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Quasi-particle kinetic equation in a deformable material 
continuum 

S. PIEKARSKI (WARSZAWA) 

THE KINETIC MODEL of interaction between a deformation field of a material continuum and a system 
of quasi-particles is discussed. The crystal structure of the material body is described by fields of 
local base vectors what allows to write the quasi-particle kinetic equation in the actual configuration. 
In the particular case of a one-dimensional system with a linear dispersion curve, it is possible to 
obtain a closed system of equations for the deformation field and for the moments of the phonon 
distribution function defining the density of the internal energy and of the heat flux. 

1. Introduction 

IN THE PAPER [ 1] GUSEV discussed the problem of interactions between a system of quasi
particles (phonons) with a deformation field of a material continuum. The dynamics of 
quasi-particles was described by means of a Boltzmann kinetic equation, and equations 
of motion were composed of a kinetic equation for quasi-particles and of a balance of 
a linear momentum for material continuum. The coupling between quasi-particles and 
continuum was introduced by means of corresponding additional assumptions; according 
to GUSEV, quasi-particles introduce an additional term to the stress tensor and, simul
taneusly, the quasi-particle dispersion curve depends on deformation. Such a coupling 
is the simplest and is a direct generalization of the one applied in solid state physics in 
the case of small deformations [2]. However, in [1] the kinetic equation was written in a 
reference configuration, and therefore the treatment presented there cannot be consid
ered as fully satisfactory. In fact, quasi-particle excitations are naturally defined on the 
actual configuration of the material body and a more systematic approach should take 
this configuration (related with the points of Galilean space-time, occupied actually by 
the material points of a continuum) as a starting point. 

In this paper we discuss a problem of interactions between a material continuum and 
a system of quasi-particles, starting from the geometry of local base vectors of a crystal 
lattice, with the motion of the material continuum described by a four-velocity field defined 
on the Galilean space-time and the crystal structure of a material body given by three 
fields of spatial vectors, assigning to each space-time point the corresponding local base 
vectors of a crystal lattice. Such an approach is similar to the one well-founded within 
the framework of the theory of continuously distributed defects [3, 4], and was applied 
previously to the description of transport processes in a rigid material body containing 
continuously distributed defects of a crystal lattice [5]. In this approach we apply a 
localization procedure which treats infinitesimal elements of a material body as pieces of 
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an ideal crystal and postulates that the description of dissipative processes in a continuum 
can be locally approximated by means of a kinetic model, developed within the framework 
of solid state physics of ideal crystals. From a physical point of view, such an approach 
can be justified if a mean free path of colliding quasi-particles is small compared to the 
spatial scale on which base vectors of a crystal lattice can be treated as approximately 
constant. From a formal point of view, such localisational approach states the problem 
of construction of a quasi-particle kinetic equation defined on a sum (with the set of 
space-time points as the index set) of local Brillouin Zones. Such a sum has a canonical 
phase-space structure and a Liouville equation, implied by it, determines the form of a 
quasi-particle kinetic equation (the kinetic equation is formally understood as a Liouville 
equation with a source term; compare [5]). This kinetic equatiGn transformed to the 
reference configuration in which the body assumes the form of an ideal crystal becomes 
identical with the kinetic equation postulated by GUSEV [1]. 

The construction of the kinetic equation discussed in this paper is nearly identical to 
the one concerning the case of a rigid body containing continuously distributed defects 
and in a big part of Sect. 3 we simply repeat the reasoning presented in [5]. However, the 
case of a deformable material continuum subject to finite deformations and interacting 
with the gas of quasi-particles is important from the physical point of view because it 
serves as the microscopic model of transport and dissipation processes in solids, and 
that is why it seems to deserve a separate treatment. Physical problems which can be 
analysed on the basis of this kinetic model, such as the relations of moment identities 
with macroscopic conservation laws or derivation of macroscopic field theories, shall be 
discussed elsewhere. The only exception is the example of a one-dimensional material 
continuum with a linear dispersion curve, which has a unique property that the moment 
equations, corresponding to it, form a closed system (Sect. 4 ). As a consequence, for this 
case one immediately obtains the field equations describing transport processes arbitrary 
far from thermodynamical equilibrium and these field equations are exact (that is, they 
give the same evolution of the energy density, the heat flux and the deformation field of a 
material continuum, which is determined by exact solutions of a kinetic equation). Then 
from the time-independent solutions we can determine the expression relating the heat 
flux with the internal energy gradient, the deformation gradient and the relaxation time. 
After introducing the effective temperature as a function of the internal energy and the 
deformation gradient, this expression takes a form similar to the classical Fourier law. If 
we postulate, that the formula for the heat flux, obtained in that manner, is valid also in 
the time-dependent case (that is, if we treat it as a "constitutive law" of a Fourier type) 
then we obtain a field theory in which the state of the system is described by the fields 
of deformation and temperature. Such a field theory corresponds to the description of 
traditional thermo mechanics. The interesting problem is whether (and in what sense) such 
a thermomechanical theory is an approximation of the exact nonequilibrium description 
(in which the state of the system is specified by the fields of the internal energy, the heat 
flux and the deformation). However, the discussion of this problem is outside the scope of 
this paper. In Sect. 2 we recall briefly basic notions related with the motion of a material 
continuum through Galilean space-time. The construction of the quasi-particle kinetic 
equation and its transformation to the reference configuration are described in Sect. 3 
and 4. In Sect. 5 we discuss the coupling between the motion of the material continuum 
and the dynamics of the quasi-particles gas. The coupling discussed there is known in 
literature [1, 2], but we introduce it in a slightly modified order: instead of postulating 
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the form of the coupling on the basis of physical arguments, we simply search for such 
closing relations which lead to the conservation of the total energy. The simplest possible 
solution corresponds to that known in literature [1, 2] (it should be noted, however, that 
other kinds of closing relations can be of some interest too, especially for the description 
of a "nonadiabatic" coupling between the deformation and the quasi-particle gas [2]). In 
Sect. 6 we discuss the case of a one-dimensional deformable material continuum inhabited 
by phonons with a linear dispersion curve. 

2. Motion of material continuum through Galilean space-time 

In this section we shall briefly recall basic notions, related with the motion of a material 
continuum through Galilean space-time. 

By a Galilean space-time we mean an ordered quadruple (G, Ta, 1, ·)where (G, Ta) 
is a four-dimensional real affine space ( G is a set of points of affine space, and T a 
is a corresponding translation space), 1 is a non-zero form on Ta (that is, 1 E T0, 
where T0 is a vector space dual to To), and· is a scalar product in the space S, where 
S := {wE Ta; 1 (w) = 0} [6]. The elements of S are called spatial vectors. The absolute 
time of point p E G with respect to the point p' E G is given by 1 (p- p') (from the 
definition of an affine space it follows, that p - p' is a vector from T a). 

By a frame in (G,Ta) we mean a pair (O,b) where 0 E G and b = (e1,e2,e3,e4) is 
a basis in T a. By inertial reper in G we mean a frame ( 0, b) which is such that 

1) 1 (e4) = 1, 
(2.1) 2) I (ea) = 0 

3) ea · ef3 = Daf3 
for 
for 

a= 1,2,3, 
a,f3 = 1,2,3. 

Every inertial reper defines a chart on G given by 

(2.2) 
3 

R4 3 (t, x., Xz, x3) --+ 0 + te4 + L Xaea, 
a=l 

where R denotes the set of real numbers. Coordinates on G introduced by (2.2) cor
respond to the observations of an inertial observer, with t being a time coordinate and 

3 

L x aea being an Euclidean radius vector. 
a=l 

Hyperplanes in G, composed of simultaneous events, are given as equivalence classes 
of a relation 

(2.3) p, p' E G, p "' p' =: p - p' E S. 

We shall choose an arbitrary point p of G and compute an absolute time of any other 
space-time point with respect to p. This allows us to identify the domain of the time 
variable with the set of real numbers, and to specify a unique relation between the values 
of the time parameter and the classes of the relation (23) (to each class we assign the 
number 1 (p- p), with p being an arbitrary representative of the considered equivalence 
class). The equivalence class of the relation (2.3) corresponding to the absolute time 
instant t shall be denoted by H t. 

The motion of a material point through a Galilean space-time can be described by a 
smooth curve in G, which intersects each hyperplane H t only once. In consequence, points 
along such a curve can be bijectively parametrized by a set of absolute time instants. In 
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the following, such curves (which shall be called world lines) shall be always parametrized 
in that manner. If~ (t) : R --+ G is a world line of a material point, then d~ (t) / dt 
is called its four-velocity. The set of all admissible four-velocities of material points can 
be identified with a hyperplane in Tc, given by W := {wE Ta; 1' (w) = 1} [6]. The 
motion of a material body through the Galilean space-time is described by a family of 
diffeomorphisms '1/Jt, t E R of the body manifold B with open subsets of H t (compare 
[7]). We assume, that '1/Jt is a smooth function of the time variable and that for each 
time instant t the body fills up the whole space Ht. The motion of the continuum can be 
alternatively described as a congruence of the world lines of the individual material points 
of the body. After parametrizing the congruence lines in terms of the absolute time and 
computing the corresponding tangent vectors, we obtain the four-velocity field, describing 
the motion of the material continuum. Conversely, the motion of the material continuum 
can be also defined by a smooth, globally defined and complete field of four-velocity. The 
motion of the individual material points is then determined by integral curves of such a 
four-velocity field. 

In mechanics, a crystalline structure of a perfect crystal is usually described by introduc
ing in the material body a particular coordinate system, called crystallographic coordinates: 
distances along coordinate lines are then measured by lattice step counting [3]. In our 
discussion, we shall restrict ourselves to the case of perfect crystals. We shall also assume 
that the body is infinite in the sense, that the domain of crystallographic coordinates is 
R3 . Then the crystallographic coordinate system in the body manifold 

(2.4) R3 3 (st, Sz, s3) --+ X (st, Sz, s3) E B 

together with the motion 1/Jt of the body B define a coordinate system on the Galilean 
space-time 

(2.5) 

Vector fields, tangent to the coordinate lines of the coordinate system (2.5), shall be 
denoted by 8t, 080 , a = 1, 2, 3. Then Ot determines a field of a four-velocity, describing 
the motion of the material continuum, whereas spatial vectors 080 , a = 1, 2, 3, determine, 
for a fixed value of the time parameter t, fields of local base vectors of a primitive crystal 
lattice, defined, on H t (compare [3]). Let u denote the four-velocity field of the material 
continuum (of course, the four-velocity field can be defined also for the material bodies 
which do not possess the crystal structure). In order to discuss the balance of a linear 
momentum corresponding to a subbody C of the material B, we shall define the linear 
four-momentum of C at the time instant t 

(2.6) P(C,t):= J PtUdVt, 
1/Jt(C) 

where dvt denotes the integration with respect to the Euclidean volume measure on Ht 
and Pt denotes the mass density of the material continuum; Pt defines a real function on 
Ht, which is assumed to be smooth. The vector P (C, t), as defined by Eq. (2.6), is not a 
spatial vector; however, its time derivative is spatial. The balance of a linear momentum 
states, that the time derivative of P (C, t) is equal to the spatial vector b (C, t), which is 
called the total force acting on the subbody C at the time instant t: 

(2.7) 
d 
dtP(C,t) = b(C,t). 

http://rcin.org.pl



QUASI-PARTICLE KiNETIC EQUATION IN A DEFORMABLE MATERIAL CONTINUUM 773 

Writing the formula (2.7) in the coordinates, corresponding to the choice of an arbitrary 
inertial frame, we can easily state its equivalence with the balance of a linear momentum 
of the form usually applied in continuum mechanics [7]. For the world line~ (t) of a fixed 
material point of the continuum we can define the acceleration a(~, (t)) by the formula 

a (( (t)) = ,P.Jt~t). Since, in our case, any point of the space-time belongs to the world 

line of a certain material point, then the motion of the continuum defines the acceleration 
field a : G ----* S on G. The time derivative of a linear four-momentum of the subbody 
C C B is then related with the acceleration field a by the formula 

d 
(2.8) dt P (C, t) = j apt dvt. 

1/Jr(C) 

In this paper, we shall discuss only the case, when the total force acting on the subbody 
C C B has a form of a divergence of a tensor field T : 

(2.9) b (C, t) = J divT dvt, 
tPt(C) 

where div means the Euclidean divergence operator on the space Ht. The tensor field T, 
satisfying (2.9), is called the field of Cauchy stress tensor. Note that in this formulation 
we do not have to introduce the notion of an inertial frame, and the price for that is that 
the linear momentum, as defined by (2.6), is not a spatial vector. 

3. Quasi-particle kinetic equation 

The motion of the material continuum through the Galilean space-time imposes time
dependent constraints on the system of quasi-particles. In order to determine the structure 
of a Liouville operator, which in turn implies the form of a corresponding quasi-particle 
kinetic equation (see Introduction), we shall start with the Hamiltonian description of the 
systems with time-dependent constraints. We shall make use of the formulation, based 
on the notion of the so-called Heisenberg Picture [9]. 

DEFINITION 1. By a Heisenberg Picture in mechanics we mean a fibre bundle (F, M, II) 
over a one-dimensional contractable manifold M together with a closed 2-form w F which is 
such that for every m E M, wFIIJ-l(m) is a symplectic form (F is a space of a bundle, M 
is its base, and II is a bundle projection). 

Base vectors of a local inverse lattice Gi (g), j = 1, 2, 3 at the point g of Galilean 
space-time shall be defined as spatial vectors, satisfying the following relation 

(3.1) 8si (g)· Gi (g)= 21r8{, i,j = 1,2,3. 

In order to construct a Heisenberg Picture, corresponding to the quasiparticle gas in a de
formable medium, we shall repeat the reasoning known from [5]. A local Brillouin Zone, 
assigned to the point g' is defined as a quotient space r:' composed of the equivalence 
classes of the relation 

3 

(3.2) w, w' E S, w"" w' = w - w' = L z j Gj (g) , 
g j=l 

where Zj are arbitrary integers. 
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An equivalence class of the element w E S in the relation (3.2) shall be denoted 
by [w]g· The space r: has a natural structure of a torus group, with the composition 
law defined by the rule [w]

9 
+ [w']9 = [w + w']9 . Note that this composition rule, 

written in terms of vector representatives, becomes identical with the rule of addition 
of quasi-particle wave vectors (that is, with addition of vectors modulo an integer linear 
combination of local base vectors of an inverse lattice) [10]. 

Let V be a three-dimensional real vector space with a given basis Vi, i = 1, 2, 3. We 
shall introduce in V an equivalence relation, analogous to (3.2): 

3 

(3.3) v, v' E V, v rv v' = v - v' = L z iv i 
i=l 

(zi are arbitrary integers). 
An equivalence class of the element v E V in the relation (3.2) shall be denoted [v] 

and the group action in r; : = UvE v [ v] shall be defined similarly as in the case of r:. 
Let us denote by Z a sum of local Brillouin Zones, taken with respect to all space-time 
points: 

(3.4) z := U r;. 
gEG 

Let A[v] denote a map, given by 

(3.5) A[v] : R4 
X ( -7r, 1r)3 3 (t, St, Sz, S3, C"t, €2, c3) 

3 . 

~ ["(vi+~ )Gi(g(si, t))] ( . t) E Z, 
~ 27r g s" 
J=l 

where g (si, t) denotes the point 1/Jt (X (si)) of the Galilean space-time, occupied at the 
time t by the point X (si) of the material body 

(3.6) 

3 
and vi are components of any representative L: vi vi of [v] in the basis { Vt, v2, v3}. A C 

i=l 
-compatible atlas A, 

(3.7) 

gives Z a structure of a smooth manifold. 
Let us define the projection P : Z ~ G, 

(3.8) P([w]9 ) := g, 

and the action of r; on z 
3 

T~ x Z 3 ([v], [w]9 ) ~ [v] x [w]9 := [l:<vi + wi)Gi(g)] E Z, 
i=l g 

where vi are the components of v in the basis vi, j = 1, 2, 3 of V and wi are the 
components of win the basis Gi (g) of S. 
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A triple ( Z, G, P) forms a principal fibre bundle with T~ as a structure group. Each of 
the coordinate system A[v] from the atlas A defines seven vector fields 8t,[vb 8si,[vb 8cj,[v], 
i, j = 1, 2, 3, tangent to its corresponding coordinate lines. These vector fields are not 
defined globally on Z, since none of the coordinate systems A[v] is defined globally on Z. 
However, all such vector fields are the restrictions (to the coordinate domains of a given 
coordinate system A[v] from the atlas A) of seven vector fields 87, 8;i, 8cj' i, j = 1, 2, 3 
defined globally on Z. A tilde over t and Si is introduced in order to distinguish those 
vector fields from the natural base vectors 8t, 8 s . , j = 1, 2, 3 of the coordinate system (2.5) 

) 

in the Galilean space-time. The fields of forms, defined on Z and dual to 87, 8;i, 8cj' 
i,j = 1,2,3 are denoted by li,dsi,dei, i,j = 1,2,3. The action of these forms is 
defined by 

(3.9) 

(dsi, 8s) = 6}, 
( dsi , 8 c j ) = o , 
( dsi, 87) = o, 

(de i, 8 c j ) = 6} , 

(de i, 8 s) = 0 , 

(de i, 8 7) = 0 , 

(li, 87) = 1' 

(dt, 8;) = 0' 
) 

( dt, 8cj) = 0' 

where the bracket (,) denotes the action of the form on the vector. Let P denote the 
projection, assigning to the points of the Galilean space-time G the corresponding absolute 
time instants. The specification of the form 1 and the choice of the event, the time of 
which is equal to zero, allows us to identify the set of absolute time instants with the real 
axis (see [7]). By means of the mapping P we can define projection P, P: Z --+ R 

(3.10) P([w]9 ) := P (g) E R. 

Let w denote a smooth function, defined on Z. A triple ( Z, R, P) forms a fibre bundle 
which satisfies the definition of the Heisenberg Picture, with the form w z given by 

(3.11) 

where I\ denotes an external product and the summation with respect to repeated indices 
is assumed (from the comparison with the formulae of solid state physics it will become 
clear that w corresponds to the dispersion curve of quasi-particles). 

A fibre P-1 (t) is a manifold, which is a sum of all local Brillouin Zones, corresponding 
to the space-time points from Ht: 

(3.12) p -1 ( t) = U rg , 
gEHt 

with the atlas At composed of the mappings At,(v] 

(3.13) At = {At,[vJ; [v] E T~} 
(the mappings At,(v] are obtained by fixing the time coordinate in the charts A(v] from 
the atlas A). 

Vector fields 88i, 8cj' i, j = 1, 2, 3 which are composed of vertical vectors of the bundle 
(Z, R, P) can be naturally restricted to P-1 (t). Moreover, form fields on P-1 (t), dual 
to these restrictions, are given by restrictions (to P-1 (t)) of the form fields dsi, dei, 
i, j = 1, 2, 3 on Z. The restriction of wz to P-1 (t) is given by 

(3.14) 

http://rcin.org.pl



776 S. PIEKARSKI 

It can easily be shown that Eq. (3.14) defines a symplectic form on p-1 (t). By repeating 
the reasoning given in (5], it is possible to show that this symplectic form is canonical (this 
fact is not quite trivial, since f:>- 1 (t) is not a cotangent bundle). Let h denote a local, 
smooth cross-section of the bundle (Z, R, P) over a time interval I C R (I is open in 
R). By h' we shall denote the derivative of h which, by definition, assigns to each time 
instant t E I the linear mapping h' (t) from Tt (R) into Th(t)(Z) (Th(t) (Z) is a vector 
space tangent to Z at h(t) and Tt(R) denotes the vector space tangent to R at t E R; as 
it is well-known, Tt (R) can be identified with R). 

DEFINITION 2. A smooth cross-section h of the bundle (Z, R, P) is called a quasi-particle 
trajectory if h' belongs to the kernel of w z (compare (12, 13]). 

From the standard discussion (see, for example, (13]) it follows that in the coordinates 
of the chart A[v] from the atlas A, the quasi-particle trajectory is described by the mapping 
t ---+ (t, Si (t), E j (t)), i, j = 1, 2, 3 where si (t), E j (t) satisfy Hamilton equations: 

ac j aw 
at - - asj ' 

OSj -ow (3.15) 

at - ac j · 

It should be noted that in the case of quasi-particles the solutions of Hamilton equations 
exist only for sufficiently small time intervals, that is, in general we cannot assume that 
Hamiltonian vector fields for quasi-particles are complete (compare [ 12]). 

From Hamiltonian equations we immediately obtain a Liouville equation, governing 
the time evolution of the phase density f. In turn, the Liouville equation determines the 
structure of a kinetic equation (understood as the Liouville equation with a source term; 
see Introduction). We assume, that the structure of the source term J (f), corresponding 
to the collision integral of the kinetic equation, is locally identical with the one known 
from the case of ideal crystals (compare [5, 10]). 

Hence we arrive at the final form of the kinetic equations for quasi-particles in a 
deformable medium 

(3.16) £e-f + Tr Tr (ac 1\ a;) ® dw ® df = J (f) , 
t (1,3)(2,4) ' ' 

where £e- denotes a Lie derivative along the vector field f%, ® is a tensor product and 
t 

Tr denotes the trace operation with respect to the indices, listed below. 
In the coordinates ( t, Si, E j) of the chart A[v] from the atlas A, the kinetic equation 

(3.16) takes the form 

(3.17) 

(in. Eq.(3.17), as well as in the rest of this paper, we assume summation with respect to 
repeated indices). 

4. Transition to reference configuration 

The kinetic equation (3.16) governing the behaviour of the distribution function, is 
written in terms of tensor fields on Z by means of operations like Lie derivative and 
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contractions of tensors, and therefore it can be equivalently written on any manifold, dif
feomorphic with Z. Since our kinetic equation is just a Liouville equation with a source 
term, then such transformations are identical to transformations of phase spaces, discussed 
in textbooks on mechanics (where the diffeomorphism of the manifold on which the phase 
space structure is defined induce a new isomorphic phase space [12,13]). In mechanics 
of continua, one often defines tensor fields, related with the motion of the material con
tinuum, on the so-called reference configuration [7]. We shall write the kinetic equation 
(3.16) in the form corresponding to the reference configuration in which the body assumes 
a form of an ideal crystal. As the Euclidean point space, chosen for the construction of 
the reference configuration, we can take H0 , that is, the space of simultaneous events at 
the time instant equal to zero. 

Let 0 be a fixed point of H 0 and let Ei, i = 1, 2, 3 be an arbitrary basis in the 
translation space of H 0 • 

The reference configuration of the material body B shall be defined by means of a 
diffeomorphism "" of B onto H 0 , given by 

(4.1) B 3 X~ K(X) = e + Si(X)Ei E Ho, 

where Si (X), i = 1, 2, 3 are the values of the crystal coordinates assigned to the point X 
of the material body B, and 8 is an arbitrary point of H 0 (of course, the configuration 7/Jo 
assumed by the material body at the time instant t = 0 is not related in any way with "")
By the deformation from the configuration K to the configuration 7/Jt we mean a mapping 
i.pt, i.pt : Ho ~ Ht given by 

(4.2) i.pt := 7/Jt ° K-
1

, 

and the deformation gradient Ft is defined as a derivative of i.pt [7]- In the reference 
configuration (4-1), the vectors Ei, i = 1, 2, 3, are base vectors of a primitive crystal lattice 
of an ideal crystal [3]. Let us denote by G{, j = 1, 2, 3, the corresponding base vectors 

of the inverse lattice (that is, G{ are determined by the condition Ei · ~ = 27rb{)_ 
Let T~ denote the Brillouin Zone, determined by G{; T~ is a quotient space defined 
by the relation analogous to (3-2) and the equivalence classes of this relation shall be 
denoted by [·]K. The kinetic equation (3.16), transformed to the reference configuration, 
takes a form of an equation for quasi-particles in a rigid ideal crystal with the space-and 
time-dependent quasi-particle dispersion curve [2]. Such a transformation can be done 
formally by defining a Heisenberg Picture analogous to the previously discussed one but 
with the product Z K : = T~ X H 0 x R as a base space; Z and Z K are then related by a 
diffeomorphism V, V : Z ~ Z K 

(4.3) V([/JiGi(g)] 9 ) = ([/JiG~]K, ~(g), P(g)) E T~ X Ho X R = ZK, 

where /JiGi(g) is an arbitrary representative of the point [/JiGi(g)]9 of Z and ~(g) 
denotes the point of H0 occupied in the reference configuration by this material point, 
the world line of which goes through the space-time point g. Under the action of V, 
the distribution function and the dispersion curve are transformed as scalar, whereas the 
2-form corresponding to the Heisenberg Picture on ZK is given by the pull-back of Wz, 
induced by the inverse of V [12,13]. For the quasi-particle kinetic equation written in the 
reference configuration of an ideal crystal we shall apply a standard convention of solid 
state physics where one treats quasi-particle wave-vector as the elements of the Euclidean 
vector space (what is valid with accuracy to the set of a measure zero) [10]. The spatial 
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points in the reference configuration shall be determined by the radius-vector r. In this 
notation, the kinetic equation is given by 

(4.4) 
{) 
8t f (r, k, t) + yr kw (r, k, t). yr rf (r, k, t)- yr rf (r, k, t). yr kf (r, k, t) 

= I (f (r, k, t)), 

where V k denotes the gradient computed with respect to the wave-vector k of quasi
particle, V r is the gradient computed with respect to the spatial variable r, f (r, k, t) 
is the distribution function, w (r, k, t) is the dispersion curve and J (f) is the collision 
integral of the kinetic equation. 

In the rest of our paper we shall write the kinetic equation and the tensor fields 
describing the motion of the material continuum in a fixed reference configuration (of the 
kind described by (4.1)). As a consequence, in Sect. 5 and 6 we shall mean by a and v the 
acceleration and the velocity fields, defined on this reference configuration (compare [7]). 
Moreover, we shall assume that the density of the material continuum in the reference 
configuration is constant. This density shall be denoted by p. 

5. Coupling between motion of continuum and dynamics of quasi-particle gas 

A form of the coupling between the evolution of the quasiparticle system and the 
motion of the material continuum follows from two assumptions. 

The first assumption is that the stress tensor depends on the deformation gradient and 
on the quasiparticle distribution function, and that the evolution of the quasiparticles is 
related to the motion of the material continuum via the local dependence of the dispersion 
curve and of the collision rates of the collision integral on the deformation gradient. It 
means that the system of coupled equations takes in the reference configuration the 
following form 

(5.1) 
{ 

pa - div T (F, f) = 0 , 

8f Bt + Vkw • Vrf- Vrw • Vkf = J (f), 

where a is the acceleration, p is the mass density in the reference configuration, 
T (F, f) is the Piola-Kirchhoff stress tensor and w = w (F, k) denotes the dispersion 
curve. 

The second assumption is that the total energy of the system is additive in the sense 
that it is a sum of the energy of continuum (composed of the kinetic energy and of 
the elastic energy, given by a hyperelastic potential), and of the internal energy of the 
quasiparticle gas. The expression for the energy of quasiparticles contained in a given 
subbody of the material body shall be computed in the reference configuration (it can 
easily be shown that the expression for the energy of quasiparticles, defined in that way, 
does not depend on the choice of the reference configuration). Hence, the spatial density 
of the total energy written in the reference configuration is given by 

1 d3k 
[ = - pv • v + <.p (F) + J hw f --3 , 

2 (27r) 
(5.2) 

where v is the velocity of the medium, <.p (F) is a hyperelastic potential, 21rh is Planck's 
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constant and the third term on the r.h.s. of Eq. (5.2) describes the energy density of the 
quasiparticle gas (compare [2]). 

The total energy £(C) of a given subbody C of the material body B is defined as 
a volume integral over K (C) of £. The time derivative of £(C) satisfies the following 
relation 

(5.3) J div{g- v. (p d<.p + J fdhw d3k ) }d3r 
dF dF (27r)3 

K~) ~ 

J { [ . ( d<.p J dhw d
3
k ) l } 3 

= v · pa - dtv pdF + f dF --3 d r, 
K(C) T3 (27r) 

K 

where div denotes the Euclidean divergence, 

d3k 
(5.4) g = J fhwVkw--3 

3 (27r) 
TK. 

is the moment expression for the heat flux, and d3r denotes the integration with respect 
to the Euclidean volume element in the reference configuration. The time derivative of 
£(C) is equal to the surface integral over the surface of K (C) if the term on the r.h.s. of 
Eq. (5.3) is equal to zero. This, in turn, is assured if 

(5.5) . ( d<.p J dhw d
3
k ) pa-dtv p-+ f--- =0. 

dF dF (27r)3 
T3 K. 

Equation (5 .5) has the form of the balance of a linear momentum of material continuum 
with the stress tensor given by 

T F = d<.p + j dhw d
3
k 

( ' f) pdF 
3 

f dF (27r )3 . 

TK. 

(5.6) 

From the formula (5.3) we also see that 

( 5. 7) q10t = q - v • T (F, f) 

describes the flux of the total energy. 
The form of the stress tensor (5.6) can be interpreted in this way that a single excitation 

gives a contribution hw to the hyperelastic energy of the medium and that the contribution 
of the whole quasi-particle gas is additive, that is, it is given by the integral of the terms 
introduced by individual excitations. 

By analogy to mechanics, we can impose the following restrictions on the form of <.p 
and w 

(5.8) 
<p ( Q * F) = <p (F) , 

w ( Q * F, k) =w (F, k) , 

where Q is the rotation tensor and Q * means the action of the rotation on the tensor 
argument [7]. Then, from the considerations given in Wang's monograph ([7], vol. I, Sect. 
20), it follows that the Cauchy stress tensor corresponding to the Piola - Kirchoff stress 
tensor of the form (5.6) is symmetric. 
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6. One-dimensional material continuum with linear dispersion curve 

In some cases, such as the description of the low-temperature effects or the transition 
from the discrete crystal to the continuum limit, one assumes that quasiparticle wave vec
tors are not restricted to the Brillouin Zone, but belong to the whole Euclidean vector 
space [2]. Quasi-particles with such a property can be obtained also without any approxi
mations or limit procedures if, as the starting point for defining quasiparticles, one takes a 
quantization of the elastic continuum [10]. We can imagine a transition from the Brillouin 
Zone to the three-dimensional Euclidean vector space as a "limit", in which local base 
vectors of a crystal lattice become infinitely small and the Brillouin Zone tends to infinity. 

In this section we shall discuss a one-dimensional material continuum containing 
phonons with quasiparticle wave vectors belonging to a one-dimensional vector space. 
We shall assume, that the dispersion curve is given by 

(6.1) w (F, k) = c (F) lkl, 
where F is the deformation gradient, c (F) is the velocity of sound (depending on F) 
and lkl is a modulus of the quasiparticle wave vector [2]. 

The dynamics of the system shall be described by the one-dimensional counterpart of 
the kinetic equation, discussed in Sect. 5, with the additional assumption that the collision 
integral J (f) has a form 

(6.2) 
1 -

J(f) =- r(c,F)(f- fo(c,F)) + J(f), 

where the first term on the r.h.s. of Eq.(6.2) corresponds to the collision process described 
by a single relaxation time T (E, F) (which is assumed to depend on F and on the energy 
density c of the phonon gas). The second term on the r.h.s. of Eq.(6.2) corresponds to 
such collisions of quasiparticles, which conserve the total quasimomentum of the colliding 
excitations, that is, for every distribution function f the following identity holds 

(6.3) J k J (f) dk = 0 . 

The function fo ( c, F) is given by 

1 
(6.4) fo (c, F) = hc(F)Ikl 

e~-1 

where T ( c, F) is uniquely determined from the condition 

J dk f hc(F)Ikl 
(6.5) c = he (F) I kif 27r = [ hc(F)Ikl l 

exp kBT(c, F) 

and k B denotes Planck's constant. 

dk 
_

1
27r' 

The decomposition of the collision integral of the form (6.2) is frequently applied in 
solid state physics [2] . The physical meaning of the function fo (E., F) is that it corresponds 
to such a locally equilibrium distribution function which gives, for a fixed value ofF, the 
same energy density as the distribution function f. The function T = T (E., F) given by 
Eq. (6.5) defines the effective temperature as a function of the energy density E. and of 
the deformation gradient F. 

In order to obtain a closed system of equations for the moments of the distribution 
function coupled with the motion of the material continuum for the system, specified by 
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the choice of the collision integral of the form (6.2) and of the dispersion curve of the 
form (6.1), we multiply the kinetic equation by he (F) lkl and hc2 (F) k correspondingly, 
integrate it with respect to the variable k and change the order of integration and dif
ferentiation. We also divide the result, obtained in that manner, by 21r and assume that 
for large k the distribution function vanishes more rapidly than the inverse of polynomi
als. 

As a result, we obtain the following set of equations 

(6.6) 

p 8v _ _g_ (P d<p( F) + 
8t 8x dF 

From solid state physics we know that the moment expression for the heat flux in a 
one-dimensional system with the quasi-particle dispersion curve (6.1) reads 

(6.7) 

All integrals in the system(6.6) can be expressed in terms of the energy density E (formula 
(6.5)) and of the heat flux (given by Eq.(6.7)). This allows us to write (6.6) in the following 
equivalent form: 

8 8 E ac(F)aF 
-E + -q = -------
at 8x c(F) 8F 8t ' 

(6.8) 
8 8 2 ac(F) 1 
-q + -c E = c:c(F)-- - q 
at 8x ax T(E, F) ' 

P av _ _g_ (P a<p(F) + ~ 8c(F)) = 0 . 
8t 8x 8F c(F) oF 

These equations can be supplemented by the formula 

(6.9) 
8F 
- = \7v 
8t 

relating the deformation gradient F to the velocity field v. The important property of 
Eq~. (6.8)b (6.8)2, (6.8)3 and (6.9) is that they form a closed system. Let us consider a 
stationary solution of this system. From Eq.(6.8)z we can determine the formula for the 
heat flux 

(6.10) 
8 

q = -r(c:, F)c(F) 
8

x { c(F)c:}. 

After inserting Eq. (6.5) into Eq. (6.10) we can determine the heat flux q in terms of the 
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effective temperature T and of the deformation gradient F 

(6.11) q = -r (T, F)c (F) Zk'JJT BT ( joo ~) 
h1r 8x ez- 1 

() 

2 1rk'JJT 8T 
= -r(T,F)c(F) 3-h-Bx. 

If we postulate that this formula is valid also in the time-dependent case (that is, if we 
treat it as a "constitutive law" of the Fourier type) then, combining it with Eqs. (6.8)17 

(6.8)3, (6.9) and expressing the energy density in terms of the effective temperature and 
the deformation, we obtain a field theory, in which the state of the system is described 
in terms of the deformation and the temperature. Such a field theory corresponds to the 
description of traditional thermomechanics. The interesting problem is whether (and in 
what sense) such a thermomechanical theory is an approximation of the exact nonequilib
rium description given by Eqs. (6.8) and (6.9) (in which the state of the system is specified 
by the fields of energy density, heat flux and deformation). However, this problem shall 
not be discussed here. 
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