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An overview of boundary integral formulations 
for potential flows in fluid-fluid systems 

E. CANOT and J.-L. ACHARD (GRENOBLE) 

THE MOTiON of two incompressible, constant-density fluids, separated by a moving interface is consid
ered in a three-dimensional space without any solid boundary. In the framework of the irrotational 
approximation, the velocity fields are simultaneously induced either by a dipole or by a vortex distribu
tion on the interface. In each ca<;e, the strength of the singularities obey a Fredholm integral equation 
of the second kind, which is solved at each time-step. 1\vo classes of method, established by BAKER, 
MEIRON and ORSZAG f4] and by ROBERTS (43] respectively, are presented and compared together in 
their full senerality. The second method appears as the simplest to deal with three-dimensional ac; 
well a<; axisymmetric problems. A numericaf implementation of this method for axisymmetric flows 
ha<; been first of all applied as a test on small vibrations of a spherical globule and then hac; been 
used to the study of the Rayleigh-Taylor instability. The nonlinear large-amplitude motion exhibits 
the well known dissymmetric behaviour between perturbations ~rowing upwards (bubble) and down
wards (spike), together with the development of strong shape smgulanties of the mterface ("roll-up" 
and "cusp" formations). 

1. Introduction 

IN lWO-PHASE or two-component flows of Newtonian and incompressible fluids the 
existence of deformable and moving interfaces gives rise to complex free-boundary value 
problems. Except for turbulence effects, the mathematical formulation of these problems 
does not create difficulties thanks to the progress made in the description of the interfaces. 
Unfortunately, overwhelming obstacles occur in numerical solution (not to mention the 
analytical approaches which are limited to linear or quasi-nonlinear dynamics of interface) 
of the problems in their full generality. To obtain a solution, two classes of restrictions 
have been commonly used, often simultaneously. Systems which are considered possess 
a simple interfacial geometry as in the cases of rising bubbles, expanding or collapsing 
vapour cavities, oscillating droplets, or in the cases of film or separated flows. The second 
class introduces approximations in the equations themselves: basically the creeping flows 
or irrotational flows approximations. 

This paper deals with various fluid-fluid systems formulations within the latter approxi
mation. Even in this case, the computational efforts remain considerable. As severe 
non-linearities occur in the problem, accurate numerical methods are required, involv
ing interface tracking schemes, in order to simulate the motion of both fluids interacting 
through a possibly distorted interface shape. For example, finite-difference techniques 
(PLESSET, CHAPMAN [38], PROSPERETTI, JACOBS [40]), marker-and-cell techniques (DALY 
[14]; MITCHELL, HAMMIIT [34]) vortex-in-cell techniques (TRYGGVASON [51], ZUFIRIA 
[53]), conformal mapping methods (MENIKOFF, ZEMACH [32]) have proved their efficiency 
in a number of problems. Finite-element methods may also be envisaged but, generally, 
they are not well adapted to unsteady free-boundary problems, because their application 
requires the time-consuming generation of a new grid over the whole computational do
main at each time-step. All these grid methods are expensive and are limited in their 
ability to resolve curved interfaces; it would be desirable to have a relatively inexpen-
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sive, purely Lagrangian method. This has been done by developing the boundary integral 
method. 

The boundary integral method is now firmly established as an important alternative 
technique to most of the methods of analysis for potential problems in fluid mechanics. 
This technique consists primarily in the transformation of the partial differential equa
tions describing the behaviour of the unknown function inside and on the boundary of 
the domain into an integral equation relating new variables only over the boundaries. 
Consequently, its numerical implementation leads to drastic reduction in calculation time 
because the dimensionality of the effective space is reduced by one. This preliminary 
analytical treatment of equations which makes new variables, i.e. surface singularities, 
come into view, provides in itself a new insight into the physics. An outline of numerical 
techniques available in the literature concerning the numerical approximations of such 
integral equations can be found elsewhere (BAKER, MILLER [6]). 

The aim of this paper is basically to present an overview of boundary integral for
mulations. At the beginning, integral methods were applied to steady problems, such as 
potential flow about solid bodies (HESS, SMITH [20]), research which took place in aero
nautics and hydrodynamics. Transient problems were also taken into consideration later, 
and the works of LENOIR [26), BLAKE, GIBSON [8), PROSPEREITI (39) and some others 
are concerned with the growth or the collapse of cavitation bubbles near rigid boundaries 
or near a free surface. A Lagrangian description for a specified number of points on 
the bubble surface is used to represent the motion of the bubble, and the time-stepping 
procedure uses the Bernoulli pressure condition. It must be noticed that these transient 
models approximate the correct normal momentum balance at the interface by introduc
ing a uniform pressure condition within the bubble. This approximation is valid if the 
density ratio is negligible and if the velocity scales of each phase are of about the same 
order. If not, this free-surface approximation no longer holds and another model must 
be used. 

On the other side, the boundary integral formulation has been applied by BIRKHOFF 
[7] for an evolving vortex-sheet in a constant density fluid. In this case the vortex-sheet 
models a sharp discontinuity of the velocity field and not a two-phase system interface. The 
method of Birkhoff leads to an integra-differential equation for the position of the vortex
sheet, via a parametrization employing a circulation coordinate. But this formulation is 
valid only for two-dimensional problems since it is based on the theory of functions of 
complex variables. It has been used by a number of authors (MOORE [37], PULLIN [41], 
KRASNY [24]). 

Our primary concern here is the description of fluid-fluid systems, where both homo
geneous fluids are separated by a "phase interface" which is a region in which the proper
ties differ from those of the adjoining fluid. Fluids may just be different and immiscible, 
or be identical but differ by their physical state (phase) or may also differ through a sharp 
transition in the concentration of a given solute. Within the framework of irrotational 
approximations the basic property which can jump from one side to another is the den
sity, and the interfacial property attributable to the interface itself is possibly the surface 
tension. Such a restricted model is nevertheless more general than a free-surface or a 
vortex-sheet. BAKER, MEIRON, ORSZAG (referred to from now on as BMO) [3] (and also 
[4]) were the first ones to derive an integral formulation for such a "density" interface, and 
their method appears to be an extension of the classical "point-vortex method" which has 
been already used by Rosenhead in 1931 for a crude description of a vortex-sheet motion. 
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An alternative boundary integral formulation, where the velocity field is induced by 
dipole or vortex distributions, was proposed by ROBERTS [43] to solve the two-dimensional 
motion of a density interface; this method appears as an extension of some methods used 
in free-surface flow, that we shall term "Bernoulli's methods" because they use directly 
the Bernoulli equation for the progression in time (PLESSET, CHAPMAN [38], BLAKE et 
a/. [9], LUNGREN, MANSOUR [29]). These two kinds of methods are established only 
for two-dimensional configuration, and in this latter case on essential differences can be 
found, except perhaps those concerning stability or accuracy. However, we intend to 
demonstrate the simplicity of the Roberts method compared to the BMO 82's one if we 
want to deal with axisymmetric or fully three-dimensional configurations. For this reason 
the two methods are re-derived in the three-dimensional case in their full generality, 
and the application given at the end corresponds to the axisymmetric Rayleigh-Taylor 
instability in an unbounded space, taking into account gravity, inertia forces and surface 
tension. 

In the next section we present some geometrical and kinematical considerations. The 
equations is then reformulated in terms of the velocity potentials in each fluid. The 
mathematical aspects of the boundary integral formulation of the fluid-fluid systems are 
presented in Sect. 4. Following this, the two classes of integral formulations are developed 
and compared in Sect. 5. In Sect. 6, the method is first applied to the linear oscillations of a 
spherical globule, and then to the Rayleigh-Taylor instability; the results of the numerical 
simulations are discussed. The final section summarizes the main conclusions that may 
be drawn from this study and identifies the possible areas of future studies. 

2. Geometrical and kinematical preliminaries 

We will limit ourselves in this paper to two-phase systems with rigid walls rejected 
at infinity. Wall effects at a finite distance, including the case where the fluid interface 
intersects a solid boundary, will be addressed in a subsequent paper. Such systems occupy 
the whole three-dimensional Euclidean space [. The two phases themselves occupy two 
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FIG. 1. Definition sketch for Case 1. The unit normal vector on S(t) is directed outwards with-respect 
to !?1 . The unit normal vector to oR is directed inwards. 
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open regions !?1 (t) and il2(t); there lie on two sides of a common interfacial region which 
is modelled here, as usually, by a singular or dividing surface S(t). Two elementary sub
cases are of interest. In the first one (Fig. 1), the surface S(t) is a closed regular surface, 
!?1 (resp. !?2) being the region inside (resp. outside) the surface. In the second one 
(Fig. 2), the surface S(t) extends to infinity (its asymptotic shape will be specified later 
on), !?1 (resp. !?2) being the upper (resp. lower) region; for mathematical purposes, one 
considers at the beginning only a finite part of !?2, i.e. il2(R), enclosed in a sphere n 
with centre at a point 0 located in !?1 in the first case, and near the interface in the 
second case. S(t} intersects necessarily oR along a curve C(t) (which bounds a subsur
face E(t) = S(t) n R of the surface S(t)) in the latter case, but is completely enclosed 
in n in the former; otherwise R, the sphere radius, may be varied at will and can be 
infinite if required. Questions concerning the definition of the various unit vectors are 
given in the captions of Figs. 1 and 2. For a detailed account of the differential geometry 
of surfaces, the interested reader is referred to the treatise by BOWEN, WANG (10], for 
instance. 

n, 

____ ..,.,.. .... -;--...................... 

-* • --~n,,, 
0 

FtG. 2. Definition sketch for Cao;e 2. The same convention is used for the unit normals to S(t) and an. 
The unit vectors t and m lie in the plane tangent to S at C; tis tangent to C and m 

is perpendicular to C and is directed outwards with respect to n. 

A moving dividing surface S(t) can be viewed as a family of surfaces, one for each 
time t, which can be characterized either by the equation: 

(2.1) f(M,t)=O , 

where f is smooth with respect to t, and M is a point of £, or by the smooth mapping 
valid at least on E(t): 

(2.2) 
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where (y1 , y2 ) are surface coordinates. We need, moreover, in the open set R a coordinate 
system xi = x i(JVI) (i = 1, 2, 3), fixed in£, to give the usual parametric representation of 
E(t): 

(2.3) x ' i =xi o M'(y 1, y2 , t) = x'i(y1 , y2 , t) , i = 1, 2, 3. 

The purpose of the present section can be stated as follows: how to generate effec
tively the physically or computationally convenient parametrizations {ya;a = 1, 2} of the 
moving surface. Actually, this problem can be split into two parts and consists of: 

(i) selecting a coordinate system at time t = 0; 

(ii) letting it evolve as the surface E(t) moves in n. 
An ensuing problem is 

(iii) expressing properly time-variation of physical fields defined on E(t). 
The first part of the problem consists then of generating coordinate systems on surfaces 

in £. Indeed, this generation is not only required at time t = 0 but may be envisaged 
possibly at the end of each time step t + dt and for attacking the next step from a 
better position. The resulting parametrization itself may be no longer adapted. Using a 
numerical terminology which deals with discrete entities, it can be said that the "boundary 
elements" on the surface (defined by the two series of evenly spaced coordinate lines in 
the computational plane) have to be redefined to meet several requirements, characteristic 
of a good mesh (or grid). These requirements are relative to the distribution of boundary 
elements themselves on the surface or to the distribution of "nodes" (where the unknown 
values are considered) which are attached to these elements. Generally speaking, it is well 
known that the grid employed influences greatly the accuracy of the solution. Many grid 
generation techniques (THOMPSON et al., (50]) exist to control the placement of grid points 
automatically. An elementary method, which will be effectively used for the application 
of the present paper, is presented in Appendix 1. 

The second part of the problem is devoted to following moving surface in £. To do 
so, we define the velocity of the moving surface coordinate system by 

(2 .4) w = 81\1'1 . 
8t y()( 

In components related to the fixed natural basis, this velocity is written 

(2.5) w' = --. 8 x'i I 
8t y ()(' 

i = 1, 2, 3 . 

It can also be represented in terms of the Gauss basis { n(l) , aa } 

(2.6) 

where 

oM' 
aa = --{)ya 

(2.7) 

and it is well known that the normal component wn, which is called the speed of displace
ment of the surface, does not depend on the selected system. Thus the velocity of moving 
surface coordinate systems will differ only by the tangential component of w. 
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Three kinds of moving coordinate systems are now presented: 

1. Non-drifting surface coordinate systems 
A coordinate system is regarded as non-drifting on a moving surface S(t) if the velocity 

of a constant coordinate surface point is wholly normal to the surface. Thus 

(2.8) W = WnD(l). 

We employ the notation {y0
; a = 1, 2} for this system, also called "fixed" in the 

surface, although this term is misleading. Non-drifting systems will be selected in our 
calculations because they possess interesting properties, some of them exhibited next. 

2. Material surface coordinate systems 
GURTIN and MURDOCH [19] define a body in sufficient generality to add the notion 

of a material surface Sm to the usual notion of a three-dimensional body. One of their 
axioms states that each material particle of Sm can be identified without ambiguity by its 
location in some configuration. Each material particle is thus labelled by a pair of numbers 
{y~; r = 1, 2} corresponding to an arbitrary surface coordinate system in this configura
tion. The configuration may be the one of Sm at time t = 0 or at any time (Lagrangian 
point of view). Then, at each time, there exists a relation which is a diffeomorphism 

(2 9) 0 - 0( 1 2 t) - 1 2 · Y - Y Ym , Ym, , a - , · 

This relation can be viewed as giving the location (y1 , y2) at time t of a particle 
(y:n, y~). In the Lagrangian scheme, at timet = 0, it may reduce to the identity mapping 
if the reference surface coordinate system is properly chosen at that time. Instead of 
referring particles to surface coordinate systems, a space system of coordinates can be 
used by composing (2.3) with (2.9) 

(2.10) x'i = x'i(Y~n,Y~,t), i = 1,2,3. 

We can show here how more useful a family of non-drifting systems is. In that case 
we have instead of Eq. (2.9) 

(2.11) 

The space velocity w of a material particle can be computed by using the chain deriva
tive rule from Eqs. (2.10) and (2.11), and by virtue of (2.8) 

(2.12) uy -!:1-o I 
W = WnD(t) + ~ 3o , 

ut y!;, 

where { D(l), io} is the Gauss basis relative to { y0
; a = 1, 2}. 

Thus 

{)yO I 
at Y!:. 

is the a component wf of the tangential velocity of the particle. On the opposite now, 
dealing with a general coordinate {y0

; a = 1, 2}, the term 

{)yO I 
{)t y!;, 

is not equal to wf since the new reference frame is itself drifting on the surface. 

http://rcin.org.pl



AN OVERVIEW OF BOUNDARY INTEGRAL FORMULATIONS FOR POTENTIAL FLOWS ••• 459 

3. Fictitious particles' surface coordinate systems 
Any transformation between surface coordinate systems such as 

( 2. 13) yQ = yQ ( y} , YJ , t) , a = 1 , 2 , 

whose dependance with respect to t is assumed to be regular enough, can be considered 
as defining the position of fictitious particles labelled by (y}, YJ ). The occurrence of such 
fictitious particles may result from various physical or computational reasons; in the latter 
case they correspond to surface markers. Let us present two of them. 

Each time when there is a mass transfer between the dividing surface and the two 
adjoining phases, the dividing surface is crossed by a flux of material particles and it can 
be no longer considered as a material surface. But, following DELHAYE [16] for instance, 
the fictitious particle velocity w 1 can be defined 

(2.14) Wj = WnD(t) + Wjt. 

Its tangential part is equal to the one of v(l) and v(2) in either adjoining phase evaluated 
at S(t). If we introduce the notation for the limits on each side of S: 

(2.15) 

then we have, by using the projection operator P (BOWEN, WANG, [10]): 

(2 .16) Wft = P(v(t)ls) = P(v(2)1s) 

this last statement being allowed by the usual assumption of continuity experienced by 
material tangential velocities through an interface. The transformation (2.13) is thus given 
by solving the set of equations 

(2.17) afiQ I = w1t • aQ, 
at vr a= 1, 2 . 

In the context of irrotational motions of two different immiscible fluids separated by a 
dividing surface, the tangential component of the velocity field always experiences a jump, 
whereas its normal component remains continuous. In this case, it is obvious that any 
average of the form 

(2.18) 

has its normal component which is equal to the speed of displacement of the interface 
wn, and defines a new kind of fictitious particles, termed "Langrangian markers" about 
vortex-sheet-like formulations of interfacial motions (BMO [4]). So, their position is 
derived again from 

a-Q I y . - Q 

=Wit· a , at vr 
(2 .19) a= 1, 2. 

The weighting factor F is in fact a continuous simple-valued function of the coordinates 
(y}, YJ ), and by choosing F = 1 or F = -1 the markers follow the continuous material 
particles in phase 1 and 2, respectively. It is usual to impose 

-l~F~l, 

and it may be convenient to use the arbitrariness of F to control the position of the 
markers on the surface (PULLIN [41]). 
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Now, the basic materials allowing any physical fields to be defined on the moving 
surface has been presented. In this third part of this section, let us see how an observer 
can compute time variations of these fields, say <p for a scalar field. Two cases have to be 
distinguished. Either <p = 'Pk is defined on the contiguous k-th three-dimensional phase 
or <p = <p' is defined only on the surface. 

In the first case, one can use the classical material time derivative of 'Pk(xi, t) 

d ,i j - fJ<pk I fJ<pk fJxi I 
(2.20) dt <pk(x (x.r, t), t]- Tt . + fJxi 7ft . , 

x• x~ 

where xi = xi(x}, t), i = 1, 2 is the diffeomorphism, analogous to Eq. (2.9) for a material 
surface, giving the motion of a three-dimensional body, composed of real or fictitious 
material particles. 

The space velocity v of a material particle ( x} , x], x]) is represented by 

(2.21) fJxi I 
v=gi8t · ' 

XJ 
J 

where {gi; i = 1, 2, 3} is the natural basis of the fixed system of coordinates. Thus (2.20) 
can be written as 

(2.22) d<pk fJ<pk I fJ<pk . fJ<pk - =- + - . g1· 'V =- + \l<pk· v 
dt fJt xi ox' at 

and the limiting form of this equation on the k-th side of S is written as 

d 'Pk . d<pk O<pk Is 
(2.23) _ s_ = hm - = -- + \l<pkl • WJ. 

dt M-S dt Ot S 
MEQk 

This expression is not convenient in the second case since {)~' lx; has no meaning nor 

does \1 <p'. Instead of referring to a fixed system of coordinates {xi; i = 1, 2, 3} selected 
in £,we can refer to a non-drifting system of coordinates {ya; a = 1, 2} selected on E, 
and instead of Eq. (2.20) we have 

(2 24) d3 '[-a ( r ) ] - O<p' I fJ<p' ay-a I 
. dt <p Y Yj 't , t - Bt - + {)-a Tt . 

yn Y YJ 
Using Eq. (2.17), this equation becomes 

(2.25) d3 'P
1 

fJ<p' I fJ<p' -a fJ<p' 1 --=- +-Wjt•8 =-+\ls<p•Wjt 
dt fJt yn fJya fJt ' 

where \1 s is the surface gradient. 
Equations (2.23) and (2.25) can be generalized to the surface vector field 

u' = UnD(t) + Ut = u'(ya(YJ , t), t]. 

It can be shown that 

d au' I fJu' ay-a I 
(2.26) d; u' = at yn + {)ya Bt YJ 

fJu' I fJun a = Bt ya + (\lsUt)Wjt + (WJt • B(ut)]n(l)- UnB(Wjt) + D(l){Jya Wt . 
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The operator B = -(Po \7n(1)) = -\7 sn(I) is the Weingarten map, whereas the twice 
covariant tensor associated with B is the second fundamental form. It can be represented 
in component form by using Weingarten's formula 

(2.27) 

A special case of interest is when u' = n(t) 

(2.28) d sn(l) = an(l) I - B(WJt) ' 
dt at yo. 

where the first derivative can be written 

an(l) I (2.29) = -\78 Wn. 
at yo. 

Note that H the mean curvature of the surface is given by b~/2. 

3. Equations of motion. The potential approximation 

In this section we derive the whole set of equations for the two classes of two-phase 
systems having geometries as in Figs. 1 and 2, when the motion of the two incompressible 
fluids is considered as irrotational. 

The motion of the Newtonian and incompressible fluid k (k = 1, 2) adjacent to the 
interface is described by the following continuity and momentum equations: 

(3.1) \7 • V(k) = 0 , 

av(k) 1 J.Lk 
(3.2) - £)- + (\7v(k))v(k) = F- - \7pk + -Llv(k) , 

ut {!k {!k 

where v(k) and Pk are the velocity and pressure fields, {!k. J.Lk are the constant density, 
dynamic viscosity, F is the body force per unit mass, and Ll is the vector Laplacian. 
Describing now the general boundary conditions in both classes of topological systems 
considered at the beginning, we have 

(3 .3) v(k) -+ 0 as r -+ oo , 

where r = IOMI for the fluids which extend to infinity. Moreover, for three-dimensional 
flow extending to infinity, it is well known that v(k) has the asymptotic form 

(3.4) V(k)=o(:3) as r~oo. 
The above partial differential equations valid in Sh and boundary conditions must be 
supplemented by appropriate jump conditions valid on the dividing surface representing 
the effects of the interfacial region. There is nowadays a general agreement (SLATTERY 

and FLUMERFELT, [ 46]) concerning the derivation of general conservation laws valid at 
each position on this surface. Recall that our problem is to define well-posed purely 
irrotational models from this whole set of exact equations: the non-slip condition and the 
tangential component of the momentum balance must be left aside. If, moreover, there 
is no mass transfer across the dividing surface, we only need the continuity of normal 
velocities 

(3 .5) V(l) • n(l) = -V(2) • n(2) , 

http://rcin.org.pl



462 E. CANOT AND J.-L. ACHARD 

while the normal momentum balance reduces, if H denotes the mean curvature of the 
surface and T the surface tension, to 

(3.6) 2HT + (Pt - pz)l, - 2(pt(n(l) • \7v(t)) · n(l)- pz(n(2) · \7v(2)) · n(z)] = 0, 

in which, due to viscosity, remains a normal stress component. This term, the only one 
which creates dissipation, has been taken into consideration by several authors (MOORE 
(35), CESCHIA, NABERGOJ (12), KANG, LEAL (22]). Besides, more refined works includ
ing viscous effects have been undertaken (MOORE (36], MIKSIS eta/. (33], LUNDGREN, 
MANSOUR (29]). Corrections of pressure field in the vicinity of the interface are made by 
retaining first-order viscous terms in the normal stress boundary condition. The calcula
tion of this first-order correction is always based on previous calculation of the potential 
flow. In our case, as we are restricted to motions of two in viscid fluids, the last term in 
Eq. (3.6) disappears. Finally, these boundary conditions must be completed by the initial 
conditions 

(3.7) V(k) = V(k),ll at t = 0, k = 1, 2. 

The resulting equations can now be listed, expressed in terms of the scalar potentials 
'Pk. The continuity equation (3.1) gives 

(3.8) \72r.pk = 0, k = 1, 2, 

whereas the momentum equations (3.2) can be integrated, giving the Bernoulli equations 

8r.pk 1 2 1 
(3 .9) -

8 
+ -

2
v(k) + '1/Jk + -Pk = 0, k = 1, 2 . 

t ek 

In Case 2, where the two fluids extend to infinity, the constants of integration in (3.9) 
vanish due to the asymptotic behaviour 

(3.10) r.p k -+ 0 as r -+ oo 

qr, mol"f precisely thanks to Eq. (3.4 ), 

(3.11) 

and due to the choice of the potential energy per unit mass '1/Jk associated with the field 
F, which are uniquely defined by the following asymptotic behaviour 

(3.12) Pk + ek '1/Jk -+ 0 as r -+ oo. 

In Case 1, the procedure holds again for fluid k = 2, whereas Eq. (3.9) is verified for 
fluid k = 1 because 'Pl is defined up to an additive constant. 

The two scalar fields 'Pk are coupled at the interface by the following Neumann con
dition, coming from Eq. (3.5) 

(3.13) D(t) • \7r.ptls + n(2) · \7r.pzls = 0. 

The normal momentum balance at the interface (3.6) becomes 

(3.14) (Pt - pz)ls + 2HT = 0. 

In th\s paper, F corresponds to a uniform gravitational field, so 

(3.15)' 'I/J1 - '1/Jz = Cte = tJt . 
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Of course, the initial conditions must be added to this new system of equations, and 
(3.7) takes the form 

(3 .16) <,O (k) = <,O (k) ,o at t = 0 (k = 1, 2). 

Let us examine a particular case which occurs for gas-liquid systems. In such a case, we 
have g1 << g2, when the gas occupies the domain ilt. and the liquid ilz. So, the usual 
constant pressure condition can be derived from Eq. (3.9) 

(3 .17) Pt = cte in ilt . 

This approximation, which is the so-called "free-surface condition", considers the gas as 
a passive, or dynamically inactive medium. But it is valid if and only if the velocity scales 
of each phase are of the same order. 

4. Integral formulations 

4.1. Mathematical background and general features 

In this section, we present some basic results of the potential theory about superficial 
distributions of singularities. Recalled for the case of a single-phase flow, these properties 
are extended for two-phase flow systems. 

Classical potential theory shows, as is well known (STAKGOLD [47]), that the poten
tial of an irrotational single-phase flow, impressed by rigid boundaries Sw, in a region Q 
interior or exterior to Sw, may be generated by distributions of appropriate singularities 
(sources and/or doublets) spread over Sw . In two-phase flow systems we shall see that 
similar representations hold, the singularities being spread over the dividing surface. It 
happens moreover that these singularity layers are able to generate simultaneously irro
tational flows in both phases. To understand how the "single phase" boundary integral 
method can be extended to cope with two-phase systems, consider for definiteness the 
standard interior Dirichlet problem. Of course, in the field of hydrodynamics we are gen
erally faced with interior or exterior problems of the Neumann type; since they have some 
extra critical mathematical features, they will be addressed as applications in a second step. 

In the following, we are restricted to the Case 1, and we study solutions to Laplace's 
equation 

(4 .1) V'2<p t = 0 in ilt , 

with boundary conditions of the Dirichlet type 

( 4 .2) <,Otis = <ps , 

where <.ps are prescribed values of the function over the poundary S. Now we attempt to 
find the solution of Eqs. (4.1) and (4.2) in the form of a sum of a single-layer potential 
and a double-layer potential spread on S 

(4.3) <p 1(A-1) = - J [li( Nf')G(M, !vi')+ r(M ')'V'G(M, M') · n(M')] dS' , 
s 

where n is the unit outward normal on S, G(l\1, M') is the fundament~! solution to 
Laplace's equation; 0' is the strength of the surface source distribution (charge in elec
trostatics); r is the strength of the surface doublet with normal axis distribution (dipole 
in electrostatics). The fundamental solution G(M, Jv!') is also known as the Newtonian 
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potential for 3-D problems or the logarithmic potential for 2-D problems. As we are 
restricted to the former, we have 

(4.4) G( !vi M') = -
1
-, 471"s' 

where s = IM !vi' I is the distance between the observation point !vi and the singularity 
point M'. \7' (resp. \7) refers to the gradient with respect to the variable M' (resp. M). 
It is clear that any single layer and double layer potentials are harmonic in S?1 and so 
does <p 1 as given by Eq. (4.3). Such a function will be a solution of Eqs. (4.1) and (4.2) 
if the distribution strengths a and r are adjusted to satisfy the boundary condition ( 4.2). 
To impose these constraints we have to know the behaviour of the potential Eq. ( 4.3) as 
the observation point M is taken to a boundary point P from inside S?1. 

The LHS of Eq. (4.3) is then from Eq. (4.2) 

(4.5) lim <pt( !v!) = <pt(P)I s = <ps. 
1\f--+P 
MEilt 

Performing the same limiting process it is well known that the potential of a simple 
layer is continuous and the first integral approaches 

(4.6) - J a(!vi')G(P, M ') dS' . 
s 

Finally, the potential of a double layer experiences a discontinuity upon crossing the 
layer and the second integral becomes 

(4.7) ~r(P)- J r (l\4')\l'G(P, Af') • n(A1') dS'. 
s 

According to Eqs. ( 4.2) ( 4.3) and ( 4.5), a and r must be a solution of the equation 

(4.8) <ps (P) = ~r(P)- J a( lvi')G(P, M ') dS'- J r(M ')\l'G (P, !vi')· n (M ') dS'. 
s s 

Since there is only one constraint and there are two unknowns a and r, there is a 
degree of freedom in the problem. To make the boundary integral representation unique, 
we have to introduce auxiliary conditions. These conditions, that we shall call "singular
ity selection rules", may lead to representations which are more simple numerically, or 
more illuminating physically or more convenient mathematically. We are going to show 
that every rule, of whatever suitability, can be viewed as a way, which remains generally 
implicit, of specifying simultaneously, via (a , r), a fictitious harmonic potential field in the 
complementary part of the region of interest. The advantage of such a point of view is 
two-fold: 

(i) The so called "direct" and "indirect" formulations of the boundary element method 
(BREBBIA et a/., (11]) can be encompassed within a unified frame. 

(ii) It suggests a straightforward extension for the description of two-phase systems. 

Indeed, .let us assume that we have found a couple of solutions (a\ r) such that the 
representation ( 4.3) satisfies the interior Dirichlet problem ( 4.1 ), ( 4.2). Simultaneously 
such a representation induces outside S?1 harmonic potential field which has no physical 
relevance and that we call fictitious. Conversely, assume a fictitious problem to be given 
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(of the Dirichlet, Neumann or whatsoever type); if we require that the representation (4.3) 
satisfies both problems then no indetermination remains. To support these statements we 
need some basic functional relation on the surface that is going to be derived under a 
general hypothesis, i.e. by requiring only <p1 to be harmonic. 

Simultaneously with Eq. (4.1) we shall consider the harmonic problem 

(4.9) \l2<p2 = 0 in il2 

with boundary condition at infinity of the Dirichlet type 

( 4.10) <r'21 00 = 0 . 

The boundary condition on S is left unspecified for the moment, except that we have the 
properties 

92 = 0 (:2) ) as r ---+ oo . 

a<p2 = 0 (~) 
81· r3 

( 4.11) 

Let us apply Green's third identity on [}1 with the function <p1 

(4.12) Et(lv/)<pt(M) = J n(A-1') • (G(M, M')\l'<pt- <t't \l'G(M, M')] dS' , 

where 

( 4.13) 

s 

Et(l\1) = 1- at(M) 
47r 

with a 1 being the solid angle described by the boundary of il1 as seen by an observer at 
M. Namely, E 1 = 1 inside ilt. E1 = 0 outside and E 1 = 1/2 on a smooth point of S, i.e. 
on all points of S. 

Similarly, let us apply the same identity over il2(R), bounded internally by S and 
externally by the surface EJ'R., with the function <p2 

(4.14) E2(1\1)<t'2(1\1) = - j n(M') · [G(M, l\J')\l'<p2- 1P2'l'G(l\J, M')] dS' 
s 

where 

(4.15) 

+ J D(R)(l\1') • [G(M, M')"V'<p2- )02\l'G(M, M')] dS', 
an 

E2(M) = 1- az1~) , 
with a 2 being the solid angle described by the boundary of il2( R) as seen by an observer 
at M. Namely, E 2 = 1 inside il2(R), E2 = 0 outside and E2 = 1/2 on Sand on oR. 

By using the estimates ( 4.11) and by remarking that, M being fixed, 

G(M,M') = 0 G) , 
~~(M,M') = 0 U2), 

(4.16) 

j ' 
, ,unifor;nly as R ---+ oo, we note that the contribution from the sphere vanishes as R ---+ oo. 
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We now add Eq. (4.12) and the limiting form of Eq. (4.14) when R--+ oo 

{ 

'PI if M E flt } 

(4.17) <p(lv!) = ~(<p 1 + cp2 ) if !viES 

<pz if ME flz 

= f n(NI') • [G(i\1 , M')\7'(<pt- <pz)- (<pt- <pz)\l'G(M, M')] dS'. 
s 

Comparing Eqs. (4.3) and (4.17) we find 

(4.18) u = -D(t) • [\7(<pt- <pz)]ls, 
(4.19) r = ('Pt- <pz)ls. 

By using similar arguments (i.e. by using the sphere n as a transitional object), a 
functional relation which is formally identical with ( 4.17) can be obtained for the Case 
2. In this case when R --+ oo, E(t) -+ S(t) and the integral is extended over an infinite 
surface. 

Now we are in a position to show that all classical selection rules correspond in achiev
ing the definition of the exterior problem ( 4.9) and ( 4.10). 

4.2. The classical indirect formulation 

In the classical approach, we assume that the unknown function <p1 may be expressed 
solely as a double layer potential with unknown strength r. Equivalently, we may require 
the fictitious problem ( 4.9) to be of a Neumann type, since we know that <p1 can be found 
uniquely on S 

(4 .20) u = 0 = -n(t) • [\7(<pt- <pz)]l s . 

Combining ( 4.17) with ( 4.2) and by use of ( 4.19) an~ ( 4.20), we obtain a Fredholm equation 
of the second kind 

(4.21) <ps(P) = ~r(P)- f r(M')\7'G(P, M') • n(M') dS'. 
s 

Regarding the numerical solution of Eq. ( 4.21) which corresponds to algebraic equa
tions obtained by discretization, the presence of the term outside the integral, character
istic of Fredholm integral equations of the second kind, ensures diagonal dominance in 
the system matrix (BREBBIA et a/., [11 ]). The problem being well conditioned, this formu
lation has been extensively used. For definiteness, the interior problem will be considered 
again as of the Dirichlet type; similar conclusions could have been drawn for an interior 
Neumann problem. 

4.3. The second indirect formulation 

Here we assume that the unknown function <p1 may be expressed solely as a single-layer 
potential with unknown strength u. Equivalently, we may require the fictitious problem 
( 4.9) to be a Dirichlet type, since we know that cp 1 can be found uniquely on S 

(4.22) r = 0 = (<pt- <pz)ls. 
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Combining Eqs. (4.17) and (4.2), and then usingof(4.18) and (4.22), we obtain a Fredholm 
equation of the first kind 

(4.23) <ps(P) = - J O"(!vi')G(P, !vi') dS'. 
s 

A Fredholm equation of the first kind with a non-singular kernel is ill conditioned 
and very difficult to solve. However, in this case, the singular kernel ensures diagonal 
dominance in the system matrix (JASWON and SYMM [21 ]). 

4.4. The direct formulation 

Here we require trivially 

(4.24) 'Pzls = D(l) • ('Vcpz]ls = 0. 
The fictitious potential is everywhere on fl2 equal to zero and Eq. ( 4.17) becomes 

{ 

'Pl if !vi E flt 

(4.25) ~'PI if !viES = J n(M') · [G(l\1, A1')V'''PIIs- 'PIIsV''G(M, M')] dS'. 
2 
0 if !viE Dz 5 

This equation represents a functional constraint between the Dirichlet boundary condi
tions ('PI defined) and the Neumann boundary conditions (n · 'V'cp1 defined). Since here 
we are restricted to the former, Eq. ( 4.25) becomes a Fredholm equation of the first kind 
for the unknown boundary values of n • 'V' cp1• 

As the unknowns in the integral equation ( 4.25) are physical quantities (either 'PI or 
n · 'V' 'PI), this formulation is said to be direct to distinguish it for instance from formula
tions (1) and (2) that involve strengths O" and r of "fictitious" singularities. These latter sin
gularities are not less physical, from our point of view, than the ones arising in the former 
formulation: all of them correspond to an arbitrary choice in defining the complementary 
problem. What is true is that in this formulation (3) we obtain directly the non-specified 
boundary data (i.e. n · V'' cpt) after the source density distribution has been found. 

4.5. Adequate formulation for fluid-fluid systems 

The key to the extension of the above boundary integral methods to fluid-fluid systems 
is to turn the basic underdetermination of its initial formulation to account. The flow of 
one of the phases being considered, we require the complementary flow to be just the flow 
of the other phase. To put it in another way, we require the representation ( 4.17) to sat
isfy at once the problems for the potential flows in each phase region and on the dividing 
surface. The starting point is the functional relation which has been derived under fairly 
general conditions, i.e. Eqs. (4.1), (4.9) and (4.10), for both Cases 1 and 2. Its expression 
is the same for these two cases, except that in Case 2, the surface S extends to infinity. 

{ 

'PI if !11 E fli 

(4.26) ~('PI + <pz) if AJ E S 

'P2 if Af E Dz 

J n( J\1') · [G(lvi, A1')'V'('Pt - <pz)ls- ('PI- cpz)isV''G(M, A1')] dS'. 
s 
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Using the interfacial condition (3.13) which is equivalent to 

(4.27) n · V''(rpt - rpz) = 0 , 

we can deduce 

{ 

<t't if ME ilt 

(4.28) <p(M)= !(rp1 +rp2) ifMES = j -(rpt-rpz)lsn(M')·'V'G(M,M')dS'. 
2 
rpz if lvf E ilz s 

Thus, for two-phase flow systems without solid boundaries, the potential in each phase 
is generated by the dipole distribution 

( 4.29) 

If we examine the velocity fields, they may be of course written under an integral repre
sentation by differentiation of Eqs. ( 4.28) 

1 
V(l) if !vi E ilt 

(4.30) v(M) = ~(v(t) + v(2)) if ME S = V' J ;(Jvi')n(M') • 'VG(M, M') dS'. 

v (2) if M E D2 s 

We shall give now an integral representation of v in terms of a vortex distribution, but 
to do so, a first transformation of Eqs. ( 4.30) is necessary. By use of classical identities 
we have 

(4.31) v(M) = V' x J - ;(Af ')n(Af ') x V'G( l'vf , !11 ') dS'. 
s 

Under this form, we can see that the velocity field v are derived from the vector potential 

(4.32) 

Now, 

( 4.33) 

A( M ) = J - ;(M')n(M ') x V'G(M, M') dS' . 
s 

V' s [;(Af')G] = ;(!11 ')V' s G + GV' s ' , 

where the symbol V' s denotes the surface gradient with the differentiation taken with 
respect to !vi'. Then the vector potential can be written in the form 

(4.34) A(/11 ) = J n(A1 ') x V' s (;G) dS'- J G(n(M') x V' 5 ;) dS' . 
s s 

Strictly speaking, this transformation is only valid for Case 1 where, by means of the 
Stokes formula, the first integral is shown to be zero. In Case 2, the same result is 
obtained but through a slightly different line of reasoning. The starting point is not given 
by Eqs. (4.30) but by a similar equation involving distributions over E(t) and over oR. 
We are then led to an equation equivalent to Eq. (4.34) with S replaced by E in the two 
integrals, and extra contributions from the surface of the sphere oR. The Stokes formula 
gives 

(4.35) J ;dl' X V''G 
8E 

http://rcin.org.pl



AN OVERVIEW OF BOUNDARY INTEGRAL FORMULATIONS FOR POTENTIAL FLOWS . • • 469 

for the first integral; it vanishes as 1/ R3 at the same time as the extra contribution from 
an when R __,. oo, since from (3.11) T = 0(1/ R2). Thus 

( 4.36) v(M.) = J [-n(A1') x ~5r] x (~'G)dS'. 
5 

Comparing this formula with the classical Biot-Savart law, it appears that the field v 
is generated by a vortex-sheet over S, the intensity of which is 

( 4.37) 1 = -n x ~ 5 T . 

Finally from ( 4.36) we could return to the scalar potential in order to express it in 
terms of 1 instead of r as in (4.41) (see SEDOV [45]) but here the expression (4.36) is 
sufficient as we shall see later on. 

We have seen in this chapter that velocity fields v(k) and potential fields I.Pb k = 1, 2 
can be expressed in terms of either a distribution of dipoles r over S, or a distribution of 
vortices 'Y· Different systems of equations governing these densities are given in the next 
section. 

5. Boundary integral methods for fluid-fluid systems 

5.1. Preliminaries 

In the previous section, we have seen integral formulation for the potential fields I.Pk, 
k = 1, 2, and for the velocity fields v(k), k = 1, 2. These formulations, expressed in terms 
of dipoles or vortices, are valid at all times, and we must now specify how they evolve 
over time. The global system of equations that we have at our disposal is composed of 
two parts. The first part describes kinematics of the two fluid flows and is precisely given 
by the integral equation ( 4.30) or ( 4.36) which replaces equations (3.8), (3.11) and (3.13) 
at once. The second part deals with dynamics and includes equation (3.14) and the initial 
conditions (3 .16) at the surface. It includes also the Bernoulli equations (3.9) but not in 
fh, k = 1, 2; the limiting form of these equations at the dividing surface S is sufficient 

(5.1) a<p k I [ 1 2 1 ll - = - -v(k) + '1/Jk + -Pk , k = 1, 2 . at 5 2 ek 5 

The above form is not convenient for calculations on a surface. In Sect. 2 we have seen 
that in that application two surface markers may be envisaged, the classical "Lagrangian 
markers" or fictitious particles attached to a non-drifting coordinate system. To express 
time variations of surface fields, here the field r, it has also been shown in this section 
that there are two frames of reference: the neighbouring space system of coordinates 
{xi ; i = 1, 2 , 3} fixed in[. and a non-drifting surface system of coordinates {y0

; a = 1, 2}. 
The first system of reference is only possible when the field, as in our case, is also defined in 
the neighbouring 3-D region. In our calculations we shall need both systems of reference. 
It is basically more simple to use the second type of markers although the first one is of 
some interest. Indeed, when dealing with the surface system of coordinates, it is easily 
seen that 

(5 .2) y0 = yj , a = 1, 2 
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and 

(5.3) 
0Xt

0 

I = 0 = Wft • a0 = w]t , a = 1, 2. 
YJ 

Several simplifications will result from Eqs. (5.3). With this type of marker, the fictitious 
material derivative of lt'k Is is written, taking into account Eq. (2.23) 

d$ I arpk Is I arpk Is I Orpk Is 2 
(5.4) dt t,Ok s = 81 + '\lrpk s· tun = 81 +tun '\lrpk s • n = 81 + wn. 

Thus Eq. (5.1) becomes 

(5.5) ~; 'l'<is = w~- [~v(•l + 1/J• + e>•] Is 
We shall now present two different methods for solving the above set of equations. 

The first one proceeds from the "generalized vortex method" introduced by BMO [4] 
for 2-D calculations. The second method, proposed by ROBERTS [43], will appear as 
a generalization of the so-called "Bernoulli's methods" commonly used to solve free
boundary value problems. 

Referring to the equivalence between dipole and vortex distributions presented in the 
previous section, each method can also be treated in terms of 1 distributions. In the 
following, the two methods (and their two ,-variants) are described in detail and are 
compared with each other. 

5.2. The "generalized vortex method" 

An equation for d3 r / dt is easily obtained by subtracting the two equations (5.5) 

d3 )I d$ (5 .6) dt (rp2- V't s = - dt r 

= _!(vt2)- vtl))ls- (1/J2- 1/Jt)ls- (2_P2- 2_Pt) I , 
2 U2 Ut s 

and by using Eqs. (3.14) and (3.15) 

(5.7) d$ 1 2 2 ( 1 1 ) 1 , --r = --(v(2)- v<1>)1s + tJi- --- Ptls + -2HT. 
dt 2 U2 Ut U2 

Now adding the two equations (5.5) gives 

(5.8) d$ 2 1 2 2 I ( 1 1 ) I -d (rpz + r,ot)ls = 2wn- ?(v(t) + v(z))ls- (1/Jt + 1/J2) s- -Pt + -p2 . 
t - Ut U2 s 

We have on the surface, from Eq. ( 4.28), 

(5.9) rp(M) = ~(rp1 + rpz) = J - r(NI', t)n(M') • '\l'G(M, M') dS', 
S(t) 

where we have re-introduced the time dependence, so Eq. (5.8) becomes 

d; .., 1 2 2 ( 1 1 ) I 1 (5.10) 2 dt rp = 2w~ - z(v(I) + v(2))1s- (1/Jt ;+ 1/J2)Is- ~ + e
2 

Pt s + e
2 
2HT. 
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The final equation for ds r / dt is obtained by eliminating the pressure terms between 
Eqs. (5.7) and (5.10), and by using the integral form (5.9) for ~.p: 

(5.11) (Ut + u2) ~; r = 2(et - uz) ~; { J - r(M', t)n(M') · \I'G(M, M') dS'} 
S(t) 

-2(gt - g2)w~ + £Jt vt1) - £J2Vt2) + (gt + £J2)1Ji + (gt - £J2)( 1/Jt + 1/J2)- 4HT. 

Now we want to calculate the time derivative of the integral in the RHS with the help 
of Appendix 2. This expression is first considered on E(t) which is an arbitrary subsurface 
of S(t) bounded by a line aE(t) consisting of the chosen markers (5.2) 

(5.12) ~; f r(M',t)K(M, A1')dS' 
L'(t) 

= ~~ f f r[iVI'(y} , yJ ,t) , t]K[At!,M'(y},yJ , t)]J<ifdy}dyJ, 
YJ(L'(t)) 

where 

(5.13) K(A1, M') = -n(At!') • \l'G(At!, l\1'). 

The resulting form which can be compared to (A.2.6), is the starting point of derivation 
leading to the surface transport theorem. This theorem gives finally in our case 

(5.14) ds J 1,. dS' J (dsr 1, dsf( }' d' ) dS' dt T \ = --cft \. + dt T + \. T IV s W J . 
L'(t) L'(t) 

Here, all fictitious material time derivatives are taken by using a surface system of 
coordinates {yo- ; o = 1, 2}, contrary to Eq. (5.5) where the space system {xi; i = 1, 2, 3} 
has been used. In the integral in the RHS of Eq. (5.14), the two last terms have to be 
made clear. First we have 

dsf( =-dsn·\l'G-n·ds\l'G. 
dt dt dt 

The first time derivative is given by Eqs. (2.28) and (2.29), and the second one can be 
written in the form 

ds \l'G _ 
_ d_t_-

Secondly, we obviously have 

or with (A.2.16) 

(5 .15) 

divs Wft = 0, 

divs Wj = ~2Hwn, 
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which shows simplifications resulting from the use of non-drifting markers. Finally, letting 
E(t)-+ S(t) in Cases 1 and 2, we obtain a new expression which is inserted in Eq. (5.11) 

(5.16) (1?1 + 1?2) ~; T = 2(1?1 - 112) J [ d~; ]{ +T ( d~~{ - 2H ]{ Wn)] dS' 
S(t) 

-2(gt- U2)tv~ + !JtVtl)- !J2Vt2) + (Ut + U2)1J! +(!>I- !>2)(1/Jt + 1/J2)- 4HT. 

If we consider rand the velocity fields v(k) as given, Eq. (5.16) appears as a Fredholm 
integral equation of the second kind for ds r I dt, which can be used in order to update . 
values of r at the next time step. (Refer to Table 1 for the general flowchart of this 
method.) 

Consider now the same problem expressed in {-distribution. Referring to the previous 
section, 1 is such that 

(5.17) 

The starting point of the calculations still is Eq. (5.11) on which the operator -n x \7 5 is 
applied. Equation (5.11) is thus transformed into 

(5.18) ( ) d3 
{ ds [ 1 ] 2 - Ut + !>2 dt 1 = -n x 2(et- !>2) dt z(v(l) + v(2)) - 2(et- U2)\7swn 

+ 111 \lvfl)- 112 \lvf2) + 2(1?1 - 112)F + 4T\I ,H} on S. 

Furthermore 

(5.19) 

Hence, 

(5.20) 

~(V(t) + V(2)) = J I(M') X V''G(NI, III') dS'. 
s 

- (1?1 + 112) ~; -y = -n x { 2(1?1 - 112) ~; J -y(M') x \I'G(M, M') dS' 
s 

-2(1?1 -112)\l,w~ + 1?1\lv[1)- 112\lv[2) + 2(1?1- 112)F + 4T\I,H}. 

The tin1e derivative of the integral in the RHS of the last equation would be expressed 
in a similar way to that for the dipole distribution, and we should obtain a Fredholm 
integral equation of the second kind for d$ 1 I dt instead of ds r I dt. 

We are now able to replace the "generalized vortex method" of BMO [4] among other 
methods using vortex sheets. According to Eq. (5.17) it can be seen, as is well known 
in the potential theory, that a vortex sheet generates a discontinuity for the velocity 
values 

(5.21) 

For this reason, vortex sheets have been extensively used for modelling sharp variations 
of tangential velocities in a thin layer dividing a mass of otherwise irrotational fluid. In 
simple cases where problems are two-dimensional, this description leads to the classical 
"point vortex method" (used since Rosenhead, 1931) where each point vortex retains a 
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constant vorticity and is convected under the flow induced by the others. In fully three
dimensional flows, a similar "line vortex method" could be envisaged and, in this case, 
the vorticity of each line would vary with the stretching of the line, as indicated by the 
Helmholtz theorem. In our problem of two-phase motion, the two last terms in Eq. (5.20) 
show that the density jump and the gradient of curvature are at the origin of the initial 
vorticity. In this connection, as underlined by BMO [3], this is similar to the baroclinic 
creation of vorticity in a non-homogeneous fluid, a creation specified by the Bjerknes 
theorem (YIH [52]). It must be emphasized that the forms of Eq. (5.16) or (5.20) are 
simpler for two-dimensional problems. This is the reason why it has been used in this 
particular case by BMO [4], and several other authors (TELSTE [49], KERR [23]). 

5.3. The "generali1..ed Bernoulli method" 

Calculations now are based again on the same system. First we combine the two 
equations (5.5) in order to eliminate the pressure terms 

ds 2 1 2 2 I I (5.22) dt ri> = (e2- et)wn- 2(e2v(2)- etv(l)) s- e21/J2 s + etl/Jtls- 2HT. 

This equation introduces the time derivative of a new surface potential 

(5.23) 

Table 1. Comparison of the two classes of Boundary Integral Methods for fluid-fluid systems, 

in the dipole representation. a) Generalized vortex method (BAKER, MEIRON and 0RSZAG [ 4]). 

b) Generalized Bernoulli's method (alternative method used in this paper, 

c .g 
'i3 

8 .. 
•zj 

:s 

first presented by ROBERTS [43]). 

a) Generalized vonex-method 

I 'to on So I t =0 

dipole strength on the interface S (t) : 

't=fPIIs-~s 

b) Generalized Bernoulli's method 

I 4\l on So I t = 0 

generalized potential on the interface S (t) : 

IP= P2~s- PtiPIIs 
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Decomposing this quantity by use of Eq. (4.19) gives 

(5.24) ( 
e1 + e2) I (/) = -

2 
r + (ez - et )<p s , 

and using Eq. (5.9) 

(5.25) (l'l + l'2) J (/) = -
2 

r + (e2 - et) - r(NI')n(NI') · \l'G(NI, M') dS'. 
S(t) 

If we consider (/) as a given function, Eq. (5.25) is a Fredholm integral equation of the 
second kind for the unknown density r. Then, velocity fields can be computed and 
Eq. (5.25) allows us to update at the next time step. This method generalizes the one -
employed in cavitation or free-surface problems. When one deals with a single phase 
flow with a free-surface condition, over which the pressure is kept constant, the resolu-

. tion of Laplace's equation for the scalar potential, coupled with given potential values 
on the boundaries (Dirichlet problem) furnishes the velocity field," and then Bernoulli's 
equation can be used for updating the potential on the free-surface S. This procedure, 
first employed by PLESSET, CHAPMAN [38] in the frame of finite differences computation, 
has been re-employed later on (BMO [4], BLAKE et al. [9] and recently by LUNDGREN, 
MANSOUR [29] using integral representations over the free-surface. Thus, our method 
appears to be a generalization of these "Bernoulli methods", since it can easily handle the 
two-phase motion by introducing the generalized potential (5.23). For a comparison with 
the previous method, Table 1 presents the flowcharts of the two methods in their dipole 
representation. Let us now look at the variant method employing the ~-distribution. In a 
way similar to the first method, if we apply the operator - n x \1$ to Eq. ( 5.24 ), we obtain 

(5.26) (l'l + l'2) [ 1 l e2(v(2) x n)- et(v(l) x n) = --
2

- 1- (ez- et)n x 2(v(l) + v(2) . 

Let's denote 

(5.27) 

which is a weighted average of the tangential velocities above and below the interface. 
So, by virtue of Eq. (5.19), we have finally 

(5.28) v = ( e'; ez )1- (ez- e!)n x J "Y(M') x \l'G(M, M')dS', 
s 

and the transformation of Eq. (5.22) by the same operator furnishes 

(5.29) ~; V = - { (ez - et)\1 $w~ - ~(e2 \lvf2>- e1 \lvfl))ls - (ez - et)F + 2T\l $H} . 

Hence, if we consider Vas a given surface function, Eq. (5.29) is a Fredholm equation 
of the second kind for the density 1'· Then the velocity fields can be derived and Eq. (5.29) 
is used to update 1 at the next time step. 

Let us come back now to the comparison of the two methods a) and b). Examine 
the time derivative of the integral term in Eqs. (5.11) or (5.20). One can easily see that 
the new method presented in b) is more direct than the classical one of BMO 82, except 
however for 2-D problems, for which the latter authors performed the calculations in the 
complex plane. 
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Table 2. Overview of boundary integral formulations for irrotational fluid-Ruid motions. 

First class : Vortex methods 

surface of discontinuity in one fluid 

£..!.= 1 
P2 

Kelvin's theorem -+ 

y : vortex strength onS 

j Rosenhead, 

·\ Fink & Soh, 
Baker, 

1931 
1978 
1980 

d;y =0 
dt 

(P.V .M) 
(P.V.M) 
(P.V.M) 

P.V.M. =Point-Vortex Method 

Fredholm integral equation for ~: 

Second class: Bernoulli's methods 

free-surface flow 

£..!. = 0 (one flu id + one passive medium) 
P2 

Bernoulli ' s equation -+ 

cp : velocity potential 

I 
Plesset & Chapman,1971 

' 'Lenoir, 1976 

\

Blake & Gibson, 1981 
Baker et al., 1984 
Blake et al ., 1986 

B.I.M. = Boundary Integral Method 

Fredholm integral equation for 't 

via 41= P2~s- Pt~s 

Bernoulli's equ. -+ ~ 

d.cp dt onS 

(finite differences) 
(variational method 
(B.I.M.; sources) 
(B.I.M.; dipoles) 
(B.I.M.; sources 

+dipoles) 

9: 
~'8 
II (i" ~ 
~ ~ 0 ... 

I 5. g. g~ 
ii [ '? [.~ 

(Baker, Meiron & Orszag, 1982) (Roberts, 1983) "' 0 l.!. c.., 

r---------------------------~------------------------------~~~~~· ~ ~~ 
dt 

Fredholm integral equation for d.Y 
dt 

(Baker, Meiron & Orszag, 1982) 

Fredholm integral equation for y 

via V = J>2('nxv(2J)- Pt('nxvol) 

Bernoulli's equ. -+ d,V 
dt 

if ~ [ 0:~ 
~ <> ~ iS-8.~ 
~ e. ~ ~ ... 
a_~ 

1[ = o· 
~~ 
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All the above described methods are included in Table 2, which includes the "mother
methods". 

6. Application to axisymmetric flows 

6.1. Small vibrations of a spherical globule 

In this first application, the generalized Bernoulli method is used to describe small 
oscillations of a fluid globule (bubble or drop) of a spherical form; this globule is sur
rounded by another fluid which extends to infinity. If the oscillations of the surface of 
the globule are very small compared to its radius, then it is well known (LAMB [25]) that 
any axisymmetric oscillation may be written as a sum of spherical harmonics Sn, which 
are solutions, or modes, of the linearized problem. So we have, in spherical coordinates: 

(6 .1) r(B) = a ( 1 + L cnSn) , 
n~l 

where a is the mean radius of the globule, en the amplitude of the n-th mode, such that 

(6.2) 

The spherical harmonics have the form 

(6.3) 

where Pn is the Legendre polynomial of order n, wn the pulsation of this mode and !3n 
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its phase. In the cbntext of linear oscillations, we have 

2 _ n(n + l)(n- l)(n + 2) T 
w - ·-

n [(n + l)gi + ngz] a3 ' 
(6 .4) 

where T is the surface tension and g1, g2 are, respectively, density of the internal and 
external fluids. As we are only interested in the oscillations of the globule surface and 
not in its translation, we may eliminate the gravity, so that the potential energy per unit 
mass of each fluid introduced in Sect. 3 is zero, 

(6.5) 1/Jt = '1/Jz = 0. 

We limit these test-calculations to the numerical study of the second mode, the initial 
conditions are fixed, so that 

(6.6) (]z = 0 

whereas the two fluid are at rest 

(6.7) 'Pk,o=O in fh , k=1,2 at t=O . 

No assumptions are made about the values of the density g1 and g2 • We are going 
now to apply the method developed in Sect. 5.3, in its dipole representation, so that the 
set of required equations corresponds to Eqs. (5.22), (5.23) and (5.25); these equations 
are written in a dimensionless form: 

(6.8) 

(6.9) 

(6.10) 

~; <P* = -2Aw*2 + ~(1 + A)v(l>- ~(1- A)v{f) + 2H*, 

<P* = (1- A)c.pi - (1 + A)c.pi , 

<P* = -r* + 2A f - r*n(M') • \l'*G*(M, M') dS'*. 
S(t) 

The dimensionless form obtained results from the choice of the mean radius a for 
the characteristic length and T /a for the characteristic pressure difference. The initial 
conditions become 

(6.11) 

and 

(6.12) <P0 = 0 at t * = 0 . 

The only non-dimensional parameter which appears in Eqs. (6.8)-(6.10) is the Atwood 
ratio 

(6.13) A= e1- ez. 
e1 + ez 

Note that the surface tension T, which is the only forcing term, does not appear 
explicitly in Eq. (6.13) but is contained in the time scale. 

The numerical discretization of the set (6.8), (6.10) is derived in Appendix 3. The 
Fortran code of our model has been implemented on a mini-computer Apollo (DN 3000 
station) and takes about 5 mn of CPU time for a run of 500 time steps. 
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FLG. 5. Linear oscillations of a spherical globule: A = 0, N = 20 points, f = 0.05. 
a) perturbation C at the top of the globule (continuous line). 

The dashed line is the theoretical cuJVe. 
b) kinetic and potential energy (dashed lines); their sum is represented by the continuous line. 
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phenomena as well as industrial processes. In all cases, this instability increases the in
terface area and leads to greater mixing due to the penetration of one fluid in the other. 
Linear studies have been made for a long time by TAYLOR (48] for the 2-D case and by 
CHANDRASEKHAR (13] for axially symmetric and 3-D cases.· The nonlinear behaviours 
have been computed by BMO [3] using the vortex method, and by PROSPERRETI, JACOBS 
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b) kinetic and potential energy (dashed lines); their sum is represented by the continuous line. 

6.2. Axisymmetric Rayleigh-Taylor instability 

The second application deals with a classical problem, namely the Rayleigh-Taylor 
instability in an unbounded fluid-fluid system. This problem has been the subject of both 
experimental and theoretical studies, some typical applications being related to natural 
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phenomena as well as industrial processes. In all cases, this instability increases the in
terface area and leads to greater mixing due to the penetration of one fluid in the other. 
Linear studies have been made for a long time by TAYLOR [48] for the 2-D case and by 
CHANDRASEKHAR [13] for axially symmetric and 3-D cases: The nonlinear behaviours 
have been computed by BMO [3] using the vortex method, and by PROSPERRETI, JACOBS 
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[40] using a finite difference method, for 2-D irrotational motions. Other methods have 
been applied to the same phenomenon taking into account the full Navier-Stokes equa
tions (DALY (14], ZUFIRIA (53]). 

The two fluids introduced at the beginning of this paper may have either the same 
density, or different ones. They are initially separated by a plane interface which extends 
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b) kine tic and potential energy (dashed lines); their sum is represented by the continuous line. 

to infinity, so Eq. (3.14) takes the particular asymptotic form 

(6 .16) 

(6.17) 
H-+0 , } 

(PI - pz)ls - 0 
as r-+oo. 
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Gravity acts downwards along the z-axis (see Fig. 8) and its intensity is denoted by g. 
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z 

a/2 

a r 

FtG. 8. Initial conditions f9'r the axisymmetric Rayleigh-Taylor problem. 
The dac;hed line represents the equilibrium position of the interface. The perturbation 
shape is of Gaussian form (note that the scale in the z-direction has been magnified). 

This configuration corresponds to the Cac;e 2 defined in Sect. 2. 

We impose the equilibrium position of the interface to be the plane z = 0. 
Because of axial symmetry, all variables depend only on the cylindrical coordinates 

(r, z ), r ~ 0. The pressure value on the interface at infinity is denoted by P= , so the 
potentials 1/J ~..: of the body forces introduced in Sect. 3 are 

(6.17) 

(6.18) 

according to Eq. (3.12). 

1 
'1/• t = gz - -P= , 

01 

1 
1/J2 = gz - -P= 

02 

Initially, the perturbation shape is chosen to be of Gaussian form 

(6 .19) Zs = boexp (- :~) at t = 0 , 

where a is an arbitrary length, the two fluids are at rest 

(6.20) 'PI.:,o = 0 in fh , k = 1, 2 at t = 0 

and the denser fluid lies above the less dense one 

(6.21) 

so that, under the action of the forces of gravity, the configuration is unstable. 
We are going now to apply our method in its dipole representation, so the set of the 

equations required corresponds to Eqs. (5.22), (5.23) and (5.25). In order to recast the 
above set of equation into a dimensionless form, we refer all distances to a characteristic 
length of the initial shape of S, say a which is the radius in Eq. (6.17), and the velocity 
fields v{k), k = 1, 2- to the characteristic velocity U0 • The time scale is equal to a/Uo. 
The pressure difference fields Pk - Pcv , k = 1, 2 are made dimensionless by introducing a 
characteristic pressure difference field dp. Assuming that the inertia and pressure terms 
are always of the same order of magnitude in problems where the irrotational hypothesis 
is of some interest, the last two scales will be chosen such that 

1 
dp = z (Ot + 02)U,y . 

In some cases, the scale U0 is given and .dp deduced. In other cases the converse is 
true, as e.g. in cavitation problems where dp is the pressure difference between that at 
infinity and the saturated vapour inside the bubble. 
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We are going now to apply our method in its dipole representation, so the set of the 

equations required corresponds to Eqs. (5.22), (5.23) and (5.25). In order to recast the 
above set of equation into a dimensionless form, we refer all distances to a characteristic 
length of the initial shape of S, say a which is the radius in Eq. (6.17), and the velocity 
fields v{k), k = 1, 2- to the characteristic velocity U0 • The time scale is equal to a/Uo. 
The pressure difference fields Pk - Pcv , k = 1, 2 are made dimensionless by introducing a 
characteristic pressure difference field dp. Assuming that the inertia and pressure terms 
are always of the same order of magnitude in problems where the irrotational hypothesis 
is of some interest, the last two scales will be chosen such that 
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In some cases, the scale U0 is given and .dp deduced. In other cases the converse is 
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FIG. 9. Influence of the Atwood ratio A for the axisymmetric Rayleigh-Taylor instability for 
Eotvos number E = 6.0. Each figure represents the upward (a) and downward (b) growth. 

a) 

b) 

The shape of the interface has been plotted at evenly spaced points 
from t• = 0 to t• = t~ax· The values of t~ax and A are shown in each figure. 
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t;ax =709 scale 

FIG. 10. Influence of the Atwood ratio A for the axisymmetric Rayleigh-Taylor instability for 
Eotvos number E = 6.0. Each figure represents the upward (a) and downward 
(b) growth. The shape of the interface ha<; been plotted at evenly spaced points 
from t• = 0 to t• = t*max· The values of t~at and A are shown in each figure. 

However, our system is always unstable, since the initial Gaussian shape contains all 
the "wavelength" .X. 
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FtG. 11. Influence of the Atwood ratio A for the axisymmetric Rayleigh-Taylor instability 
for Eotvos number E = 6.0. Each figure represents the upward (a) and downward (b) 

growth. The shape of the interface ha-; been plotted at evenly spaced points 
from t• = 0 to t• = t~1ax· The values of t~1ax and A are shown in each figure. 
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FlG. 12. Influence of the Eotvos number E (see also the caption of Figs. 9 to 11). 
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FtG. 13. Influence of the Eotvos number E (see also the caption of Figs. '} to 11). 

Secondly, the Atwood ratio A characterizes the difference of density between the two 
fluids. Since we impose g1 ~ e2, the range of A which can be covered is (0, 1]. Two 
limiting cases then arise and are especially interesting. 

The first one is A = 0. If we keep the Eotvos number not equal to zero, by supposing 
that gravity g tends to infinity as the product (e1 - e2)g remains constant, we then have 
the case of two immiscible fluids of the same density in presence of surface tension: this 
is the Boussinesq approximation. With an infinite Eotvos number (no surface tension), 
we have simply a surface of discontinuity in the same fluid occupying the two domains Q 1 

and !l2. 
The second one is A = 1, which corresponds to one dense fluid above a passive 

medium: this is the classical approximation made for gas-liquid systems, corresponding 
to the condition (3.17). 

In all the cases presented now, the initial surface is represented by N = 30 points, 
distributed from the axis 1·* = 0 to 1·* = 15, with a height b~ = ±0.05. The initial 
time-step is 0.05, and the lower limit allowed in our code is l0- 5• A typical run of 
140 time steps uses 15 mm of CPU time, with a number of nodes rising from 30 up to 
120. 

Upward and downward growths of the Gaussian perturbation for A = 0, 0.4 , 1 have 
been plotted in Figs. 9 to 11. These simulations show well known features according 
to the Atwood ratio. In the case A = 0 (Fig. 9; two fluids of the same density) we 
observe a mushroom-like formation, with a perfect symmetry between the growth up 
and down to gravity, whereas in the case A = 1 (Fig. 11; liquid above vacuum), a 
bubble formation or a spike-jet pattern is observed according to the direction of the 
initial perturbation. The last dissymmetric behaviours are consistent with the experimen
tal investigations of LEWIS (27]. The influence of the Eotvos number mainly changes 
the scale of the phenomenon (see Figs. 9 and 12) together with its time scale. In all 

http://rcin.org.pl



AN OVERVIEW OF BOUNDARY INTEGRAL FORMULATIONS FOR POTENTIAL FLOWS • • • 
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FIG. 14. Formation of a shape singularity on the interface at a finite time. A = 0, E = 6; a) shape 
of the interface at t~ax = 9.4; b) enlarged view of the "roll-up". 
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the cases studied (Figs. 9 and 12) the time evolution was stopped by strong singular
ities in the shape of the surface, so that the number of points rapidly reached 200, 
the upper limit arbitrarily fixed in our code. These singularities which arise at a fi
nite time, taking the form of a roll-up (see Fig. 14) when the Atwood ratio is close 
to zero, corresponding to the development of a Kelvin-Helmholtz instability, or tak
ing the form of a cusp (see Fig. 15) otherwise, have been described in the literature 
concerning the evolved vortex-sheets (PULLIN [41], MEIRON et al. [31], KRASNY [24], 
RANGEL, SIRIGNANO [42]). From the study of the latter paper, the introduction of 
the surface tension in the range of instability does not always eliminate the singular
ity. The same result appears in the work of PULLIN [41] and in the present simula
tions. 
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a) 0 7 
'-------' 
scale 

b) 

Ftc. 15. Formation of a shape singularity on the interface at a finite time. A = 0.8, E = 6; a) shape 
of the interface at t~ax = 9.0; b) enlarged view of the "cusp". 

We might think that t~e viscous effects eliminate these singularities, and smooth the 
roll-up formation, but it is worth noticing that simulations of the Navier-Stokes equations 
for the same phenomenon by a marker-and-cell method also exhibit a strong roll-up for 
small Atwood ratios (DALY [14]). 

In the present simulations, a smoothing procedure is employed whose principal effect 
is to delay the appearance of the singularity (see Fig. 16). In other respect, the smoothing 
is equivalent to a fictitious dissipation at the interface, and it seems dangerous to use 
strong smoothing because there is no longer a physical description of the phenomenon. 
Recently, many efforts have been made to eliminate these singularities. TRYGGVASON 
[51] used a modified vortex-in-cell method; KERR [23] applied the vortex-blob technique 
to the BMO [4] method, together with a modification of the meshing during the time evo
lution. These two authors worked only on 2-D problems. Similar regularizing procedure, 
just as high-order schemes described in Appendix 3, should be applied to the present 
method. However, the application treated here clearly shows that interesting results can 
be obtained as a result of a very simple approach, and also demonstrates its simplicity 
and flexibility. 
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a) 

0 
scale 

b) 

FIG. Hi. Smoothing effects on the time evolution of the interface. A = 0, E = 6. 
In case b) the smoothing factor is one fourth of that in case a); a)t~ax = 9.4, b) t~ax = 10.2. 

7. Conclusion 

In this paper, an overview of possible boundary integral formulations for irrotational 
incompressible fluid-fluid system has been given in a systematical way. It has been shown 
that two classes of methods are available; the first one, known as the "generalized vortex 
method" was established by BAKER, MEIRON, ORSZAG (4] and is an extension of the clas
sical "point-vortex method". We have shown that it may be expressed using either a dipole 
or a vortex representation and, moreover, that it can have a three-dimensional version. 
The second one, due to ROBERTS [43], appears to be an extension of some "Bernoulli 
methods", and it has also two possible representations. Table 2 presents all these methods 
and their relations. The aim of this article was not to compare the numerical efficiency or 
stability of the two methods mentioned above. However, as shown in Sect. 5, the Bernoulli 
method can be derived in a more straightforward way than the other one, especially in 
the three-dimensional case. 

Several extensions or further applications may be envisaged. For simplicity, we have 
limited ourselves to configurations such as those shown in Figs. 1 or 2. However, the 
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various methods can be used when several inclusions of different fluids are dispersed 
in another fluid. Fluids can also be bounded by solid boundaries, fixed or moving 
(BAKER et al. [4], TELSTE [49]) under the condition that solid boundaries and inter
faces do not intersect each other. Moving contact lines deserve a special study which is 
in progress. 

Another possible extension is the presence of compressible inclusions (without inertia) 
and characterized by a uniform and varying pressure field. To express the volume varia
tions in such a case, a point-source may be located within each inclusion; this situation is 
reminiscent of the work of BLAKE and GIBSON [8], where a source distribution close to 
the interior surface of their cavitation has been introduced. 

Appendix 1. Meshing of a smooth line 

Although it may be extended to define proper distribution of panels on a surface, this 
method will be restricted to generate a distribution of boundary elements on a plane curve, 
i.e. series of straight-line segments. Actually the final application is only axisymmetric and 
basic ideas of this method will not be obscured by the complex formalism of the surface 
representation. For a curve, equations corresponding to Eq. (2.3) are 

(A.l.l) xi=x~(u), i=1,2 

or, in a vectorial form 

(A.l.2) X= Xc{tt). 

The time t has been omitted. The curve coordinate u, which is assumed to be posi
tively oriented, is then given at any time as resulting from the transport of the previous 
parametrization, and it is supposed to require some adjustments. In order to make cal
culations easier, a preliminary transformation must be done from u to s, the arc-length 
parameter of the curve and then, what is specifically looked for, is a local increasing 
transformation 

(A.l.3) u = u(s) 

which meets two requirements: local smoothness and adaptation of the segments to the 
variations of a function F. First, recall some obvious approximate mathematical rep
resentations of the segments and of variation of those segments. In the new unknown 
approximation, consider a segment whose initial point is Xc(u) and endpoint is Xc{ti + Llu), 
Llu being an arbitrary difference, constant for any segment. The vector 

{A.l.4) Llxc{u) = xc(u + Llu)- Xc(u) 

representing the segment, is given by 

ds 
(A.l.S) Llxc{u) = -d Llut + o(Llu) , 

u 
where t dxc/ ds is the unit tangent vector. Another approximation, concerning the 
difference between two successive segments, is given by 

(A.l.6) 4x,(u + 41I)- 4x,(U) = [:~~ t + ( :) \n] (4u)2 + o(4u)2
, 

where "' is the normal curvature and n is the unit normal. A mesh will be considered as 
locally smooth if two subsequent segments have: 
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1) two orientations differing by less than the given amount Omax 

(A.l. 7) ,....._ _ 2 ( ds ) 
2 I ( ds -) (} = (Llu) du K duLltt ~ Omax; 

2) two component magnitudes along t differing by less than the given amount rmax 

(A.l.8) _ 
2

1 d
2 
s I I ( ds -) (Llu.) --=2 

1
_Llu ~ 1·max. 

du c u 

The last constraint is introduced only for numerical precision purposes, as shown in the 
classical "point-vortex method" by FINK, SoH [18]. Further, the mesh will be considered 
as adapted to the space evolution of a given strictly positive weight function F, if: 

3) the product of F by the segment length is smaller than a constant 

ds 
(A.1.9) d_LluF(s) ~c . 

. u 

The function F reflects the fact that the nodes must be concentrated at some place for 
many reasons: first, to avoid great discrepancies, the segment length must be adapted to 
the gradient of the function <p which controls the problem ( <p is the scalar potential of the 
velocity field); secondly, some self-crossing of the surface can occur if not enough points 
are used when different parts of the surface approach one another (BAKER (2], RANGEL, 
SIRIGNANO ( 42]). 

Our problem, defined by the three above constraints, could be solved by a minimiza
tion procedure (a variational approach) which would consist in verifying the constraints 
globally. Such an approach would be necessary, under some circumstances, in order to 
have a satisfactory regularity of the mesh during progress in time. This is the true in the 
case of the Adam's means of several predictor-corrector methods, which compute the next 
time step by means of several previous time-steps. In this paper, because of the simplicity 
of our progress in time (see Appendix 3), we don't need such a regularity. We prefer to 
verify each constraint locally, this procedure furnishing the smallest number of nodes. 

Initially, the function 

(A.l.lO) ds . ( Omax c ) 
g(s) = du = mm IKILlu' F(s)Llu 

verifies the constraints 1) and 3), and it is possible to correct this function in order to 
respect the second constraint. Thus, the unknown function u( s) is: 

(A.1.11) J
3 

dt 
u(s) = -(t), 

() g 

which gives also the inverse function s(u), and the new position of the i-th node is found 
by the formula 

(A.1.12) si = s( iLlu) . 

An example of the discretization of the medirian curve of an axisymmetric surface is 
shown in Fig. 17. It corresponds to an enlarged view of the roll-up of the Fig. 16b. One 
can see clearly the concentration of nodes (plotted in the form of circles) at places where 
the curvature is important, or where two portions of the interface come together. 
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0 

0 0 

FtG. 17. Example of spatial discretization of the interface by a smooth distribution of nodes. 

Appendix 2. Generalized transport surface theorem 

Several related theorems appear in the literature ( ARIS [1 ]). We present here a deriva-
tion due mainly to DEEMER ad SLAITERY (15). . 

Let S( t ) be a moving surface and { y-a; a = 1, 2} be an arbitrary moving system of 
non-drifting surface coordinates as defined by Eq. (2.8). A subsurface E' (t) contained in 
S(t), bounded by a curve {)E ' (t), is considered. The curve f)E' (t) is assumed to consist all 
the time of the same material of fictitious particles (say generalized) as defined in Sect. 2. 
To define {)E'(t), a second set of convected coordinates {yf; r = 1, 2} is introduced. 
It can be referred externally to { x'i; i = 1, 2, 3} by Eq. (2.10), or to the first coordinate 
surface {y0

; a = 1, 2} considered as a surface frame by relation (2.11), 

(A.2.1) Ya = Ya (y} ' YJ ' t) ' Cl' = 1' 2 . 

Again, this relation can be viewed as giving the location at time t of a generalized 
particle. The velocity of this particle in space is 

(A.2.2) i = 1, 2, 3' 

where 

{)ya I 
at yJ 

= wf , Cl' = 1,2 
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are the components of the tangential velocity of the generalized particles. Now we want 
to calculate the rate of change of the following integral extended over the current config
uration 

(A.2.3) d J 1 - ·'' dS dt If ' 

E'(t) 

where 'lj/ is any scalar or vector-valued function of time and position onE' (t). Since E'(t) 
is covered entirely by {yo: ; a= 1, 2}, then 

(A.2.4) 
E'(t) y[E'(t)] 

where a is the determinant of the metric tensor relative to {yo:; a = 1, 2} for the surface 
in the current configuration 

(A.2.5) a= (det[aap ])112 = (det[ao: · 313 ])
112

. 

The double integral in (A.2.4) is taken over y[~'(t)] which denotes the set of real numbers 
(yt , !Jl) corresponding to points in [belonging to E'(t). This set is a moving domain in 
R2

• So, it is not advantageous to differentiate such an integral expression. E' (t) is also 
covered by {yf; .d = 1, 2}, then 

(A.2.6) j t/J'(l'vf') dS' = j j tjJ' o AP[yo:(yf, t)]v'iif dy} dyJ, 
E'(t) YJ[L''(t)] 

where a 1 is the determinant of the metric tensor relative to {yf; .1 = 1, 2} for the surface 
in the current configuration 

(A.2.7) a1 = (det[a1.ar])112
. 

The double integral in (A.2.6) is particularly convenient for our purposes since it is 
taken over y1 [E'(t)] which does not depend on time since its boundary in R2 consists of 
pairs of numbers Cll} , YJ) which are the same at each time. One and two transformations 
are still necessary. First, under a change of surface coordinates from convected to non
drifting ones, .Jffj obeys the transformation rule 

(A.2.8) v'iiJ = vfaJ, 
where 

J = det _Y_ [
e-o: ] 
ayf 

is the Jacobian of the transformation (A.2.1). Note that such a change would allow to 
recover the double integral in (A.2.4) from the double integral in (A.2.6). Working on 
with the convected coordinates, we will use, nevertheless, (A.2.8) in (A.2.6) because then 
the resulting integrand 

where 

t/J '[yf, t] = t)J' o M'[yo:(yf, t)] 
can be more easily differentiated with respect to time. This is the starting point of many 
derivations for the surface transport theorem (ARIS [1 ]). 
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Secondly, it may be interesting to introduce the determinant of the mettric tensor 
relative to {yf; L\ = 1, 2} for the surface in the reference configuration 

(A.2.9) a,.= (det[a, . ..:\r])112 . 

The RHS of (A.2.6) becomes 

(A.2.10) J J 1/J
1vaJ dy} dyJ = 

YJ(L''(t)) 

where the following identity has been used 

(A.2.11) y 1 [ E
1 

( t)] = y 1 [ E~] for all t . 

Then we can write 

(A.2.12) 

where 

J J I /5, r;;- ] 2 J I I 1/; vzt;J ya,. dy1 dy1 = 1/; D dS,. , 

YJ(L'~) E~ 

Dl = y'a J 
va; 

denotes the surface expansion. These terms can be easily explained by comparing the 
RHS of (A.2.12) and the LHS of (A.2.6), 

(A.2.13) D' = dS . 
dSr 

Consider an element of material surface at (y} , yj) defined by the increments dyf of each 
coordinate in the reference configuration; its area is dSr. Due to the motion, this element 
is moved and distorted, so its new area is D1 dSr. 

Now we are in position to evaluate (A.2.3). We find by using (A.2.12). 

(A.2.14) !!_ j 1/;1 dS = !!_ j 1/J' D1 dS 
dt dt r 

E'~) E~ 

= J (1/J1 d$D
1 

+ D 1 d3 1/J
1

) dS = J (1/J' _.!.._ d$D
1 

+ d3 1/J') dS 
dt dt r D1 dt dt ' 

E~ E'(t) 

where the last RHS has been obtained by returning to the current configuration. Use is 
made of the following basic result 

(A.2.15) 
1 d$D1 

• 

D
1 
dt = dJV3 Wt- 2Hwn, 

the RHS of which can be transformed according to the classical identity 

(A.2.16) div3 Wt- 2Hwn = div$ w. 

Now we return to (A.2.14) which becomes 

(A.2.17) d j 1/;1 dS= 
dt 

E'(t) 

J ( d~;' + t/>' div, w) dS 
E'(t) 
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or, thanks to the definition of the material derivative (2.25) and an obvious identity, 

(A.2.!8) ~ J 1/!' dS = J ( ()~'~,., + 'V ,¢'· w, + div, (,P'w)- 'V, ¢ '· w) dS 
E'(t) E' (t ) 

495 

= J ( ()~l- \7,1/J'· W N + div, (,P'w)) dS 
E'(t) yfJ 

The last term in (A.2.18) may be replaced according to (A.2.16) by 

(A.2.19) 

Since E'(t) is a regular subsurface, its boundary 8E'(t) is piecewise smooth and the 
surface divergence theorem (GURTIN, MURDOCH [19]) gives 

(A.2.20) J div8 ('1/; 'wt) dS = J 1/J 'Wt• m dl , 
E '(t) &E'(t) 

where m is the outward unit surface vector normal to the bounding curve 8E'(t) at M 
and belonging to the tangent plane of E'(t) at 8E'(t). An alternative form of (A.2.17) is 
then 

(A.2.21) d j 1/J' dS = 
dt 

E ' (t ) 

Appendix 3. Numerical techniques 

+ J 1/J'wt·mdl . 
&E'(t) 

In this appendix, numerical approximations of the system (6.8), (6.10) (or (6.24) and 
(6.26)) are presented. Let us first consider the Fredholm integral equation (6.10). Nu
merical solutions of such integral equations have been used first by HESS and SMITH (20], 
who appeared as the pioneers of that matter in potential flows. Usually, the numerical 
procedure uses a spatial discretization of both surface and singularity distributions accord
ing to a very simple approach: the surface is represented by N flat elements (straight-line 
segments in our axisymmetric applications) on which the density of the singularity distribu
tion is constant. So, the Fredholm integral equation is approximated by a linear set of 
equations of order N. At each time step, our problem (defined in Sect. 6) is entirely 
determined by 

(i) the position of N markers in an arbitrary meridian plane, 

(A.3.1) 

(ii) the values of the surface potential defined in (6.9) 

(A.3 .2) 4>i(Mi ), i = 1, N. 

Then, the N unknowns are the densities Ti, which are the solutions of the system 

N 

(A.3 .3) 4>i =ri-2ALGijTj, i = l , N, 
j =1 
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where 

(A.3.4) i,j = 1, N. 

In this linear reformulation, Mi is the collocation point located at the center of the 
segment Si. In practice, the Gii terms, called influence coefficients, are evaluated ana
lytically and numerically (see, e.g. HESS and SMITH [20], BLAKE et al. [9]. The linear 
system obtained from (A.3.3) 

(A.3.5) 

·is solved in our case by a standard Gaussian elin1ination (see HESS and SMITH [20], or 
BMO [4], for iterative methods). Once the values of Tj are obtained, the velocities on S 
are computed by taking into account the equivalence between the dipole and the vortex 
representation. The velocity field v defined by Eq. ( 4.30) is derived in our case from N 
vortex rings intensities 

(A.3.6) / i = Ti - Ti + 1' i = 1' N 

which bound the segments si. 
Then, we are able to update the position of each marker Afi and the potentials tf>i by 

using a simple first order scheme 

(A 3 7) M·(t + Llt) { 1'i(t + Llt) = 1'i(t) + uiLlt, . 1 N 
• • t Zi (t + ..1t) = Zi (t) + Vi..1t , z = ' ' 

where (tt i, vi ) are the (r, z) components of the normal velocity of the surface, and 

(A.3 .8) .P;(M;(t + Llt)] = .P;(M;(t)] + ( d~~) i Llt , i = 1, N, 

where d3 tf> / dt is computed by Eq. (6.8). At this point, a new mesh of S(t + Llt) is gen
erated by the procedure described in Appendix 1, furnishing N' new points Mf. Note 
that, in general, N' is not equal to N, and increases as the shape of S becomes more and 
more complicated. The values of r, z, tf> at this new point are obtained by a cubic-spline 
smoothing technique (MARCHOUK [30]). We must point out here that this smoothing is 
required in order to remove non-physical irregularities, developing a saw-toothed appear
ance, due to the crudeness of the schemes used (see LONGUET-HIGGINS and COKELET 
[28]), and also in order to avoid too small time-steps. The choice of Llt at each time step 
is based on the limitation of the normal deformation of the interface. 

High order schemes would be envisaged for the numerical approximation presented 
above. For the spatial discretization (A.3.4) see for example BREBBIA et al. [11]. For the 
time stepping procedure refer to BMO [3,4], PULLIN [41], TELSTE (49], LUNGREN and 
MANSOUR [29]. Another interesting technique would probably be the use of an efficient 
time-stepping procedure established by DOLD and PEREGRINE [ 17] which attain great 
accuracy via the calculation of multiple time-derivatives. 
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