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BRIEF NOTES 

On flow rules in plastic deformation 

R. N. DUBEY AND S. BED! (WATERLOO) 

THE PURPOSE of the present paper is to compare some consequences of the classical flow-rule of 
plac;ticity due to Levy and Mises with those of the flow equation recently proposed by DuBEY and 
BED1 [1 J· The kinematics of a thin plate in large simple shear deformation is used for the purpose of 
companson. The prescribed continued deformation ts used to calculate the finite values of distortion 
and rotation. The prescribed continued deformation is used to extract information about (Eulerian) 
strain-rate and spins of the various axes defined in the body. 

1. Introduction 

IN THE CLASSICAL flow equation of plasticity, which can be traced to LEVY and MISES (2], 
the plastic component of increment in strain is assumed proportional to the deviatoric 
stress component. The constant of proportionality used in the flow equation is assumed 
to depend on the loading condition and hardening parameter. This parameter is deter
mined from the stress-strain relationship obtained from experiments which may involve 
either uniaxial stressing as in tension test, or pure twisting as in torsion test, or a combi
nation of tension-torsion loading. The type of experiment one should use for finding the 
hardening parameter is immaterial if the behaviour of the body is isotropic, in which case 
all loading histories must result in the same stress-strain equation. If, for example, the 
two curves obtained from the uniaxial and the torsion test are identical, the assumption of 
isotropic behaviour may be considered valid. If this is not the case, the assumption of iso
tropy is invalid and the material behaviour is anisotropic. In this situation, the hardening 
parameter obtained from one experimental data may not be used for situation involving 
some other type of loading, thus severely restricting the applicability of Mises flow rule. 

It is now common to recast the flow equation in rate-form. The usual practice is to 
replace the increments in strain by (Eulerian) strain-rate, also known as the rate of de
formation tensor. The implicit reason for this procedure is that it allows one to treat the 
integrated values of strain-rate components as strain. It is known, nevertheless, that the 
strain-rate is not a flux (3]; that is, strain-rate is not a rate of change of a strain-measure. 
The kinematics of a plate in simple shear will be used to show the error introduced in 
treating strain-rate as rate of logarithmic strain. 

The modified flow rule proposed by DUBEY and BEDI (1] is obtained by replacing the 
strain-rate by an objective rate of strain. The two flow rules are of course identical in the 
reference configuration and also when deformation involves no rotation. In general cases 
of finite deformation though, their difference may be significant. One of the aims of the 
present work is to compare the two flow rules in those cases in which the deformation is 
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not so restrictive. 
In order not to introduce unnecessary complications, the elastic part of the defor

mation will be ignored in the following presentation and the material behaviour will be 
assumed rigid-plastic. 

2. Kinematics 

The finite deformation of a body is described in terms of the gradient 

(2.1) 

where Xi is the current position of a typical particle initially at Xi. In order to extract 
information about distortion and rotation from the above equation (2.1) it is expressed 
as a product of second order symmetric stretch tensors, V or U, and a proper rotation 
tensor, R. Thus 

(2.2) F=V·R=R · U, 

where the symbol ( ·) denotes inner product; that is (V · R)ii = Vik Rki. Note that Vii 
represent the Xi-components of V and repeated suffix implies summation. 

It is known that every second-order symmetric tensor has three principal values and 
directions. Let ..Xi denote the principal values of the stretch tensor Vii and let Yi be the 
principal directions. The axes which momentarily coincide with the principal directions 
are called the Eulerian axes. Note that in the principal axes technique used here, \Iii are 
the components of stretch on the fixed or Xi-axes; whereas Uii are the components of 
the same stretch tensor on rotating or zi-axes. The Zi-axes initially coincide with Xi and 
undergo the same rotation R as the body. Since zi are associated with the body rotation, 
hence they may be called the body or R-rotated axes. A significant consequence of this 
interpretation is that it leads to a single set of principal directions on which the stretch 
components are denoted by either Aii or ..Xi, whereas Uii and Vii are its components on 
the rotated and the fixed axes , respectively. The principal and rotated-axes components 
retain their values on their respective axes during further rigid rotation of the body which 
causes these axes to rotate by the same amount. They are therefore objective. 

Suppose that the components of the deformation gradient are prescribed: 

(2.3) 
Fu = 1 , 

F21 = 0, 
FI2 =I' 

F22 = 1 . 

Substitute these values of the deformation gradient in (2.2) to obtain the rotation angle 

(2.4) () = arc tan( -1 /2) 

and the Xi-components of stretch 

V11 = 2 + 12 

)4 + 12 ' 

(2.5) VI2 = I 

~' 

v22 = 2 
~-
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The principal values of stretch are obtained from Eqs. (2.5) in the form 

(2.6) 

.X _I+~ 
1 - 2 l 

\- -~+~ 
"'2 - 2 . 

The orientation of the principal axis is also obtained from Eqs. (2.5) which yields the 
following value for the angle between y1 and x 1: 

7r () 
(2.7) (3 = 4 + 2. 

Use the logarithmic strain measure to obtain the following principal values for strain: 

(2 .8) 

It follows from Eqs. (2.6) and (2.8) that E2 = -E1. Hence the strain components on the 
fixed axes can be obtained in the form 

(2.9) 
en = - e22 = Et cos2(3, 

e12 = Et sin 2(3. 

Note that the normal components of strain on Xi have non-zero values. 
During the continued deformation, the rate of deformation gradient is prescribed as 

follows: 

(2.10) 
F11 = Fzz = 0, 

Fzt = o , P12 = t . 
Use the chain rule of differentiation to express the rate of deformation gradient in 

terms the symmetric and anti-symmetric parts of the velocity gradient, Dii and Wii, re
spectively: 

(2.11) 

The following values for strain-rate and spin are obtained from Eqs. (2.3), (2.10) and 
(2.11). 

(2 .12) 
Dtt = D22 = 0 , 

D12 = w12 = t /2 . 
The significance of these results must be carefully noted. For example, note that the nor
mal components of strain in Eqs. (2.9) are non-zero, whereas the normal components of 
strain-rate are zero (2.12). The expression for strain in Eqs. (2.9) suggest that they are 
not constant. In fact, they depend on E1 and, hence, on the value of principal stretch and 
angle. The obvious conclusion is that eii t= Dii. The implication is that the strain-rate, 
Dii, is not a flux [3]. In other words, the time rate of change of a strain may not be equa
ted with the strain-rate. Yet, a common practice in the classical plasticity is to express the 
flow rule in terms of the strain-rate and the value obtained as a result of its integration is 
routinely interpreted as strain. It seems that such an interpretation is not always justified. 

Note also that the continued finite deformation yields a value 

(2.13) /J = () /2 
for the spin of the principal axes. The interpretation applied to the integrated values of 
Eqs. (2.12) in the theory of plasticity, on the other hand, suggests that the angle (3 must 
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remain constant and hence the spin of the principal strain axis must vanish, which clearly 
is not the case here. This is a serious deficiency and warrants a careful investigation of 
the existing practices in the application of the rate-theory of plasticity. 

3. Foundation 

The stress-strain law for a material is usually obtained from a uniaxial tension test and 
is expressed in the form 

(3.1) 

where A and n are material constants. This equation may be used as a basis for generaliza
tion of plasticity law to three-dimensional deformation. For example, the equivalent stress 

(3.2) aM = ~uijaij 
is a 3-dimensional generalization of the uniaxial stress. Here, 

(3.3) 

is the deviatoric stress component and 6i j is Kronecker's delta. 
A generalization of strain in the form 

(3.4) en = J~e;; e;;, 
which is attributed to Hencky, has been less successful so far as its use in the plasticity 
theory is concerned. A generalization form of strain which is widely used can be obtained 
by integration from the following definition of the equivalent strain-rate: 

(3.5) OM = J~D;;D;;. 
But it is not clear how to interpret the integrated value of eM, especially in view of the 
fact that strain-rate used in Eq. (3.5) is not generally a flux of a strain. 

For the simple shear case considered in the previous section, 

(3.6) 

(3.7) 

It is clearly seen that e H t= c M and hence the former cannot be obtained from c M by 
integration. This observation poses a dilemma as to which of the two strains is the proper 
generalization of the uniaxial strain in the stress-strain law (3.1). Yet another difficulty 
created due to this dilemma is as follows. 

Consider the material derivative of stress-strain law (3.1) and rewrite it in the form 

(3.8) e = ~~ , 
where the parameter h is given by 

2 
(3.9) 

3
h = nAan-l = (ne /a) . 
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The stress-strain law (3.1) has been used to derive the second relationship Eq. (3.9). 
A three-dimensional generalization of Eq. (3.8) can be expressed in the form 

(3 .10) eij = a ij :(1 . 
It is now possible to generalize the above equation by replacing the material rate of 

strain on the left-hand side by an objective rate. Thus 

(3.11) 

where the superscript 0 denotes an objective rate. This flow rule was proposed by DUBEY 
and BEDI (1]. 

The classical flow rule can be obtained from Eq. (3.10) by following the common 
practice in plasticity of replacing the rate of strain by D i j. The consequence is the flow rule, 

(3 .12) D ij = aij :a . 

The difficulty one faces now is this: which of the two expressions for the hardening parame
ter in Eq. (3 .9) must one use in the flow rule (3.12). This point is not even mentioned in the 
literature because, perhaps, of the fact that the hardening parameter used in the flow rule 
is calculated in terms of (n A an-l) and no attention is paid to the value of (neja) which 
it must equal if Eq. (3.1) is correct. Indeed, the point is irrelevant if these two expressions 
yield the same value as they must according to Eq. (3.1) and the assumption of isotropy. 

In order to address this paradox, introduce a parameters as a measure of the length 
of the trajectory of plastic deformation. For the classical flow rule, choose 

(3 .13) S = J~D;jDij =OM. 

At the same time, retain elf as a generalized strain measure. Since it is obvious from 
Eqs. (3.6), (3.7) and (3 .13) that s t= elf, therefore, introduce a factor g such that 

(3 .14) 

The value of elf in terms of the rate of strain is obtained from Eq. (3.4) in the form 

2 · 2 e· ·e0 

(3.15) 
. _ eijeij _ z; ij 
elf--------

3 elf 3 elf ' 

where 0 is an objective co-axial tensor-rate. In order to calculate the left-hand side of the 
above equation, one of the two options may be adopted: (a) use the flow rule (3.11) pro
posed by DUBEY and BEDI [1] , or (b) use the classical flow rule in the form Eq. (3.12). If 
the choice is in favour of the option (b), it is then necessary to find a relationship between 
the rate of strain components and the strain-rate components in order to calculate the 
value of elf. The principal axes technique is used for this purpose. 

4. Principal axes technique 

In order to use the principal axes technique, all tensor components must be trans
formed and expressed in terms of its components on the principal axes. In view of the 
interpretation used here, the principal directions of ViJ at the current instant define the 
principal or Eulerian axes. For the simple shear problem, the Eulerian components of 
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strain rate (these are the components of the strain-rate on the principal or Yi-axes), de
noted by superscript E, can be obtained from Eqs. (2.7) and (2.12) in the form 

Dft = - Dfz = D12 sin 2,8 = ~cosO, 

Dfz = D12 cos2,B = -~sin 8. 
(4.1) 

The Yi -components of the rate of strain are 

· _\t E 
Eu = At = Du ' 

(4.2) · .\2 E 
E22 = A2 = D22 , 

E12 = /J(Et - E2), 

where jJ is the spin of the Eulerian or principal axis. This spin also can be expressed in 
terms of the strain-rate (4]: 

(4.3) /J = At+ A~ DE- WE 
A2- A2 t2 12. 

1 2 

These relationships are next expressed in terms of Jaumann-rate, which is denoted by 
superscript J and defined as follows: 

(4.4) e& = eij- wikekj + eikwkj. 

Thus, the components of the J -rate of strain on the Eulerian axes are 

Eft = Et = Eu = Dft , 

E{2 = E2 = E22 = Dfz , 

J At+ A~ E 
E12 = A2 _ A2 (Et - E2)D12 . 

t 2 

(4.5) 

Rewrite the shear component of the rate of strain in the form 

( 4.6) Ef2 = P3Dfz 

where the coefficient p3, given by 

A2 + A2 
(4.7) P3 = A~_ A;(Et- E2), 

t 2 

depends on the value of the principal strains and stretches; that is, it depends on the 
history of loading. 

A transformation of these equations to the fixed axes results in the following relation
ships: 

(4.8) 

ef1 = -(p3- 1)D{-; sin 2,8 = - P3
-

1 
E{2 sin 2,8 , 

P3 

e12 = -(p3- 1)Dfz sin 2,8 = P3 -
1 

E{2 sin 2,8 , 
P3 

ef2 = D12 + (p3 - 1 )Dfz cos 2,8 = D12 + p3 -
1 

E{2 cos 2,8 . 
P3 
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It is easy to invert the above equations and write Dij in terms of e&. 
The benefit of the development followed above is that it provides a technique for 

correlating the spin of the principal axes irrespective of whether the strain-rate or a rate 
of strain is used in the analysis. To be more specific, Eq. ( 4.3) provides an expression 
for the spin /3 in terms of the strain-rate. An expression in terms of the Jaumann-rate 
of strain follows by using Eq. ( 4.6) in ( 4.3). This observation can be exploited to yield 
a methodology for developing or correlating results obtained from different flow rules. 
Thus, one may choose any objective rate of strain in the flow rule, but they must result 
in the same value for the spin of the principal axes. 

5. Application 

(a) Consider first the classical flow rule (3.12), and use Eq. (3.13) to rewrite it in terms 
of s: 

(5.1) Dii = ~a-:i~ 
(Here and in the following, a- denotes the equivalent stress. The subscript !11 has been 
dropped.) For the prescribed simple shear, D11 = D22 = 0. In view of the flow rule (3.12) 
or (5.1) therefore, normal component of stress on fixed axes must vanish: o-11 = o-22 = 0. 
Thus, the shear stress, denoted by r, is the only non-zero component of stress. The equ
ivalent stress defined by Eq. (3.2) can be expressed in terms of the shear stress: 

(5.2) a- = J3r. 
A transformation to the principal axes yields the stress components: 

2T 
E11 = -E22 = , /4 + ,z 

'YT 
(5 .3) 

Thus the ratio 

(5 .4) 
2E12 'Y 

= - = cot2{J 
En- E22 2 

can be used to find the relative orientation of the principal axes of strain-rate. 
The length of the plastic trajectory and its rate, obtained from Eqs. (2.12), (3.5) and 

(3.13) have values 

(5.5) s=,;J3, s=t/V3. 
The history-dependent factor g in Eq. (3.14) is calculated next with the help of Eqs. (3.6), 
(3.15), (4.1), (4.5) and (5.5). Its value is found to be 

2 
(5.6) g = /4 + ,z ' 
which can also be obtained by differentiating elf in Eq. (3.6) and substituting this value 
along with the value of s from Eqs. (5.5) in (3.14). The usual practice to find the principal 
direction from the values obtained from integration of strain-rate components must be 
abandoned, since the interpretation of such integrated values as strain has been shown to 
be generally incorrect for large deformation. The recommended procedure is to find the 
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spin of the principal axes from Eq. ( 4.3). The value so obtained is found to be the same 
as that in Eq. (2.13) which shows consistency in the re~ult. This value of spin can then be 
integrated to yield the angle /3. 

(b) Consider next the consequences of the proposed flow rule. For this purpose, use 
the J -rate as the objective coaxial rate of strain and the definition 

(5.7) s= 2 J J 
jeiieii 

for the rate of change of the plastic trajectory. In view of Eq. (5.7), the proposed flow 
rule is rewritten in terms of s: 

(5.8) e& = ~a~i ~. 
Since the strain-rate and the J -rate of strain both have the same values for the normal 
components on the principal axes, the two theories result in identical values for the ra
tios of the normal Yi-components of stress. It is clear from Eq. (4.6) however, that the 
shear component of the rate of the strain is not the same as the shear component of 
the strain-rate. This is the reason for the difference between the two theories. Even this 
difference vanishes if it turns out that p3 = 1 as it is in the reference configuration. The 
difference vanishes also in the case when the spin of the principal strain-axes vanishes. 

In view of Eqs. (4.1) and (4.5), (5.8) yields the ratio 

2E12 P3'Y (5.9) = -
2 

=p3cot2j3, 
Eu- E22 

which is different from the ratio (5.4) obtained for the classical flow rule. The ratio of 
stresses obtained from Eq. (5.9) can be used in Eq. (3.2) to yield 

2a 
Ett = -E22 = , 

/3(4 + pj-y2) 

" _ P3"f<7 
Ll12 - . 

/3(4 + pj-y2) 

(5.10) 

The xi-components of stress can now be obtained in the form 

2(p3 - 1 )-ya 
au = -a22 = - ' 

/3(4 + -y2)(4 + pj-y2) 

(4 + P3'Y2 )a 
<712 = . 

/3(4 + -y2)(4+ pj-y2) 

(5.11) 

Thus, the proposed flow rule yields non-zero values for normal stresses a11 and a22. They 
are small for small values of (p3 -1 )-y, and in such situation, the proposed theory can be said 
to exhibit second-order effect. However, for -y = 1, their values are found to be approxima
tely (1/10)-th of the shear stress. Note that the stresses in Eq. (5.11) reduce to those pre
dicted by the classical theory provided p3 = 1, which is true in the reference configuration. 

In order to obtain the factor g, substitute Eqs. (5.8) and (3.15) with J -rate in Eq. (3.14) 
to obtain a general relation 

(5.12) 
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Note that g = 1 for the case of uniaxial loading. For the simple shear problem 

2 
(5.13) g = ---;:=== J4 + P~/2. 

The value of scan be obtained with the help of Eqs. (4.1), (4.5) and (5.7), 

4+ 3P3/2 

3(4 + , 2) . 
(5.14) s=t 

137 

The value of eH obtained by substituting (5.13) and (5.14) in (3.14) is the same as the value 
obtained directly by differentiating (3.6) which indicates a consistency in the development. 

6. Conclusion 

Some consequences of the flow rule proposed by DUBEY and BEDI [ 1] are examined 
and compared with the results obtained from classical flow rule attributed to Levy and 
Mises. For the purpose of comparison, the concept of the length of plasticity trajectory 
is introduced in terms of the flow variable, and its rate is related to the rate of strain via 
a history-dependent factor. The result of this approach is that it provides a methodology 
for the development of flow rules in terms of either the strain-rate or the rate of strain. 
The principal axes technique has been used to relate the flow variables used in the two 
types of flow rules. It is shown that the proposed flow rule predicts second-order effects 
unlike the classical flow rule which does not. 
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