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On the periodic wave propagation along the elastic fibre 
in the elastic matrix 

A. BLINOWSKI (WARSZAWA) 

AxiSYMMETRIC PROBLEM of plane wave propagation along the elastic rod of circular cross-section 
embedded in elastic space is considered. Approximation of plane uniformly deformed cross-section 
is employed for the rod. Shear stress continuity condition at the interface is replaced by the weaker 
integral condition of the axial momentum balance for the rod. Solutions for the elastic fields in 
the surrounding medium are constructed, Hankel functions of complex variable being used. The 
dynamic field obtained can be considered as the superposition of two elastic periodic waves emitted 
by the rod at strictly defined angles with respect to the rod axis. For certain sets of parameter values 
the characteristic equation has been numencally solved, the dispersive relations being obtained for 
the longitudinal wave in the rod. Relations describing the propagation angles and amplitude decay 
decrement changes versus the wave frequency have been also found. 

1. Introduction 

THE SIGNIFICANT role of the "micro-dynamic" effects in the fibre-reinforced composite 
fracture under quasi-static load is generally recognized at present. 

It is rather evident that, for the understanding of the catastrophic "chain process" of 
the fibre ruptures caused by the ruptures of the neighbouring ones, one needs some infor
mation on the transmission of the dynamic pulse generated in the process of fibre rupture 
along the fibre axis as well as on the energy radiation from the fibre into the matrix. 

As it has already been pointed out by the present author [1 ], some of the existing 
schemes of the process cannot be considered to be adequate for the description of the 
process under consideration. E.g. the model discussed by SAKHAROVA, OVCHINSKII et 
al. [2-7] being probably useful for the description of the large time scale process, seems 
to be improper for the short time scale problem of the dynamic interaction between the 
neighbouring fibres. 

In the present paper the author tries to proceed a small step towards the understanding 
of this complex matter by presenting a description of the axisymmetric wave propagation 
along the fibre and the energy transmission from the fibre into infinite homogeneous 
surrounding elastic medium. 

Solution of a similar plane problem for the elastic layer embedded in the elastic space 
was proposed earlier by the present author [1]. 

In the same manner as in the mentioned above paper [1 ], we shall seek for the leaky
wave type solution describing the energy radiation from the fibre rather than for a gen
eralized Rayleigh (Stanley) wave type process of energy flux along the interface zone of 
the fibre and matrix materials. 

One has to realize, of course, that any real dynamic process initiated by the fibre rup
ture is neither purely elastic nor periodic, and even most probably not linear. Nevertheless 
it seems to be worthwhile to study the present problem which, in author's opinion, can 
supply some additional (probably mostly qualitative) information, which can turn out to 
be useful for the composite material strength theory. 
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The author hopes also that the proposed solutions can be possibly interesting from 
the viewpoint of some practical acoustic problems, apart from the composite mechanics. 

2. Formulation of the problem 

We consider a system consisting of the linear elastic homogeneous isotropic circular 
cross-section rod (fibre) embedded in the same type material (matrix) with different elastic 
moduli and mass density. We shall focus our attention on the axisymmetric longitudinal 
wave propagation along the fibre axis. 

We assume the continuity of the displacements as well as the continuity of the normal 
stress component at the fibre-matrix interface. 

The continuity of the shear stress condition will be replaced with the weaker con
dition of the integral axial force and momentum balance for the entire fibre cross
section. This approach is compatible with the plane cross-section assumption, which 
we shall also adopt for our problem. The iast assumption is commonly used for the 
long-wave approximate description of the longitudinal wave propagation in free rods, 
where the shear stress at the surface should be taken equal to zero. Thus we 
tacitly assume, that we restrict our considerations to the case of wavelengths exceed
ing the fibre radius and to low ratios of the matrix shear modulus to the fibre elastic 
moduli. 

We shall assume at last, that the radial strain is constant over the entire fibre cross
section and, consequently, we disregard the radial dynamic terms. Thus we shall assume, 
that the radial equation of motion is- similarly as in the simplified theory of longitudinal 
waves in rods- fulfilled as an identity, which is sensible under the earlier mentioned 
restriction imposed on the wavelength. 

We do not impose any restrictions on the dynamic fields in the matrix- outside the 
fibre- besides the boundary conditions at the interface and the sense of the energy flux, 
which should be directed outside the central axis of the system, expressing the energy 
radiation from the rod to infinity. 

3. Dynamic field inside the fibre 

Under the kinematic assumptions adopted in the previous section we can express the 
radial displacement field ur(r, z, t) and the axial displacement field Uz(r, z, t) inside the 
fibre in the following form: 

r 
Ur(r, z, t) = u;(z, t) R' 

(3.1) 
Uz(r, z, t) = u;(z, t), 

where r and z are radial and axial coordinates in the polar cylinder coordinate sys
tem, R denotes the fibre radius, u;:- ( z, t) and u; ( z, t) are radial and axial displace
ments of the fibre material at the interface. Thus for strain tensor components we ob
tain 

(3.2) 

Crr = Ur,r = u; I R, 

ccpcp = urlr = u; I R, 
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( cf. [8, 9, 10]), where comma denotes partial derivative. Substituting these expressions 
into the stress-strain relations we obtain: 

(3.3) 

where A 1 and v 1 stand for the Lame constant and the Poisson ratio of the fibre 
material. 

Equation of motion along z-axis takes the form 

(3.4) 

where dot stands for material time-derivative, J; denotes external force density (per unit 
volume) and p 1 is the fibre material mass density. Integrating both sides of Eq. (3.3) over 
the arbitrary chosen segment of fibre with length equal to h we obtain 

(3.5) 

where dash over the symbol denotes the mean value. The only external force is exerted by 
the shear stress at the interface, i.e: f%, as a function of variable r behaves like h-function 
(J; (r, z, t) = J;(z, t)h(r- R)), thus we can write: 

7: = 2r/ R, 

where T denotes the mean shear stress at the interface of the fibre segment. Finally 
dividing Eq. (3.5) by segment volume V = 1r R2b, tending with b to zero and expressing 
stress component azz through displacements u;(z, t) (compare Eq. (3.3)) we obtain the 
following inhomogeneous equation of motion for any fibre cross-section: 

(3.6) ( 
2u;:, z 1 - v 1 _ ) .. _ 2 

AJ -- + --u -pfu = --T R v 
1 

z,zz z R · 

The second differential equation, which should be fulfilled by functions u; (z, t) and 
u; (z, t), yields from the normal stress continuity condition and takes the form 

(3.7) , ( 1 u; _ ) 
Aj --+uzz =tn, 

v1 R ' 

where tn denotes external normal stress at the fibre surface. 

Thus we have two differential equations for two unknown functions u;(z, t) and 
u; (z, t) of two variables: spatial variable z and timet. Right-hand side terms of Eqs. (3.6) 
and (3.7) (which are in fact the coupling terms between dynamic fields inside and outside 
the fibre) should be considered here as given functions of z and t variables T = r(z, t), 
in = tn(Z, t). 
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4. Dynamic fields in the matrix (outside the fibre) 

Outside the fibre the equations of axisymmetric motion in terms of displacements take 
the following form [8]: 

(4.1) 

where 

Ct = fF5!i_ 
V Pm 

are velocities of longitudinal and shear elastic plane waves, Pm is the matrix material 
density. 

Using the following decomposition: 

Ur = U,r - V,z, 
1 

Uz = U z + -(Vr) n 
' r ' 

(4.2) 

and looking for the solutions in the following form: 

(4.3) 
U(r, z, t) = U(r) exp[ -i(kz- wt)], 

V(r, z, t) = V(r) exp[ -i(kz- wt)], 

we are seeking in fact (bearing in mind the displacement continuity at the interface) for 
the decaying wave in the fibre propagating in z direction. If the sense of propagation has 
to be positive and energy is transmitted from the fibre to the matrix (i.e. wave amplitude 
in the fibre is decaying), then the following inequalities should hold: 

(4.4) 
Rek > 0, 

lmk < 0, 

w is assumed to be real and positive. 
Substituting Eqs. (4.2) and (4.3) into Eqs. (4.1) we reduce the dynamic Lame equations 

to two Bessel equations 

(4.5) 1 (w~ 2) U rr + -U r + 2- k U = 0, 
' r ' c1 

(4.6) 1 [(w~ 2) 1] v + - v + - - k - - v = 0. ,rr ,r 2 2 r Ct r 

As long as we have to do with complex coefficients in the Bessel equations, it is most 
convenient to express the solutions in terms of Hankel functions (Bessel functions of the 
third kind) [11 ]. 

(4.7) 

(4.8) 
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Symbol v11 denotes here the "positive" root, i.e. the one preserving the sign of the 
imaginary part. Ub U2, Vt, V2 are arbitrary constants. 

Solutions (4.7), (4.8) contain four arbitrary constants; two of them- U1 and V1 in the 
case under consideration will be shown to vanish. Let us consider asymptotic behavior of 
solutions for r ---+ oo. 

For large arguments the following principal asymptotic representations are valid [11]: 

(4.9) 

( 4.10) 

H~1l(Y) ~ Jzj(1rY) exp [i ( y- v; -~)], 

H~'l(Y) ~ Jzj(1rY)exp [- i(Y- v;- ~)], 
where -1r < ArgY < 27r, IYI ---+ oo. In our case 

( 4.11) 
r:;;-:: 

Y = ry ~- IC-'- := K,T, 

where 

K=~, c = c1 or c = Ct, Re k > 0, Im k < 0. 

Under our convention of "positive" roots we have Im /'i, > 0, Im Y > 0. Observe that, 
since w and c are real, 

( 4.12) 

and 

( 4.13) Im( /'i,2 + k2
) = 2(Im /'i, Re /'i, + Im k Re k) = 0. 

Taking into account that the term Im k Re k is negative and Im /'i, is positive, one can see 
that real part of /'i, is positive. 

Using asymptotic relations ( 4.9), ( 4.10) we can write two following expressions describ
ing behavior of different terms of solutions U(r, z , t) and V(r, z, t) for large r: 

(4.14) H~2)(K,r)exp[-i(kz - wt)] 

~ Jr exp(r Im K + z Im k) exp[-i(r ReK + z Re k- wt)], 

( 4.15) H~l)(K,r) exp[ -i(kz - wt)] 

c1 . 
~ Vr exp(r Im /'i, + z Im k) exp[ -i(r Re /'i, + z Re k- wt)], 

where C1 and C2 are some complex constants. Expression (4.14) describes periodic con
centric wave propagating at some angle 'lj; = Atn(Re /'i,/ Re k) with respect to the fibre 
axis (Fig. 1 ). Real exponential factor exp( rIm /'i, + z Im k) describes the amplitude de
caying in the direction orthogonal to the direction of propagation (the orthogonality of 
vectors [Im K,, Im k] and [Re K,, Re k] yields from Eq. ( 4.13)). Pre-exponential multiplier 
1/ .jT provides the global energy flux balance. Wave described by Eq. (4.14) travels from 
the fibre surface to infinity, thus the energy is drained from the fibre into infinite matrix. 
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FIG. 1. Wave motion scheme. 

On the contrary, expression ( 4.15) describes a wave coming from the infinity and propa
gating towards the interface. Thus, as long as we are looking not for any dynamic field 
but rather for the description of the wave emission from the fibre (e.g. in the process of 

fibre rupture), the terms containing H1~1 )("'r) and H~l)("'r) remain out of our interest and 
constants U1 and V1 should be taken equal to zero. Eventually, the dynamic fields in the 
matrix can be reduced to the following form: 

U(r, z, t) = U0H1f>("'Lr) exp[ -i(kz- wt)], 
(4.16) 

V(r, z, t) = v;)nf>("'tr) exp[ -i(kz- wt)], 

where 

/F2 

"'l = ' "'t = 2- k2
• 

Ct 

Expressions (4.16) describe (asymptotically) two waves propagating at different angles 
'l/J1 = Atn(Re "'L/ Re k)1r /2 and 'lj;2 = Atn(Re "'t/ Re k)1r /2 with respect to the fibre axis. 
Amplitudes U0 and V() are not independent, the relation between them as well as the 
dispersion relation k = k(w) should be found from the solution of the boundary value 
problem. 

S. Solution of the boundary value problem 

Starting from the displacement continuity at the interface 

(5.1) 
u;: = u;, 
u; = u;, 

where index "plus" denotes a value in the matrix at the interface, and using relations ( 4.2) 
and ( 4.16) one obtains the following expression for the displacements in the fibre: 

Uz = u; = A exp[ -i(kz - wt)], 
(5.2) r _ r 

Ur = R ur = R B exp[ -i(kz - wt)], 
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where 

(5.3) 
A = -ikUoH1~2)("-tR) + "-t VoH1~2)("-tR), 
B = -K-tUoH?)("-tR) + ikV(~H?)("-tR). 

709 

If a wave frequency w is given, then the amplitude ratio U0/V(1 and wavenumber value 
k (i.e. also values of "-b "-t, 7/Jb 7/J2) can not be taken arbitrary. Dynamic displacement 
field (5.3) describing in fact the propagation of a one-dimensional wave in the fibre must 
satisfy, of course, the equation of motion (integral axial momentum balance condition) 
(3.6), and the normal stress continuity condition (3.7) must be satisfied as well. Let us try 
to fulfill these conditions. 

The stress field in the matrix for the case of axial symmetry can be expressed as 
follows [8]: 

(5.4) 
CJrz = P,m(Ur,z + Uz,r), 

where Am and f.lm are Lame constants of matrix material. At the interface we have 

(5.5) 

Substituting relations ( 4.16) into ( 4.2) and then into (5.4 ), we are able, with the use 
of (5.5), to express right-hand sides of Eqs. (3.6) and (3.7) in the terms of unknown 
amplitudes Vih U0 and some functions of k and w. Using relations (5.2) and (5.3) we are 
able to express in the same way also the left-hand sides of mentioned equations. After 
some rearrangement involving application of initial equations ( 4.1) we obtain finally the 
following set of two algebraic linear homogeneous equations for unknown amplitudes U0 

and V(1: 

(5.6) 

where 

ikAn U0 + A12 V(1 = 0, 
A21 Uo + ikA22 Vl1 = 0, 

An = (A f 
1 

- v f k2 - p 1w2) H1~2)("-tR) + 2 "-l (A f + 2p,m)H~2)("-tR), 
v1 r 

( 
1 - v f 2 2) (2) A 12 = -K-t A 1---;;;--k - p JW H0 ("-tR) 

(5.7) + ~ ((AJ + 2p,m)k2
- Pmw2)H~2)("-tR), 

' 2 2 (2) "-l (AJ )H(2) R A21 = ((AJ + 2p,m)k - PmW )H0 ("-tR) + R VJ + 2P,m 1 ("-l ), 

(2) 1 A 1 (2) 
A22 = "-t(AJ + 2p,m)H0 ("-tR)- R(- + 2p,m)H1 ("-tR). 

VJ 
For brevity we shall omit here explicit expression for the condition of the existence of a 
nontrivial solution of the system (5.6), 

(5.8) D(w, k) = k2 AnA22 + A12A21 = 0. 

It is clear, however, that solving numerically the nonlinear transcendental equation (5.8) 
one can find both the real and imaginary part of k as functions of frequency w. If this is 
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done, angles 7j;1 and 7j;2, wavelength and amplitude attenuation decrement in the fibre as 
well as amplitude ratio U0IV0 can be easily found. 

We shall omit here this rather boring but simple procedures and focus our attention on 
the dispersion relations and on some other qualitative results following from the numerical 
solutions of the characteristic equation (5.8). 

6. Preliminary results and discussion 

Some characteristics of wave motion are plotted in Fig. 2 to 6 versus the wavenumber 
Re k. One can see, that such parameters like phase and group velocities or angles 7j;1 and 
7j;2 are relatively intensitive to the wavelength in a wide range of Re k values. 

0 

---------- ----------- ------------- --------- TI/2 

1.0 

FtG. 2. Dispersion curves for "almost incompressible" matrix: 

l'j I I'm =50, Vm = 0.474, Vj = 0.3, PJ I Pm = 1; 

2.0 K 

1- dimensionless group velocity ccl co; 2- dimensionless phase velocity Cphl co; 3 -1/Jt angle; 
4 -'f/;2 angle; 5 -wave amplitude decay decrement f3 = I lm kRI (scale 10: 1). 

At the horizontal axis -dimensionless wave number K = I Re k Rl, co = f'!!i. VPi 
asymptotic long wave limit of longitudional wave velocity in free fibre, R- fibre radius. 

The only parameter which is very sensitive to both the wavelength and the elastic 
moduli ratio J1 1 I Jlm is the imaginary part of k, i.e. exponent f3 describing the amplitude 
decay along the fibre, or in other words- the energy exchange ratio between the fibre 
and the surrounding matrix material. It should be noted that the scale of f3 at Fig. 6 is 
ten times smaller than that at the remaining figures. 

General behavior of the wave motion characteristics for very long waves can be easily 
observed, e.g. at Fig. 6. For higher values of the J1 1 I Jlm ratio certain caution in the 
interpretation must be suggested in view of some numerical instabilities observed in the 
course of solution obtained for very long waves. 
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0 1.0 2.0 K 

FtG. 3. Dispersion curves for "compressible" matrix: 
IL J I ILm = 50, lim = 0.250, II J = 0.3, p J I Pm = 1. 

Remaining notation the same as in Fig. 2. 

-------------------------------- - - ---------- n/2 

4 

--- ------- Co 

0 1.0 2.0 K 

FtG. 4. Dispersion curves for "soft" fibres 
IL J I #Lm = 5.0, lim = 0.333 , llj = 0.3, PJ I Pm = 1. 

Remaining notation the same as in Fig. 2 except the scale of /3(1 : 1). 

(711] 
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---------------------------------------------- jj /2 

--Co 

0 K 

Ftc. 5. Dispersion cuiVes for "normal" fibres 
J.L J I Jl.m = 50, Vm = 0.333, V 1 = 0.3, p 1 I Pm = 1. 

Remaining notation the same as in Fig. 2. 

1.0 f-.}-------------------------- Co 

0 1.0 2.0 K 

Ftc. 6. Dispersion cuiVes for "rigid" fibres 
Jl.J I Jl.m = 500, Vm = 0.333, Vj = 0.3, PJ I Pm = 1. 

Remaining notation the same as in Fig. 2. 

(7t2) 
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The behavior of wave motion for short waves, when the Re k · R product exceeds 
2, seems to be interesting, but needs further studies without the simplifying assumptions 
concerning the wave motion inside the fibre. From some qualitative considerations one 
can expect decreasing values of {3 in very short wave regions, but this question being 
outside the application range of the present simplified model must remain open for further 
investigations. 
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