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Wave speeds in periodic elastic layers

Z. WESOLOWSKI (WARSZAWA)

THE SPATIALLY periodic system of elastic layers is considered. The displacement v in the
elementary cell consists of the displacements corresponding to the wave propagating to
the left and the wave propagating to the right. The displacement u,,, in the
neighbouring cell is defined by u, and the transition matrix M. It is shown that
a parameter ¢ may be defined leading to the (essential for further calculations) relation
M ()" = M(ng). This relation allows us to define the phase speed. The phase speed is
real for small frequencies, but for large frequencies it may be complex.

Rozpatruje si¢ periodyczny w przestrzeni osrodek warstwowy. Przemieszczenie
u, w komorce elementarnej jest suma przemieszczenia odpowiadajgcego fali propaguja-
cej si¢ w prawo i fali propagujgcej si¢ w lewo. Przemieszczenie u,, , w sasiedniej
komorce elementarnej okreslone jest przez u, i macierz przejécia M. Pokazano, ze mozna
zdefiniowaé pewien parametr ¢ taki, ze macierz przejscia M = M(p) ma ‘:totng dla
obliczen wiasno$¢ M(¢p)" = M(n¢). Ta wiasnos¢, zupetnie taka sama jak wiasnos¢ liczb
zespolonych, pozwala na fatwa interpretacjg rezultatow oraz na zdefiniowanie predkosci
fazowej w uktadzie warstwowym. Predkosc fazowa w ukladzie warstwowym dla matych
czestosci jest rzeczywista, dla innych czgstoSci moze by¢ zespolona.

PaccmatpuBaeTcs MepHOAMYEcKas B NPOCT PaHCTBe, cioucTas cpeda. IlepemelueHue
u, B JJ1eMEHTApPHOH s4eiike #BISETCA CYMMOil MepemelleHus OT BEYAIOLIEro BOJIHE
PacnpocT paHsIOLIEiiCs BNPaBo M BO.IHbI PacIpocT pausioweiics Beso. [lepemeinenue
u, ., B coce/Heil 3;1IEMEHT apHOIl siuelike OnpeeIeHo Yepes u, U MaTpuuy nepexoga M.
Iioxaaauo, YTO MOXHO OMPEAEIMTH HEKOT OpBlii MapaMeTp ¢, TakKoii, YUTO MaTpHLa
nepexona M = M(¢) uMeeT cyluecTBeHHoe A8 pacueToB cBoiicTBo M(¢)" = M(ng).
DTO CBOIICT BO, BIOSIHE XK€ TAKOE CAMOE KaK CBOICT BO KOMILIEKCHBIX YHCE, MO3BOIAET
JIerKO MHT €pPIPeT MPOBATH Pe3y IbTaT bl H ONMpPeJeHT b (a30BYI0 CKOPOCTL B CIOMCT Off
cucreme. daloBas CKOPOCTH B CIOHCTOIl CHCTEME [1f MajbX 4acTOT SBIAETCH
[OElCT BUT EbHOM, A1 APYrUX 4acTOT MOXET ObIThb KOMILICKCHOIL.

THE sysTeEMS of layers were dealt with in many papers, e.g. in the already
classical ones [1-9]. In tne present paper essential is the introduction of a new
parameter ¢ and representation of the transition matrix M (¢) in the form
satisfying the identity M(p)" = M(n¢). This allows us to define the phase speed
in the composite.

1. Reflection and transmission

Consider the system of homogeneous elastic layers, Fig. 1. The layer
situated between x; and x, 4, is denoted by L,. The Lamé constants and den-
sity of the layer L, are denoted by A, w4, pr, kK =1, 2, 3,.... In the direction x
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perpendicular to the layers propagates the sinusoidal wave of frequency w. Due
to the reflections, the wave propagating in the opposite direction appears. The
total displacement in the layer L is

(1.1) u = Arexpio [t — (x —x)/ci] + Brexpiw[t + (x — xp)/ci],

where ¢ is time, x; < x<x;4, and ¢, is the wave speed in the k-th layer

2
(1.2) ci = (& + 2m)/ps.
Pa:A0 P24 P2, Az P3: A3
g X
% X Xy X

L, L L, i

d d, 4
FiG. 1.

The displacement uy consists of two parts. The first part in Eq. (1.1) represents
the wave of amplitude A4, running in the x direction. The second part
represents the wave of amplitude B, running in the -x direction. The
displacement u, satisfies the equation of motion

(13) ckz Ug xx = Ug,p-

The physical displacement is the real part of the complex-valued function
U (x,t).

At the boundary between the layers both the displacement and the stress
vector are continuous. This fact leads to the relations

(1.4) Ay _jexp(—iay) + By - yexp (i) = Ay + By,

# [ —Ax - rexp(—ioy) + By rexp(iog)] = — Ay + By,
where
(1.5) oy = 0xg — Xg-)/ck—1, %= (Pr-1Cr- 1)/(Px cr).

Equation (1.4) may be solved for A4,, B, to yield
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(16) [/;k]= M, [/;M]’
k k-1
M, = 1 (1 + =) exp(—ioy) (1 — ) exp (iogy)
*Tol(1 —m)exp(—im) (14 )expiay) |

(1.7)

The transition matrix M, allows us to express A;, By by A,_,, Bi_ ;. The
determinant of M, depends on x, but not on o,

(1.8) det My = ;.

2. Periodic layers

Consider now the case when a set of layers is repeated periodically in space.
The elementary cell may consist of an arbitrary number of layers. The simplest
cell consist of two layers only, Fig. 2. Denote

2.1) ® = (pc)f(pscy), g = wdy/c,, = wdyfcy;
M _1 (1 + x)exp(_ ima) (1 - x)CXp(icza)
22) “T 2 (1 —x)exp(— in,) (L + x)exp(iag) [

M. = L+ dexp(—im) (L= 1/x)exp (i)
T2l (1 = 1)exp(—iny) (1 + 1/%)exp(iay) |

ParCa| PbsCp PasCa| Po:Co ParCa| Po:Ch

yx

Q-
x
3¢
o
o

Xs Xg

Therefore

Ky = X, Cyr = Cgq, Oy = Oy, M‘; = Mn for k = 0, 2, 4,...,
=1/ c=c, o=ao, M=M, fork=1, 2 5,..

In the above formulae M, is the transition matrix from a to b, and M, the
transition matrix from b to a.
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The purpose of the further analysis is to calculate the average wave speed in
the set of layers. Concentrate first on the displacements in the layers of type a.
In accord with Eq. (1.6), for each intiger n there is

AZn AO
=M" = =12 3.
(2.3) [an:I M [Bojl’ M=M, M, n=1, 2 3,

where M is the transition matrix for one cell. From Eq. (2.2) it follows that this
transition matrix has the following components:

AM =2+ =+ 1/x)expi(— o, —ap) + (2 — 2 — 1/x) expi(— a, + o),

@4 4 My = (¢ — 1/x) expi(— a; — ap) — (% — 1/x) expi(— o, + %),

(2-5) M, = m, M, = Ex-

Note that the matrix M is non-Hermitean since M, is not real. The matrix
with the symmetry (2.5) will be further called W-symmetric. The product of two
W-symmetric matrices is W-symmetric. The matrix M is the periodic function of
o, and op.

For x =2, d, = 2d, some displacement profiles are given in Figs. 3-6.
For a, = 2, = 0.1 (Fig. 3), «, = o, = 0.5 (Fig. 4) and 2, = o, = 1 (Fig. 5), the
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displacement remains small in each cell. For a,=o, =14 (Fig. 6) the
displacement grows exponentially with n.

FiG. 6.

Consider first the case when w is sufficiently small. Then Re M, <1 and,
in accord with the derivation given in the Appendix, the matrix M may be
written in the form

2.6) M= cosp — iEsin¢g (C + iD)sing

) " |(C—iD)sing cos¢g +iEsing |
2.7 ¢@ = arccosH, H=ReM,,,
(2.8) E*-C*-D%=1,

where ¢, E, C, D are real parameters. The important identity holds

e D)si
29) M- I:cos ng —iEsinng  (C + iD)sin nq)]’ n1 2.

" | (C — iD)sinng cosng + iEsinng

Figure 7 shows, for fixed x, the values of a,, &, for which —1 < H <1 and
¢ is real. For fixed »x the region between the curves corresponds to H < -1.
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FiG. 7.

The smaller is x, the larger is the region for which ¢ is real. Because of the
periodicity of M, the picture repeats for larger values of «,, o, For » = 2 the
regions are shown in Fig. 8.

Calculate the displacement at the beginning of each layer of the kind a,
therefore at the discrete set of points

(2.10) x,=n(d,+dp), n=1,2 3,.
In accord with Egs. (1.1), (2.3) and (2.9), we obtain

(2.11) U (xn, 1) = {[My1 (n@) + M2, (ng)] Ao
+ [M3(ng) + M3, (np)] Bo} expiwt

or, in terms of the parameters ¢, C, D, E,

(2.12)  u(x,t) = {[cosnp + (C —iE —iD)sinng] 4,
+ [cosne + (C + iE + iD)sinng] B,} expicwt.
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FiG. 8.

The physical displacement is the real part of u as given by the Eq. (2.12)

(2.13) Re(u) = (Ao + Bo)(cosng + Csinng)coswt
+ (Ao — Bo)(E + D)sinne sinwt.

Simple trigonometric transformations lead to the formula

Re(u) = wg + wy,
2wg = Ay [(1 + E + D)cos(wt — ne) —Csin(wt — ne)]
(2.14) + By [(1 — E — D)cos (wt — np) —Csin(wt — nep)],
2wy = Ag[(1 — E — D)cos (wt + ne) + Csin(wt + ne)]
+ Bo[(1 + E + D)cos(wt + ne) +Csin(wt + ne)].

The waves with the phase (wt — ng) run to the right, and the waves with
the phase (wt + ng) run to the left. Note that the amplitudes of all waves
are constant and do not depend on n, in contrast to the amplitudes A4,, B,
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in Eq. (2.3) which are functions of n. The arguments of the trigonometric
functions (phase) do depend on n. Using Eq. (2.10) we obtain the formulae for
phases fz and f; of the waves running to the right and the left

(2.15) fr=owt—ox,d,+d)"t, fi=owt+@x,(d,+dp) ",

or, in accord with Eq. (2.1), the formulae

(2.16) =0t - (Pxn(aaca'*'abcb)_l]’
fL = U)[f + (pxn(anca + abcb)_l]'

Both formulae hold for the discrete set of points x = n(d, + d,) and arbi-
trary t. It follows that the phase speed c of the waves wg and w, is given by the
formula

(2.17) ¢ = (¢, + o5 )/,
or, using Eq. (2.8), in the explicit form
(2.18) ¢ = (%, ¢, + apcp)/ arccos(Re M ).

It is seen from Eq. (2.4) that ¢ = @ (w). Therefore, in accord with the above
formula, we obtain ¢ = c(w) and the system of layers is dispersive. By
differentiation of ¢ with respect to w the group speed c, = dc/dw may be
obtained. Note that for the homogenecous system x =1 and

o Cq + O Cp

RM = a " = A, 5 =
(2.19) eM;, =cos(a,+a), @=a,+a, ¢ A

In this case the speed ¢ does not depend on w and the system is non-dispersive.
The curves ¢ (w) for some speed ratios will be shown in the next Section.

In the above calculations only the points x = x,; were taken into account.
The question arises what speed is obtained for other points. We shall show that
Eq. (2.18) holds for other points too. Take x = x,; + p, where p is fixed,
0 < p < d,, and consider the periodic system consisting of three layers, Fig. 9.
The three layers are introduced purely formally. Physically this system does not
differ from the two-layered system considered above. The layers of thickness
p and d,— p are of the material a and the layer of thickness d, of the material b.
Denoting

(2.20) r=w—,
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Pa Ca Pb Cb pa Lo faCa Py Cp
X
P davﬂ d,-p p a,
FiG. 9.

we obtain the transition matrix M* in the form of a product of three matrices

M* — expi(—a; +7) 0
(2.21) B 0 expi(fe,+7) |

[(1+1/>¢) exp(—iay) (1— 1/x) exp(i%):l I:(l + x)exp(—#y) (1 — ) CXP(i?)]
(1 — 1/x)exp(—ia) (1 + 1/%)exp(iay) | [(1 —x)exp(—iy) (1 + x)exp(iy) |

After calculating the product we obtain M}, = M,; what leads to
(2.22) P* = o.

It follows that the phase speed c* equals ¢ for each point situated in the
layer a. On the other hand, Re M,; as given by Eq (2.4), is invariant with
respect to the interchange a — b. Summarizing: the phase speed c is the same
for each point of the elementary cell.

Above we have assumed —1 <ReM,; < 1. If these inequalities do not
hold, we face other cases described in the Appendix. Then in the formula (2.12),
instead of the trigonometric functions cos ¢, sin ¢, the hyperbolic functions
ch ¢, sh ¢ appear. This leads to the exponential growth or exponential decay of
the displacements. In this case the phase speed ¢ is complex-valued. The
frequency w, for which Re M, =1 or —1 will be called critical. For small
o the speed c is always real.

3. Average speeds

Before analyzing the formula (2.18) for the phase speed, let us define two
other speeds. The wave travelling with speed ¢, in the layer L, and speed c, in
the layer L, covers the distance d, + d, in the time interval d,/c, + d,/c,;. The
first average speed ¢, is defined by the relation

(3'1) (da + db)/cl = dn/ca + db/cb-
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From Eq. (2.1) it follows
(3.2) €1 = (%aCa + ¥ Co)/(%g + ).

Define next the second average speed c,. Denote by p and E the density and
Young modulus of the hypothetic homogeneous material possessing the same
mass and rigidity as the system of layers. Due to a tensile stress ¢ in the
x-direction, the unit cell and the homogeneous material have the same
elongation. Therefore p and E are defined by the relations (cf. Fig. 10)

o :j Fa Eq Ps Eb : G
- [ X
- da. db -
- -
b P E e
= ~ -
pa %+ =
Fic. 10.
(3.3) p(d, + dp) = pod, + ppds,

(d, + dy)o/E = d,a/E, + dya [E,,
which lead to
(G4 p = (padas + pydy)/[da + dy),
(3.5) E =(d, + dy)/(d./E, + dy/Ep).
In the homogeneous material the Young modulus is the product of the

density and the squared propagation speed. Define the squared speed c, as the
ratio E/p. Then

(da + db)2
(da/Ea + do/Es) (pada + pods)’

ci=

(3.6)

Basing on Eq. (2.1) this formula may be transformed to the two equivalent
formulae

(aa Ca + ap cb)z
aZ +af + (e + 1/x) a0

(3.7) =
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2 (aa + ab)z
Yo +oaf + (x + /%)y

Since for each x we have (x + 1/x) = 2, it follows from Eq. (3.8) that ¢, < c;.
Analyze now the formula (2.17) for the phase speed c. Calculate first the speed
¢ for small «,, a,, i.e. for small frequency w. In accord with Eq. (2.4) we have

M =[2+x+ 1/%)cosw(d,/c, + dp/c)
4+ (2—x—1/x)cosw(d,/c, — dp/cp)] /4

2@+ (@) +(ra)
xl—-—l=) +{=) +{x+3 s
2 | \c, Cs 2] cicy
658+ (5]
Qo +op+[x%+— |a, o :
b

Substitution of the last result into Eq. (2.17) yields the approximate relation

1 —-1/2
(3.10) €~ (0, Ca + %y Cp) I:cx,? + o + (:-c + ;) X, ac,,] .

(3.8) d=c

(3.9)

Comparison with Eq. (3.7) leads to the conclusion that forw=>0 also c=0.

In view of the periodicity of M, the same result holds for other w, provided
o, => 2nn,, oy => 2mn,, where ny, n, are integers.

Chy

1+

n=2{
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Figure 11 gives the functions c/c, for x = 2 and x = 16 for several ratios
s = a,/a,. For each s, ratio c/c, is a decreasing function of w. At a, = 0 there is
¢ = ¢,. The function being monotonically decreasing for each frequency w we
have

3.11) ¢ <y

Due to the periodicity it was assumed that ¢ < 2m.

The above analysis concerned the case when the elementary cell consi-
sted of two layers only. It is straightforward to generalize the results to any
number N of layers in the primitive cell. The transition matrices for the layers
are then

_ 1 (1 + Xa )exp( —ian ) (1 e xnk) exp(iaak)
G123 M= 2[(1 Cx)exp(—ize) (1 + xa)exp(ia, )]’
k k k Kk
(3.13) det My =x,, k=1,2 3., N—1,
[0+ exp(—in,) (1 &exp(ix, )
Rl My 2[(1 — Qoxp(—iz,) (1+ c)exp(iaa:)]’
(3.19) &= 1/()‘“1 Ky xaN—l)’

det M"N = 1/(;\\:‘11 Koo x,,N_l).

The transition matrix (3.14) has a special form because it describes the
transition back to the first material. Note that each of the above matrices is
W-symmetric, therefore their product is W-symmetric. Moreover, their deter-
minant equals 1 due to Eqgs. (3.15). It follows that the product of the N matrices
(312), (3.14) satisfies Eq. (2.5), therefore the parameter ¢ may be introduced.
The qualitative results obtained for two layers in the primitive cell hold for
arbitrary number of layers in this cell.

Appendix

Consider the 2 x 2 complex-valued matrix M satisfying the relations
(A1) My =My, My =M,
(A2) det M = 1.

The matrix with symmetry (A.1) will be called W-symmetric. The product of

two W-symmetric matrices is W-symmetric. In general, the W-symmetric matrix
is non-Hermitean.
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Three cases are possible: either -1 <ReM,; <1, or ReM,; > 1, or
ReM,, < -1. Consider first

(A.3) -1 <ReM,, < 1.

Without loosing the generality assume the range 0 < ¢ <n and write the
matrix M in the following form:

_ | cosp — iEsing (C + iD)sing
“|(C —iD)sing  cose +iEsing [

(A4) M
where the real parameters ¢, E, C, D are uniquely determined by the relations
(A.5) ¢ = arccos(Re M y,),
(A.6) Esing =ImM,,, Csinp =ReM,;,, Dsing =ImM,,.

The relation (A.2) leads to
(A7 E*-C*-D*=1.

By mathematical induction we prove now the formula

- [ cosng — iEsinng (C + iD)sinneg
(A9 ~ | (C —iD)sinng  cosng + iEsinng |

Multiplying by M we get

M"{} = cosnpcosp — (E2 — C? — D?)sinngsing — iEsin(n + 1)¢,

A9 Mrii = (C— iD)sin(n+ Do, M55 =M™, M™ii= ML

Taking now into account Egs. (A.7), we obtain

(A10) M1 = cos(n + 1) —iEsin(n + 1) C + iD)sin(n + )¢
. ~ |(C = iD)sin(n + 1)@ cos(n+ 1)¢ + iEsin(n + 1o |

what is exactly the formula (A.8) for the power (n + 1). The fact that (A.8) holds
for n =1 completes the proof.

In the cases Re M,, > 1 and Re M,, < —1 the above results may be used
provided we allow for complex-valued ¢. In the practical calculations,
however, it is more convenient to introduce the hyperbolic functions and real
parameter Y, and to re-define the other constants.
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Consider first

(A.11) ReM,, > 1.
Defining
(A.12) Y = Arch(Re M, ),

we can represent M in the form

_— i [chu/ —iEshy  (C +iD) Shl/l:l

(C — iD)shy chyy + iE shy

where the constants E, C, D (other than in the trigonometric case) are defined
by the relations

(A.14)  Eshfy =ImM,,, Cshfy=ReM,,, Dshy=1ImM,,.

The condition det M =1 leads to

(A.15) —E*+C*+D*=1.

By the mathematical induction, exactly in the same manner as in the
trigonometric case, it may be shown that

w0 [ ' |
For

(A.17) ReM,, < —1,

(A.18) ¥ = Arch(— M),

we have the following form of the matrix M:

(A.19) M= [CW —iEshy  (C +iD) smq

(C —iD)shyy  chy + iE shy
where the real paramcters E, C, D are uniquely defined by the relations

(A20) —Eshy =ImM,, —Cshy =ReM,,, —Dshy=ImM,,.



286 7. WESOLOWSKI

From det M =1 it follows that
(A.21) —E24+C*+D*=1,

chny — iEshny  (C + iD) shm[/}

(A2) M= (—1)"[(0 — iD)shny  chmp + iEshny |

The cases ReM; =1 and Re M; < -1 are not included in the formula
(A.3) because then E tends to infinity. Elementary calculations show that for
Re M,, = 1 we obtain

1—iE C+iD ]
; n(C —iD) 1+ inE

Bz M= I:C —iD 1+iE

and for ReM,, = —1

1 —iE C+iD] (o )n[l—inE n(C+D)]

[1 — inE n(C+D):|

C—iD 1+4iE

A24) M=- [ n(C —iD) 1+ inE
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