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Flow and stability of second grade fluids between two parallel rotating 
plates 

K. R. RAJAGOPAL (PITTSBURGH) and A. S. GUPTA (ANN ARBOR) 

AN EXAcr solution is given for the flow of an incompressible fluid of second grade between two 
infinite parallel plates rotating about a common axis. The stability of this flow subject to dis
turbances of finite amplitude is studied using the energy method and, further, the zone of sure 
stability is delineated. 

Podano 8cisle rozwi~e dla zagadnienia przeplywu plynu nieSciSliwego drugiego ~u mi~y 
dwiema r6wnoleglymi, nieskoflczonymi plytkami wiruj'cymi wok6l wsp6lnej osi. Stateczno9C 
tego przeplywu, poddanego zald6ceniom o skonczonych amplitudach, przeanalizowano za 
pom()Ql metody energetycznej, okre5Iaj,c nastctpnie obszar pewnej stateczno8ci. 

IlpHBe~eBO T011HOC pemeHHe AID1 38A8tm reqeHWI HCC>KHMaeMOi ~OCTH BTOpoi'O nop~ 
MC>K,tty ~YMR nap8JIJiem.HhiMH, 6eCKOHC'QHbiMH IIJIHTaMH, Bp~~CJI BOKpyr o6meit 
OCH. Y CTQiqoOC'l'll 31'01'0 reqeHIDI, no~epmyroro BOOMymeHHRM C KOHCtiHhiMII 8M.IJJIBTY• 
~' IIp08H8JIH3HpoB8Ha npH UOMOmH 3HCpreTIACCKOI'O MeTOrol, Onpe~emm 3&TeM OOJI&CTio 
~e>KHoi ycroitmsOCTH. 

1. Introduction 

.ABBOT and W ALTERS [1] established an exact solution for an incompressible viscous 
fluid between two infinite parallel plates which rotate with the same angular velocity 
about two noncoincident axes normal to the plates. Recently, BERKER [2] exhibited the 
existence of an infinite set of non trivial solutions for the flow of an mcompressible viscous 
fluid between two parallel plates which rotate with constant angular velocity about 
a common axis normal to the plates. The trivial rigid body motion turns out to be a partic
ular case of the above set. BERKER [2] pointed out that his solution cannot be obtained 
as a limiting case of the solution due to Abbotand Waiters. The study of these flow problems 
has relevance to the determination of the material moduli, which characterize a non
Newtonian fluid, in viscometric experiments. 

In this paper we extend BERKER's [2] boundary value problem to the study of a certain 
class of non-Newtonian fluids, namely the homogeneous incompressible Rivlin-Ericksen 
fluids of second grade. The equations of motion of these fluids are in general ofmgher order 
than the Navier-Stokes equations. Thus, if one does not use a perturbation approach, 
the solution of these equations will demand boundary conditions in addition to the usual 
no slip · conditions. Besides the nonlinearities which occur in the Navier-Stokes equa
tions, the equations of motion of an incompressible fluid of second grade contain higher
order nonlinearities which severely restrict the class of flows for which exact solutions 
can be found. For plane flows, TAN'NER [3] showed that the Stokes solution for the velocity 
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field corresponding to an incompressible viscous fluid is also a solution to the equations 
of motion of a second grade fluid if the inertial effects can be neglected, the pressure 
field being different. In general, there are very few nonslow flows where exact solutions 
have been established for the equations of motion of a second grade fluid(!). Of course, 
exact solutions for the velocity field for unidirectional steady flows of the Navier-Stoke$ 
equations are also exact solutions of the equations of motion of a fluid of second grade; 
but these solutions for the velocity field do not depend on either of the normal stress 
moduli(2). In our problem we show that the velocity field is similar to that established 
by BERKER [2]. However, unlike the above mentioned "universal" flows, the normal stress 
modulus cx 1 influences the velocity field. We also find that the structure of the pressure 
field is significantly different from that obtained by BERKER [2]. 

We have also studied the stability of the above flow using the energy method (cf. 
SERRIN [7]). As is to be expected, the stability of the flow in. our problem depends on the 
viscosity fl and the normal stress modulus cx 1 and also on the nature of the base flow. 
Sufficient conditions for the asymptotic stability in the mean of the base flow to arbitrary 
disturbances, in bounded domains, were established by DuNN and FosDICK [8]. They 
showed that if the viscosity 1-' is sufficiently large and the base flow is slow enough in the 
sense that the eigenvalues of the first Rivlin-Ericksen tensor and the Laplacian of the 
first Rivlin-Ericksen tensor associated with the base flow are small enough, then the 
disturbances decay asymptotically. Since the flow domian in our problem is unbounded, 
we extend the .analysis of Dunn and Fosdick to infinite domains. We then study the stability 
of the base flow in detail in terms of two nondimensional numbers R (!Jh2 /v - the Reynolds 
number based on the common angular velocity Q and the distance between the plates) 
and a viscoelastic parameter r (cxl!J!ev, which is the ratio of elastic forces to the viscous 
forces). It is found that as the number r increases, the domain of sure stability de
creases(l). 

In the case of the trivial rigid body motion which is -a member of the class of solu
tions .studied by BERKER [2], it was shown by ELCRAT [10] that the solution is stable with 
respect to disturbances which go to zero sufficiently rapidly at infinity in the case of a classic
al viscous fluid. He also showed that when the angular velocities of the plates are different 
but sufficiently close, the flow is stable with respect to perturbations whose deformation 
energy is sufficiently confined to· a core region. In add'ition to studying the stability of 
flow of the second grade fluid model which includes the classical viscous model as a special 
case, we· study. the stability of a wider class of flows which also includes Elcrat's analysis. 

(1) There exists a general class of plane flows where exact solutions can be established for the equa
tions of motion of an incompressible fluid of second grade by virtue of the higher order nonlinearities 
·being self-cancelling though individually nonvanishing (cf. [4]). Also an exact solution has been establish
ed in the case of flow between infinite parallel plates rotating about non-coincident axes [5]. 

(2) It is well known (cf. FOSDICK and TlluESDELL [6]) that all "universal" solutions to the Navier
Stokes equations also satisfy the equations of motion of a fluid of second grade and the velocity field does 
not depend on either of the normal stress moduli. We use the terminology second grade for fluids whose 
material model ott and oc2 satisfy oc1 ~ 0 and ott + ot2 = 0. 

e> It was shown in [9] that the uniqueness ~f the solutions for the equations of motion for a fluid 
of second grade for plane flows depends on r. 
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After a few preliminary remarks and the statement of the problem in Sect. 2, we prove 
the main theorem regarding the existence of an infinity of velocity-pressure pairs which 
satisfy the equations of motion of a fluid of second grade in .Sect. I . Finally, in Sect. 4 we 
study the stability of these solutions. 

2. Preliminari~s 

The Cauchy stress T in a homogeneous incompressible Rivlin-Ericksen fluid of second 
grade is related to the fluid motion in the following manner (cf. [11], [12]) 

(2.1) 

where p, is the coefficient of viscosity, (X 1 and (X2 are the nm:mal stress moduli, - pl denotes 
the indeterminate pressure and A1 and A2 are the kinematical Rivlin-Ericksen tensors 
defined through 

{2.2)1 
and 
(2.2h 

A 1 = gradv+(gradv)T, 

where the dot denotes material time differentiation and v denotes the velocity field. 
The .constitutive model (2.1) can be considered as a second-order approximation to 

the response functional of a simple fluid in the sense of retardation (cf. CoLEMAN and 
NOLL [12]). However, since the model is properly frame-invariant, it can be also consider
ed as an exact model for some fluid as is done for example when (X 1 = (X2 = 0, i.e. the 
case of the classical Navier-Stokes theory. When the model (2.1) is required to be com
patible with thermodynamics in the sense that all motions of the fluid meet the Clausius
Duhem inequality and the assumption that the specific Helmholtz free energy of the 
fluid be a minimum when the fluid is locally at rest under isothermal conditions, it follows 
~hat the material moduli have to meet the following restrictions (cf. DUNN and FOSDICK 
{8]): 

(2.3) p, ~ 0, (X1 ~ 0 and (X1 + (X2 = 0. 

The results expressed in Eq. (2.3) are the subject of much controversy and involves the 
works of Coleman, Dunn, Fosdick, Mizel, Noli, Rajagopal, Ting, Truesdell and others. We 
refer the reader to [8] for a discussion of the same. Henceforth we shall assume (2.3) holds. 

We now develop the main field equations for the velocity v. When the .constitutive 
expression (2.1) is substituted into the balance of linear momentum 

(2.4) divT + e'b = ev, . 

where b denotes the body force field, one obtains that 

(2.5) p,Liv+(X1(Liwxv)+(X1 Livr-evr-e(wxv) = gradP, 

where 

(2.6) 

and 

w = curlv. 
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Here we have assumed that b is conservative, so that b = - grad t/J. Also the suffix t denotes 
the partial derivative with respect to time and IA1 12 denotes the usual trace norm for the 
tensor A1 • Since the fluid is incompressible, it can undergo only isochoric motions and 
hence 

(2.7) divv = 0. 

While determining the velocity field, we shall find it convenient to eliminate the gradient 
of pressure by operating on Eq. (2.5) by the curl operator: 

(2.8) 

We conclude this section with a formal statement of the boundary value problem. 
We wish to determine the velocity-pressure pair which satisfies the equations of motion 
(2.5) for an incompressible second grade fluid for the problem of the flow between two 
parallel infinite plates rotating with constant angul~r velocity !J about a common fixed 
axis normal to the plates. A Cartesian coordinate system Oxyz with the z-axis in the direc
tion of the axis of rotation is located so that the equations of the top and bottom plates 
correspond to z = h and z = -h, respectively. We are interested in motions wherein 
streamlines in any· z = constant plane are concentric circles. The locus of the centers 
of these circles as the-z = constant plane shifts from z = - h to z = h is in general a curve 
in space. From a physical point of view this curve represents the axis of a curvilinear 
vortex. Following BERKER [2], we shall seek steady solutions for the velocity field of the 
form(4) 

(2.9)1 u = -!J(y-g(z)), 

(2.9)2 
and 

(2.9)3 

fJ = !J(x-f(z)), 

w = 0, 

where u, fJ, and w are the components of velocity v in the x, y, and z coordinate directions, 
respectively. Here x = f(z) and y = g(z) are the equations which define the locus of the 
centers. Since the locus passes through (0, 0, -h) and (0, 0, h), it follows from the 
no-slip conditions at the two plates and Eqs. (2.9)1 , 2 , 3 that 

(2.10)1 f(h) =/(-h) = 0, 
and 

(2.10)2 g(h) = g( -h) = 0. 

If the locus of the centers intersects the z = 0 plane at the point Q with the coordinates 
(/, 0, 0) (one can always choose the x and y 'axes in such a manner that this is so), where 
I ~ 0, it follows that 

(2.11)1,2 /(0) = l, g(O) = 0, 

since the velocity of the fluid at Q is zero. Equations (2.10)1,2 and (2.11)1,2 provide the 
boundary conditions which are necessary to obtain the velocity field from Eqs. (2.7) 
and (2.8). 

('') This class of motions belong to the family of pseudo-plane motions considered by BERKEll [13]. 
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3. Exact solutions 

In this section we obtain an infinite set of exact solutions to Eq. (2.4) and (2.8). Since 
we seek solutions of the form (2.9)1,2,3, on substituting the same into Eq. (2.8) we find 
that 
(3.1)1 p!Jf"' +r1.1D2g"' +eD2g' = o, 
and 

(3.1h 

where the prime denotes differentiation with respect to z. The velocity field given by 
Eqs. (2.9)1,2,3 is clearly compatible with Eq. (2.7). Note that the order of the differential 
equation which is obtained when cx1 :1: 0 is the same as that when cx1 = 0. Thus the usual 
no-slip boundary conditions will suffice to determine the velocity field completely. 

On defining the function F through F = f + ig, where i = R, it follows from 
Eqs. (3.1)1 and (3.1)2 that 

(3.2) F"' -(m+in)2F' = 0, 

where m and n are defined through 

2 e { [{p/D)2 + rJ.fJ1'2- rJ.1} 
m = 2({pf!J)2+rJ.f] ' 

and 

2 e {£(pf!J)2 + a~P12 + cxl} 
n = 2[{p/!J)2+cx~] . 

On integrating (3.2) one 'obtains that 

(3.4) 

We obtain the boundary conditions which are required to determine the constants C1, 
C2 and C3 from Eqs. (2.10)1,2 and (2.11)1,2 which imply that 

(3.5) 

and 

(3.6) 

F(O) = I, 

F(h) = F( -h) = 0. 

It follows from Eqs. (3.4), (3.5) and (3.6) that 

(3.7)1 
I 

cl = c 2 = -2:-::-[1-=---c-o-sh-(-:-m-+-,-.n:-:)h:-::-] 

and 

I cosh(m+in)h 
c3 = -=----,--:.-....,.....,...___,.-=-

[cosh(m+in)h-11 · 

On substituting Eqs. (3.7)1 and (3.7)2 into Eq. (3.4) we find that 

(3~8) F(z) = l{cosh(m+in)h-cosh(m+in)z} . 
[cosh(m+in)h-1] 
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A straightforward computation from Eq. (3.8) yields 

f(z) 1 
(3.9)1 - 1- = ( h h h l)2 ( • h h . h)2 {(coshmhcosnh-coshmz cos m cosn - + sm m smn 

and 

(3.9h 

where 

(3.10)1 

and 

(3.10); 

x cosnz ){ coshmh cosnh- 1) + ( sinhmh sinnh- sinhmz sin nz )( sinh mh sin nh)} 

g(z) 1 
- 1- = ( h h . h 1)2 ( • h h . h)2 (sinhmhsinnh-sinhmz cos m cosn - + sm m smn 

x sinnz) (coshmhcosnh-1)-(coshmhcosnh-coshnzcosnz) (sinhmhsinnh)}~ 

These expressions for mh and nh follow from Eqs. (3.3)1 and (3.3)2 • In the above 
equations, R( = !Jh2 f'v) is a Reynolds number based on the angular velocity and the 
distance between the plates, and F( = a.1!J/ev) is a vicsoelastic parameter characterizing 
the ratio of the elastic forces to the viscous forces. 

We next derive an expression for the pressure field. It follows from Eq. (2.5) that 

(3.11h 

and 

where 

(3.11)4 

1 aP · 
-~ = !J2x+!J(vg" -!}f), 
(! ux 

1 oP 
-~ = Q2y-!J(vf" +!Jg), 
(! uy 

_!_ oP = ~!J2U"'(x-f)+g"'(y-g)], 
(! oz (! 

Note that P = P+ ~ elvl 2 • On integrating Eqs. (3.11)1 ,2,3 it follows that 

(3.12) ~ P = ~
2 

[(x-h1(z))2+ (y-h2(z))2]-~
2 

[hHz)+h~(z)] 

+ a.1!J2 {xf" + yg"} + a.1!J2 {gg"- _!_ (g')2- ff" + __!_ (/')2} + C' 
(! (! 2 2 

where h1 (z) and h2(z) are defined through 

(3.13)1 h1 (z) = -vg"(z)+!Jf(z), 

(3.13)2 hiz) = vf"(z)+!Jg(z), 

and C is an arbitrary constant. 
Hence, we have proved the following: 
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THEOREM I. Let an incompressible fluid of second grade occupy the region between two 
infinite parallel plates, distant 2h apart, rotating about a fixed normal axis with constant 
angular velocity Q. Let the coordinate axes Oxyz be so chosen that the z-axis coincides 
with the axis of rotation and the equations of the two plates are z = h and z = -h. If Q is 
an arbitrary point with the coordinates (I, 0, 0), I ~ 0, then the velocity-pressure pair for 
the flow is defined through Eqs. (2.9)1 , 2 , 3 and (3.12) where the functions f, g, h1 and h2 

are defined through Eqs. (3.9)t, 2 , (3.10), (3.I3)1 and (3.I3h, respectively . 
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It may be noticed that the velocity field v defined through Eqs. (2.9)1 , 2 , 3 depends 
on the normal stress modulus cx1 • These expressions agree with BERKER [2] when cx1 = 0. 
This result is in sharp, contrast with the velocity field in steady unidirectional flows as 
observed earliet:. Figures I ~d 2 display the variation of the functions f/1 and gfl versus 
z for various values of the viscoelastic nondimensional parameter r for a fixed value of 
the Reynolds number R. As the functions f and g are even, f and g are symmetric with 
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respect to the z = 0 plane. It is found that the magnitude of gf/ is very small everywhere. 
Figure 1 shows that over a major portion of the flow domain fl I decreases, i.e. the y
component of the velocity increases with increasing r. It can be seen from Fig. I that 
the curve for r = 0.6 has an inflection point near the upper plate. Figure 1 shows that f 
decreases with increasing r over a major portion of the flow. 

Equation ( 4.12) shows _that in any z = constant plane the curves P = constant are circles. 
Note that this result is different from Berker's in that the modified pressure P defined in 
Eq. (3.11) involves the normal stress modulus a1 • More importantly, it follows from 
Eq. (3.12) that oPfoz is not zero unlike the result obtained by Berker. In fact it is a non
constant function of z. This implies that the contribution due to the pressure to the normal 
forces exerted on the top and bottom plates are different. Hence, in order to keep the 
plates at a fixed distance 2h apart, different forces are to be exerted at the top and bottom 
plates. From the velocity field we can determine the stress at any point on the plate (and 
hence the torque and the normal force exerted by the fluid on the plate). On the other 
hand, it is possible to measure experimentally the stress on a rotating plate by using the 
orthogonal rheometer of MAXWELL and CHARTOFF [14]. This will enable us to determine 
the normal stress moduli. Extensive work has been done in this area, the details of which 
can be found in HUILGOL [15]. 

4. Stability analysis 

In this concluding section we study the stability of base flows to arbitrary disturbances. 
Let v denote the velocity of the base flow and p the associated pressure field which satisfy 
Eqs. (2.5) and (2.7). Let v' andp' denote another velocity-pressure pair obeying Eqs. (2.5). 
and (2.7) and the same boundary conditions as those satisfied by (v, p) but possibly dif
ferent initial conditions. We shall denote the difference fields (a, p) through 

(4.1) a= v'-v, " I p =p-p, 

DUNN and FOSDICK [8] established sufficient conditions for the asymptotic stability of 
the base flow to arbitrary disturbances. They showed that in bounded domains if (cf. 
Theorem [S]) the material moduli are such that 

2at - [ at -] 2p, -(M+M)+" -N+M -- < 0, -
e e e 

(4.2) 

where M and -M denote the maximum and minimum of the eigenvalues of the Rivlin
Erickson tensor A1 associated with the base flow, N denotes the maximum of the eigen
value of L1A1 and " the Poincare coefficient for the domain, then the base flow is stable 
in the mean in the sense that 

(4.3) [ua(t)ll2 + ~ llgrada(t)ll2
].;;; [ua(O)II 2 + ~ llgrada(o}ll']e••, 

where the norm 11 • 11 is defined as 

llf(t)ll2 = J lf(x, t)l 2dv. 
B 
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The positive definite quantity llu(t)ll 2 +~11gradu{t)ll 2 is a measure of the kinetic energy 
(] 

and the energy due to stretching in the fluid. If Eq. (4.2) holds. then the exponent y which 
appears as the exponent in Eq. (4.3) is negative and hence both llu(t)W and llgradu(t)11 2 

are bounded by an exponentially decaying function. · 
We make the following assumptions regarding the asymptotic behavior of u and p 

to extend the result of Dunn and Fosdick to unbounded domains, namely 

(4.4) a= O(r-1), gradu = O(r-1 - 1) and P = P' -P = O(r-1 +1), 

where k > 1. These conditions will ensure that appropriate surface integrals will vanish 
in the limit r ~ oo. It was shown by SERRIN' [16] that for the flow between two infinite 
parallel plates, the Poincare constant " for the domain is given through " = 4h2 /n2 , i.e., 

(4.5) 

It can be easily shown that Eq. (4.2) follows from Eq. (4.4) and (4.5) on writing the equa
tions of motion (2.5) for (v, p) and (v', p'), subtracting the former from the latter and 
forming the scalar product of the same with u and integrating over the domain. 

It is our aim to study the implications of Eq. (4.2) in detail. A straightforward computa
tion from Eqs. (2.9)1 , 2 , 3 yields 

(4.6)t M= M~ !J{(g')2 +(f')2 }112 , -h ~ z ~ h, 

and 

(4.6h 

On substituting Eqs. (3.9)1 and (3.9)2 for f and g into Eqs. (4.6)1 and (4.6)2 , it follows 
that 

(4.7)1 M= M~ 2!J[(mK-nS)2 +(nK+mS)2]112 {sinh2mzcos2nz+cosh2mzsin2nz}, 

and 

(4.7)2 

where 

and 

(4.7)4 

-h ~ z ~ h, 

N;;;::: !J{[Km3 -3Kmn2 -3Sm2n+Sn3
]

2 + [Kn 3 -3Km2n+3Smn2 -Sm3
]
2 }l'2 

x {sinh2mzcos2nz+cosh2mzsin2nz},-h ~ z ~ h, 

K = l[l- coshmhcosnh] 
(l-coshmhcosnh)2 +(sinhmhsinn~)i · 

S = lsinhmhsinnh 
(1-coshmhcosnh)2 + (sinhmhsinnh)2 • 

We are now in a position to prove the following: 
THEoREM 2. Let (v, p) be a velocity-pressure pair which is a solution to the boundary 

value problem being considered. Suppose ( u, p) is a disturbance pair which obeys the asymp
totic structure (4.3). Then the basic flow (v, p) is asymptotically stable in the mean with 
respect to arbitrary disturbances ( u, p) if 
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(4.8) 

2h2 cx Q + 1 {(Km 3 -3Kmn 2 -3Sm2n+Sn 3
)

2 + 
n2ev 

+ (Kn3
- 3Km2n + 3Smn2

- Sm3
)

2
} ''

2
] ( cosh2nh-cos2nh )112 < I , 

where m, n, K and S are defined by Eqs. (3.3)1 , (3.3)2 , (4.7h and (4.7)4 , respectively. 

Proof. On substituting for M, M and N from Eq. (4.7)1. 2 into Eq. (4.2), it follows 
that 

(4.9) 

2h2~ Q . 
+ 1 {(Km 3 -3Kmn2 -3Smn2 -3Sm2n+Sn3

)
2 

n2ev 

+(Kn3 -3Km2n+3Smn 2 -Sm3) 2 }'12 ] (cosh2mz-cos2nz)112 <I. 

Next, observe that for any n > 0, - h ~ z ~ h, 

(4.10) 

Since cx1 ~ 0, by (3.3)1 and (3.3h, 

cosh2mz ~ cosh2nz, 

and thus 

Hence the theorem. 
REMARK. For large values of cx 1 , a sharper bound for cosh2mz-cos2nz can be obtained 

as cosh2mh. However, if cx1 is small in comparison with p,jQ, the bound provided in the 
theorem would be sharper. 

We now analyse in detail the implications of the above theorem. On substituting for 
K and S from Eqs. (4.7)3 and (4.7)4 into Eq. (4.8) and simplifying, we find that 

! {( 2F + ~~) { [ mh(! - coshmh cosnh)- nh sinhmh sin nh]2 

+ [nh(l-coshmhcosnh)+mhsinhmhsinnh]2}I'2 

2F 
+ ~ {[(mh)3(1-coshmhcosnh)- 3mh(nh)2(l-coshmhcosnh) 

- 3(mh)2 (nh)sinhmhsinnh + (nh)3sinhmhsinnh]2 

+ [(nh)3 (l-coshmhcosnh)-3(mh)3nh(l-coshmhcosnh) 

+ 3(mh)(nh)2sinhmhsinnh- (mh)3sinhmhsinnh]2 }I'2 

< [cosh2nh -cos2nh]- 112 [(l-coshmhcosnh)2 +sinh2mhsin2nh], 

where mh and nh are defined through Eqs. (3.10)1 and (3.10h, respectively. 
Figure 3 displays the variation of /fhvsR for several values of r. It can be seen that 

the domain of sure stability decreases with increasing r. It is interesting to note that the 
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region of sure stability is significantly reduced when r changes from zero to a small value. 
However, further increase in r results in marginal decrease in the region of sure stability. 
This suggests that the viscoelasticity could possibly exert a destabilizing influence. How- . 
ever, this remark is of a conjectural nature because the above estimate is based on a suf-

1/h 
s 

3 

2 

r=a 

r=0.1 

f=0.2 

FIG. 3. 

6 7 

ficient condition for stability. In the event that there be no subcritical instability (i.e. 
the stability boundaries obtained from the finite amplitude and the linearised analysis 
coincide~ the above result would indicate the destabilising influence of viscoelasticity. 
It may also be seen from Fig. 3 that the trivial rigid body motion corresponding to I = 0 
is likely to be most stable since the Reynolds number associated with it can be the largest. 
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