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Wave speeds in periodic elastic layers 

Z. WESOLOWSKI (W ARSZA WA) 

THE SPATIALLY periodic system of elastic layers is considered. The displacement u1 in the 
elementary cell consists of the displacements corresponding to the wave propagating to 
the left and the wave propagating to the right The displacement u1 + 1 in the 
neighbouring cell is defined by u; and the transition matrix M. It is shown that 
a parameter q> may be defined leadmg to the (essential for further calculations) relation 
M (q> r = M(ncp) . This relation allows us to define the phase speed. The phase speed is 
real for small frequencies, but for large frequencies it may be complex. 

Rozpatruje si~ periodyczny w przestrzeni osrodek warstwowy. Przemieszczenie 
u1 w komorce elementarnej jest sum~ przemieszczenia odpowiadaj~cego fali propaguj~­
cej si~ w prawo i fali propaguj'tcej si~ w lewo. Przemieszczenie u. + 1 w s~siedniej 
kom6rce elementarnej okreslone jest przez u1 i macierz przejscia M. Pokazano, ze mozna 
zdefiniowac pewien parametr q> taki, ze macierz przejscia M = M(q>) rna : -, totn~ dla 
obliczen wlasnosc M(<p)" = M(n<p). Ta wlasnosc, zupelnie taka sama jak wlasnosc liczb 
zespolonych, pozwala na latw~ interpretacj~ rezultatow oraz na zdefiniowanie pr~dko§ci 
fazowej w ukladzie warstwowym. Pr~dkosc fazowa w ukladzie warstwowym dla malych 
cz~stosci jest rzeczywista, dla innych cz~stosci moze bye zespolona. 

PaccMaTpusaeTCH nepuo.n.u'iecKa& s rrpocrpaucTse, c.'IOHCTa& cpe.n.a. TiepeMemeuue 
U . B :UeMCHTapHOH H'leihce HB.l.HCTCH CyMMOH nepeMeJ..UeHHH OTBe'ialOJ..UCfO BOJIHe 
p~cnpOCTpauaiOmeilc& snpaso H so:m.w pacnpocrpaH&IOJ..Ueiic& s.1.eso. TiepeMemeuue 
uf+ 1 s coceAHeil 3.1.eMeHTapuoii &'iei'IKe onpe.n.e.1.euo '!epe3 u1 H MaTpuuy nepexo.n.a M . 
I oKaJauo, 'iTO MO)l(HO onpe.n.e.l.HTb ueKOTopwii napaMeTp <p, TaKo.H, 'ITO MaTpuua 
nepexo.n.a M = M(<p) HMeeT cymecTseuuoe .n..u pac'!eTOB csoilcTso M(<p)" = 1\-f(n<p). 
3TO CBOi1cTBO, BIIO.l.He )l(e TaKOe CaMOe KaK CBOHCTBO KOMO.l.eKCHbiX 'iHce.'l, II03BO.JUieT 
nerKO HHTepnpeTHpOBaTb pe3)'.1.bTaTbl H onpe.n.eJIHTh <tlaJOB)'lO CKOpOCTb B CJIOHCTOH 
CHCTeMe. <l>aJOBa& CKOpOCTh B C.l.OHCTOi'l CHCTeMe Jl..l.H Ma.l.bX '!aCTOT HB.JUieTCH 
.n.eilCT BHTe.l.bHOi'l, Jl..l.H .n.pyrHX 'taCT OT MO)l(eT 6biT b KOMII.'IeKCHOH. 

THE SYSTEMS of layers were dealt with in many papers, e.g. in the already 
classical ones [1-9]. In tne present paper essential is the introduction of a new 
parameter cp and representation of the transition matrix M (cp) in the form 
satisfying the identity Af(cp)" = Af(ncp). This allows us to define the phase speed 
in the composite. 

1. Reflection and transmission 

Consider the system of homogeneous elastic layers, Fig. L The layer 
situated between xk and xk + 1 is denoted by Lk- The Lame constants and den­
sity of the layer Lk are denoted by A.k, Jlk, pk, k = 1, 2, 3, .... In the direction x 
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272 Z. WESOLOWSKI 

perpendicular to the layers propagates the sinusoidal wave of frequency w. Due 
to the reflections, the wave propagating in the opposite direction appears. The 
total displacement in the layer I,. is 

where t is time, Xt ~ x ~ Xt + 17 and Ct is the wave speed in the k-th layer 

(1.2) 

Po.?•o P1• ).1 Pz, ).2 Pa ,).s 

p X 

x1 Xz x3 x4 

La L1 Lz Ls 
d1 dz d3 

FIG. 1. 

The displacement Ut consists of two parts. The frrst part in Eq. (1.1) represents 
the wave of amplitude At running in the x direction. The second part 
represents the wave of amplitude Bt running in the -x direction. The 
displacement Ut satisfies the equation of motion 

(1.3) 

The physical displacement is the real part of the complex-valued function 
u1 (x,t). 

At the boundary between the layers both the displacement and the stress 
vector are continuous. This fact leads to the relations 

(1.4) 

where 

At - 1 exp( -i~It) + Bt - 1 exp (i~It) = A1 + B1, 

x1 [-At -1 exp( -illt) +Bt-l exp(i~It)J = -At+ Bt, 

Equation (1.4) may be solved for At, Bt to yield 
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(1.6) 

(1.7) 
(1- x1)exp(ia1)J· 
(1 + x1) exp (ia1) 

273 

The transition matrix M 1 allows us to express Ab B1 by A1 _ h B1 _ 1. The 
determinant of M 1 depends on x1 but not on ab 

(1.8) 

2. Periodic layers 

Consider now the case when a set of layers is repeated periodically in space. 
The elementary cell may consist of an arbitrary number of layers. The simplest 
cell consist of two layers only, Fig. 2. Denote 

(2.2) 

M =! [(1 + x)exp(- iaa) 
a 2 ( 1 - X) ex p (- iaa) 

Mb =! [(1 + 1/x) exp(- iab) 
2 (1 - 1/x) exp (- iab) 

Pa,ca Pb,cb Pa,Ca Pb,cb 

I 
0 x1 x2 x3 

da db da db 

FIG. 2. 

Therefore 

x1 = x, c1 = c,n 
x1 = 1/x c1 = cb, 

(1- x)exp(iaa)] 
(1+x)exp(iaa)' 

(1 - 1/x) exp ( iab)J 
(1 + 1/x) exp ( iab) · 

Pa,ca Pb,cb 

X 
x4 Xs x6 

da db 

for k = 0, 2, 4, ... , 
for k = 1, 2, 5, ... . 

In the above formulae Ma is the transition matrix from a to b, and Mb the 
transition matrix from b to a. 
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274 Z. WESOLOWSKI 

The purpose of the further analysis is to calculate the average wave speed in 
the set of layers. Concentrate first on the displacements in the layers of type a. 
In accord with Eq. (1.6), for each intiger n there is 

(23) [~::] = M" [~:]. M = M6 M., n = 1, 2, 3, ... , 

where 1.1 is the transition matrix for one cell. From Eq. (2.2) it follows that this 
transition matrix has the following components: 

(2.4) 4 M 11 = (2 + x + 1/x) expi(- Cl.a- Cl.b) + (2- x- 1/x) expi(- Cl.a + Cl.b), 

4 M 21 = (x - 1/x) exp i (- Cl.a - Cl.b) - (x - 1/x) exp i (- C1. 0 + ctb)•. 

(2.5) 

Note that the matrix M is non-Hermitean since M 11 is not real. The matrix 
with the symmetry (2.5) will be further called W-symmetric. The product of two 
W-symmetric matrices is T-V-symmetric. The matrix M is the periodic function of 
Cl.a. and cxb. 

For x = 2, da = 2db some displacement profiles are given in Figs. 3-6. 
For cxa. = cxb = 0.1 (Fig. 3), Cl.a. = Cl.b = 0.5 (Fig. 4) and Cl.a. = cxb = 1 (Fig. 5), the 

u 

1.0 r---t--f-..!..:T =:_!D?...__L 

0.5 

a x 
0 

-0.5 

FIG. 3. 
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276 Z. WESOLOWSKI 

displacement remains small · in each cell. For ex«= cxb == 1.4 (Fig. 6) the 
displacement grows exponentially with n. 

X 

FIG. 6. 

Consider first the case when m is sufficiently small. Then Re M 11 < 1 and, 
in . accord with the deriva;tion given in the Appendix, the matrix M may be 
written in the form 

(2.6) 

(2.7) 

(2.8) 

M = [cos cp - iE sin cp 
( C - iD) sin cp 

cp = arc cosH, 

(C + iD) sin cp] 
cos cp + iE sin cp ' 

H = ReM11 , 

where cp, E, C, D are real parameters. The important identity holds 

(2.9) [
cos ncp - iE sin ncp (C + iD) sin ncp] 

M" = (C - iD) sin ncp cos ncp + iE sin ncp ' 
n = 1, 2, .... 

Figure 7 shows, for fixed x, the values of cxcx, cxb for which - 1 < H < 1 and 
cp is real. For fixed x the region between the curves corresponds to H < -1. 
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(Xb 

3 

2 

1 

0 

FIG. 7. 

The smaller is x, the larger is the region for which cp is real. Because of the 
periodicity of M, the picture repeats for larger values of ex(%) cxb. For x = 2 the 
regions are shown in Fig. 8. 

Calculate the displacement at the beginning of each layer of the kind a, 
therefore at the discrete set of points 

(2.10) Xn = n(da + db), n = 1, 2, 3, .... 

In accord with Eqs. (1.1), (2.3) and (2.9), we obtain 

(2.11) u (xn, t) = {[M 11 (mp) + M 21 (ncp)] Ao 
+ [M 12(ncp) + M 22 (ncp)] B0 } expiwt 

or, in terms of the parameters cp, C, D, E, 

(2.12) u(xmt) = {[cosncp + (C -iE -iD)sinncp] A 0 

+ [ cosncp + (C + iE + iD) sinncp] B0 } expiwt. 
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9 

8 

1 2 3 4 5 

FIG. 8. 
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7 8 

The physical displacement is the real part of u as given by the Eq. (2.12) 

(2.13) Re(u) = (A 0 + B0 )(cosnq> + C sinnq>) coswt 
+ (A 0 - B0)(E +D) sinmp sinwt. 

Simple trigonometric transformations lead to the formula 

(2.14) 

Re(u) = wR + wL, 

2wR = A 0 [(1 + E + D)cos(wt- nq>) -Csin(wt- nq>)] 
+ B0 [(1 -E-D) cos (wt- nq>)- C sin (wt- ncp)], 

2 wL = A 0 [(1 -E-D) cos (wt + nq>) + C sin (wt + nq>)] 
+ B0 [(1 + E +D) cos (wt + nq>) + C sin (wt + nq>)]. 

The waves with the phase (wt- nq>) run to the right, and the waves with 
the phase (wt + nq>) run to the left. Note that the amplitudes of all waves 
are constant and do not depend on n, in contrast to the amplitudes Ak, Bk 

http://rcin.org.pl



WAVE SPEEDS IN PERIODIC ELASTIC LAYERS 279 

in Eq. (2.3) which arc functions of n. The arguments of the trigonometric 
functions (phase) do depend on n. Using Eq. (2.10) we obtain the formulae for 
phases !R and !L of the waves running to the right and the left 

or, in accord with Eq. (2.1), the formulae 

(2.16) fR = W (t- (/) Xn((l.a Ca + llb Cb)-
1
], 

fL = w[t + (/)Xn(aaCa + abcb)-
1]. 

Both formulae hold for the discrete set of points x = n (da + db) and arbi­
trary t. It follows that the phase speed c of the waves wR and wL is given by the 
formula 

(2.17) 

or, using Eq. (2.8), in the explicit form 

(2.18) 

It is seen from Eq. (2.4) that q> = q> (w). Therefore, in accord with the above 
formula, we obtain c = c (w) and the system of layers is dispersive. By 
differentiation of c with respect to w the group speed c, = dcjdw may be 
obtained. Note that for the homogeneous system x = 1 and 

(2.19) ReM 11 = cos ((l.a + ab), 

In this case the speed c does not depend on w and the system is non-dispersive. 
The curves c (w) for some speed ratios will be shown in the next Section. 

In the above calculations only the points x = x2k were taken into account. 
The question arises what speed is obtained for other points. We shall show that 
Eq. (2.18) holds for other points too. Take x = x 2k + p, where p is fixed, 
0 < p < da, and consider the periodic system consisting of three layers, Fig. 9. 
The three layers are introduced purely formally. Physically this system does not 
differ from the two-layered system considered above. The layers of thickness 
p and da- p are of the material a and the layer of thickness db of the material b. 
Denoting 

(2.20) 
p 

y=w - , 
Ca 
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PaCa PbCb PaCa PaCa Pb cb 

X 

p d3 da-P p db 

FIG. 9. 

we obtain the transition matrix M• in the form of a product of three matrices 

M• = [expi( -a .. + y) 0 J 
(2.21) 0 exp i (1X41 + y) ' 

[ (1+1/x)exp(-i~b) (1- 1/x)exp(i~b)J r<1 + x)exp( -~y) (1- x)exp(iy)J· 
(1- 1/x)exp( -ZIXb) (1 + 1/x)exp(ztXb) L(l- x)exp( -zy) (1 + x)exp(iy) 

After calculating th~ product we obtain Mf1 = M 11 what leads to 

(2.22) (/). = (/). 

It follows that the phase speed c• equals c for each point situated in the 
layer a. On the other hand, Re M 11 as given by Eq (2.4), is invariant with 
respect to the interchange a__. b. Summarizing: the phase speed cis the same 
for each point of the elementary cell. 

Above we have assumed -1 <ReM 11 < 1. If these inequalities do not 
hold, we face other cases described in the Appendix. Then in the formula (2.12), 
instead of the trigonometric functions cos (/), sin (/), the hyperbolic functions 
ch (/), sh cp appear. This leads to the exponential growth or exponential decay of 
the displacements. In this case the phase speed c is complex-valued. The 
frequency w 1 for which Re M 11 = 1 or -1 will be called critical. For small 
w the speed c is always real. 

3. Average speeds 

Before analyzing the formula (2.18) for the phase speed, let us defme two 
. other speeds. The wave travelling with speed ca in the layer La and speed cb in 
the layer 4 covers the distance da +db in the time interval dafca + dbfcb. The 
first average speed c1 is defmed by the relation 

(3.1) 
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From Eq. (2.1) it follows 

(3.2) 

Define next the second average speed c2• Denote by p and E the density and 
Young modulus of the hypothetic homogeneous material possessing the same 
mass and rigidity as the system of layers. Due to a tensile stress a in the 
x-direction, the unit cell and the homogeneous material have the same 
elongation. Therefore p and E are defined by the relations (cf. Fig. 10) 

(3.3) 

which lead to 

(3.4) 

(3.5) 

Pa[a Pb£b 

da db 

~ 
p,£ g 

da+db .. 
... 

FIG. 10. 

p(da +db)= Pada + Pbdb, 
(da + db)a/E = da a/Ea + db a /Eb, 

P = (pada + Pbdb)/(da +db), 

E = (da + db)/(da/ Ea +db/ Eb). 

In the homogeneous material the Young modulus is the product of the 
density and the squared propagation speed. Define the squared speed c2 as the 
ratio E/ p. Then 

(3.6) 

Basing on Eq. (2.1) this formula may be transformed to the two equivalent 
formulae 

(3.7) 
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(3.8) 
2 2 ((Xa + (Xb)

2 

c2 = Ct 2 2 • 
(Xa + (Xb + (x + 1/x) (Xa(Xb 

Since for each x we have (x + 1/x) ~ 2, it follows from Eq. (3.8) that c2 ~ c1 . 

Analyze now the formula (2.17) for the phase speed c. Calculate first the speed 
c for small (Xcv (Xm ie. for small frequency ro. In accord with Eq. (2.4) we have 

(3.9) 

Substitution of the last result into Eq. (2.17) yields the approximate relation 

(3.10) 

Comparison with Eq. (3. 7) leads to the conclusion that for ro ~ 0 also c ~ 0. 
In view of the periodicity of M, the same result holds for other ro, provided 
(Xa ~ 2nnb (Xb ~ 2nn2, where nb n2 are integers. 

c/co 

0.6 

0.4 

0 0.5 1 1.5 2 1Xa 

FIG. 11. 
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Figure 11 gives the functions cfc0 for x = 2 and x = 16 for several ratios 
s = rx.bfr:x.a. For each s, ratio cfco is a decreasing function of w. At rt.a = 0 there is 
c = c2 . The function being monotonically decreasing for each frequency w we 
have 

(3.11) 

Due to the periodicity it was assumed that cp ~ 2 n. 
The above analysis concerned the case when the elementary cell consi­

sted of two layers only. It is straightforward to generalize the results . to any 
number N of layers in the primitive cell. The transition matrices for the layers 
are then 

(3.12) 
(1- Xa )exp(irt.a )] 

It k ' 
(1 + Xa ) exp ( ir:t.a ) 

It k 

(3.13) det Ma = Xa, 
It It 

k = 1, 2, 3, ... , N- 1, 

(3.14) 
1[(1 + ~)exp( -irt.a ) M - - N 

aN- 2 (1- ~)exp( -irt.a ) 
N 

(3.15) ~= 1/(Xa Xa ... Xa ), 
1 2 N-1 

detMa = 1/(xa Xa ... Xa ). 
N 1 2 N-1 

The transition matrix (3.14) has a special form because it describes the 
transition back to the first material. Note that each of the above matrices is 
tV-symmetric, therefore their product is W-symmetric. Moreover, their deter­
minant equals 1 due to Eqs. (3.15). It follows that the product of theN matrices 
(312), (3.14) satisfies Eq. (2.5), therefore the parameter cp may be introduced. 
The qualitative results obtained for two layers in the primitive cell hold for 
arbitrary number of layers in this cell. 

Appendix 

Consider the 2 x 2 complex-valued matrix M satisfying the relations 

(A.1) 

(A.2) 

M22 = Mu. 

det M = 1. 

The matrix with symmetry (A.1) will be called W-symmetric. The product of 
two W-symmetric matrices is W-symmetric. In general, the W-symmetric matrix 
is non-Hermitean .. 
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Three cases are possible: either -1 < ReM 11 < 1, or ReM 11 ~ 1, or 
ReM 11 ~ -1. Consider ftrst 

(A.3) -1 < ReM11 < 1. 

Without loosing the generality assume the range 0 < qJ < n and write the 
matrix M in the following form: 

(A.4) 
_ [cos qJ - iE sin(/) 

M- (C- iD) sinqJ 
(C + iD)sinqJJ 

cos qJ + iE sin qJ ' 

where the real parameters qJ, E, C, Dare uniquely determined by the relations 

(A.5) (/) = arc cos (Re M 11), 

(A.6) EsinqJ = ImM22, CsinqJ = ReM12, DsinqJ = ImM12• 

The relation (A.2) leads to 

(A.7) 

By mathematical induction we prove now the formula 

(A.8) M"= [
cosnqJ- iE sinnqJ (C + iD) sinnqJJ 
( C - iD) sin nqJ cos nqJ + iE sin nqJ · 

Multiplying by M we get 

(A.9) 
M"!f = cosnqJCOS(/)- (E2

- C2
- D2)sinnqJSinqJ- iEsin(n + 1)(/), 

M"~f = (C- iD)sin(n + 1)({), M"~! = M"!f, M"!f = M"~f. 

Taking now into account Eqs. (A. 7), we obtain 

(A.10) M"+ 1 = [cos(n + 1)({) -iEsin(n + l)qJ C + iD)sin(n + l)qJJ 
( C - iD) sin ( n + 1) qJ cos ( n + 1) qJ + iE sin ( n + 1) qJ ' 

what is exactly the formula (A.8) for the power (n + 1). The fact that (A.8) holds 
for n = 1 completes the proof. 

In the cases Re M 11 > 1 andRe M 11 < -1 the above results may be used 
provided we allow for complex-valued qJ. In the practical calculations, 
however, it is more convenient to introduce the hyperbolic functions and real 
parameter 1/J, and to re-deftne the other constants. 
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Consider first 

(A.ll) ReM 11 > 1. 

Defining 

(A.12) 1/J = Arch (Re M 11), 

we can represent 1.1 in the form 

(A.13) J.f = [chl/J - iE shl/J 
(C - iD) shl/J 

(C + iD) shl/JJ 
chl/J + iE shl/J ' 

285 

where the constants E, C, D (other than in the trigonometric case) are defined 
by the relations 

(A.14) E shl/J = Im Af 22 , C shl/J =ReM 12 , D shl/1 = Im Af 12 . 

The condition det Af = 1 leads to 

(A.15) 

By the mathematical induction, exactly in the same manner as in the 
trigonometric case, it may be shown that 

(A.16) 

For 

(A.17) 

(A.18) 

.i\Jn = [chnl/J- iE shnl/1 (C + iD) shnl/1]· 
( C - iD) shnl/1 chnl/1 + iE shnl/1 

Re.i\111 < -1, 

1/1 =Arch(- .i\1 11), 

we have the following form of the matrix Af: 

(A.19) [
chl/J- iEshl/J 

Af = 
( C - iD) shl/1 

(C + iD)shl/JJ 
chl/J + iEshi/J ' 

where the real parameters E, C, D are uniquely defined by the relations 

(A.20) -Eshl/J = Im.hf22, -Cshl/J = Re.i\112, -Dsht/1 = ImM 12. 
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From det M = 1 it follows that 

(A.21) 

(A.22) M = ( _ 1)n[chnl/l - iE shnl/l (C + iD) shni/JJ. 
( C - iD) shnl/f chni/J + iE shnl/f 

The cases ReM 11 = 1 and Re M 11 < -1 are not included in the formula 
(A.3) because then E tends to infinity. Elementary calculations show that for 
ReM 11 = 1 we obtain 

(A.23) [
I- iE C + iDJ M= 
C- iD 1 + iE ' 

and for ReM 11 = - 1 

(A.24) [
I- iE C + iDJ M=-
C- iD 1 + iE ' 
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