data 

(8 .1) ll'J = 1.1 ) 0'2 = 0.2 ' f3t = -0.1 ' !32 = 0.2 ' 

for which there are exactly two positive solutions of the BVP (2) as discussed in the section 
on numerical results. We started with the constant initial data NiO( x) = 3, i = 1, 2, 
x E [-1, 1]. Using an implicit numerical scheme, the time evolution of the data has 
been investigated. In the initial stages of the evolution, the distribution functions Ni ( t , x) 
approach the "upper" stationary state with larger total density. Then the solution reaches 
asymptotically the "lower", stable stationary state. Similar phenomena has been noticed for 
other choices of the boundary data. Some mathematical problems related to the stability 
of the solutions are under investigation. 
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We also found, that the time evolution from negative (partly or fully) initial data may 
lead to a stationary positive state. On the other hand, positive initial data do not guarantee 
in general, that the corresponding final, stationary state (if it exists) is also positive, as we 
have checked for several configurations, e.g. for the Carleman model with the boundary 
data o 1 = 0.5, a 2 = 0.7, {31 = -0.05, f]z = -0.02, and the initial data N 1 = N2 = 0.5. 

From the physical point of view, existence of boundary sinks (i.e. negative values of 
the parameters f3i) imposes some constraints on the initial distribution functions. In order 
to guarantee their positivity we can not start from "too small'' initial data, otherwise e.g. 
N} or N2- in Eqs. (2.1)d or (2.1)e may take negative values. 

Of interest are also the boundary data, for which the considered BVPs have no solu
tions. Preliminary numerical calculations of the underlying IBVPs indicate, that the sup 
norm of the solutions tends to infinity with time (the particles accumulate in the domain). 

Finally we note, that in the considered models one can calculate explicitly the local 

entropy profiles inside the domain, E(t, x) = L:7=t Ni ln(Ni) and the total entropy of the 

system, E(t) = J!:L E(t , x) dx. Various problems related to the entropy production in the 
corresponding IBVPs are under investigation. 

Appendix 

For O'J = a2 = 1, f3t = fJ2 = 0 any pair ( C, C) solves the IVP (2.2)a - (2.2)d with 
the Carleman collision operator. Any solution is in this case of the form (C, C). For 
a 1 = a2 = 0 there is always a unique solution, which of course can be written explicitly. 

For {31 = {32 = 0, and a 1 t= 1, o 2 t= 1 there is either one or zero solutions, depending 
on the solutions of the equation 

(A.1) e -2({3+2-y)LC = -(1- at)[{J + -y(1 + a2)] 
(1- a2)[,Ba1 + -y(1 +at)] · 

This equation has one or zero solutions, depending on the values of at, a2 and the 
considered collision operator. In particular, for the Carleman and the McKean models, 
one can easily see that the (unique) solution exists if ( 1 - at)(l - a2) < 0, i.e. if one 
wall multiplies the number of particles in the collisions, whereas on the other one the 
absorption prevails. The solution is given by Eqs. (3.1)a, (3.1)b with N! = (Cat)/(at-1), 
where C solves Eqs. (A.l). In this case without boundary sources, if (1- at)(1- a2) > 0 
then there are no stationary states. It means, that if both walls simultaneously produce or 
absorb particles, then, in order to reach a nonzero stationary state, one should introduce 
boundary sinks or sources-the result, which is clear from the physical point of view. The 
existence of boundary sources increases the size of the intervals of values of Oi, for which 
stationary states can exist. We also note that in the considered BVPs the conditions of 

mass conservation on the boundaries, L:7=t Ni-ui = 0 = L;=l N/ui, u1 = -u2 = 1 
are equivalent to the specular reflection boundary conditions. For the periodic boundary 
conditions, the solutions of the BVP (2.2)a - (2.2)d depend on one free parameter. 
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