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Pulse load of annular plastic plates supported on both edges 

D. NIEPOSTYN and A. STANCZYK (WARSZAWA) 

A SOLUTION to the problem of dynamic bending of annular plates with various supporting 
conditions of both edges has been given. Motion equations have been derived and discussed 
on the assumption of a pulse of a uniformly distributed transversal load, determined by an 
arbitrary integrable function p(t). A rigid-plastic model of the material, the Johanson limit 
state condition and the associated flow law have been assumed. Numerical analysis has been 
performed for loading with rectangular pressure pulse. 

Podano rozwi~nie problemu dynamicznego zginania plyt pierScieniowych z r6Zilym.i warunka
mi podparcia obu brzeg6w. R6wnania ruchu wyprowadzono i dyskutowano przy zalo:ieniu 
impulsu r6wnomiernie rozloi:onego obciCl:ienia poprzecznego, okre5lonego dowoln'l calkowalnCl 
funkcj'l p(t). Przyj~to sztywno-plastyczny model materialu, warunek stanu granicznego Johan
sena oraz stowarzyszone prawo plyni~ia. Dla obciCl:ienia prostoqtnym impulsem cisnienia 
przeprowadzono ana~ numeryczn<\. 

TipuBeAeHo pemeHHe romaMJNeCI<o:H ~a'I:IH H3rn6a Hom.qeBbiX IIJIHT c pa3HbiMH ycnoBWI.Mll 
onupamm: o6oux Hpaea. YpaaHemm: ASH>KeHIDI BbiBCACHbi H ~eHbi npH npeAJioJio
>KeHHH HMIIYJILCa paBHOMepHO pacnpeAeJieHliOH nonepeliHOH Harpy31<H, OIIpCAeJICHHOH npo
H3BOJibHOH HHTerpHpyeMOH cl>~eH p(t). TipHWml >KeCTHo-nJiaCTHtiCC1<8Ji MOA~ Ma
TepHana, ycnoaHe npeAem.Horo cocromnm lioraHceHa, a T8l0Ke aCCOI.lHHPOBamn.rli 38l<OB 
Te'tleHIDI. ,Ilm1 Harpymemm: npHMoyrom.m.IM HMIIYJILCOM AaBJieBHH npoBeAeH 'I:IHCJieHBhiii: 
aHaJIH3. 

1. Assumptions, formulation of the problem 

THE AN'ALYSIS of the problem will be based upon the following assumptions: 
The ideal plastic-rigid model of material. The plate under consideration assumes the 

plastic state according to the Johansen limit state condition 

(1.1) 

The limit surface (1.1) is determined by the plastic potential for velocities of curvatures 

k, and k"' 

(1.2) 
. 1 • 
k, = -(ilw•QQ' 

. 1 • 
km= ---w n 

T a2e '"• 

The yield point does not depend upon the velocity of plastic deformations. The assumptions 
of the technical theory of plates remain valid. 

Let a plate (Fig. 1) with the boundary conditions 

(1.3) 

5* 

M,(k, t) = -x1 M 0 , M,(l, t) = -x2 M 0 (x1 , x2 =Out), 

w(k, t) = w(l, t) = 0 
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676 D. NIEPOSTYN AND A. STANCn'K 

be subjected to a load determined by an arbitrary integrable function p( t ). We will asswne 
uniform conditions for the beginning of the motion 

(1.4) 

We will look for a complete solution. Let us assume that the plates under consideration 
satisfy the following conditions at any moment of the motion: 

t 

z 

Fio. 1. 

i) equations of dynamic equilibr um 

(eMr),(I-M, = eaT, 
(1.5) Q 

eaTr = R(k, t)b-a 2 J (p(t)-1-'w(e, t)]ede, 
k 

where a is the outer radius of the plate, k = bfa a dimensionless radius of inner edge, 
e = rfa dimensionless current radius, f' mass per unit area, R(k, t) reaction of inner 
edge, 

ii) the field of internal forces in the plate satisfies the limit state condition (1.1 ), 
iii) the form of the motion of the plate is in conformity with the law of plastic flow 

and kinematic restraints, 
iv) th~ conditions of possible discontinuities with respect to movable hinge lines 

e = E1(t) are satisfied as follows 

(1.6) 

[w]+E,[w,Q] = o, 
[w,Q] +~1 [w,(IQ] = o, 

[w1+~~£w.Q1 = o. 
'The conditions (1.6) have been given according to [1]. Square brackets denote the dis
continuities of the respective functions. 

2. Problems of ultimate load carrying capacity 

The problem of ultimate load carrying capacity of plates with the boundary conditions 
(1.2) under a uniform load on the assumption of the yield condition of maximum normal 
stresses has been solved in [2]. Figure 2b shows the shape of the deformation surface in 
the limit state corresponding to this solution. The individual plastic states in the plate 
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PuLSE LOAD OF ANNULAR PLASTIC PLATES SUPPORTED ON BOTH EDGES 677 

FIG. 2. 

under consideration have been shown in Fig. 2c. For the KR segment we will have k~ = 0. 
From this it may be seen that during the process of plastic flow the ting BC is in translatory 
motion only. The limit load of the plate should be determined from the formula 

(2.1) 
4M0 

Po = -;J2 --::p=-2 --Cl=-2 , 

where Cl and p are the dimensionless coordinates of circumferential plastic bents observed 
in the limit state. These quantities are the solutions of the following system of non
linear algebraic equations: 

(2.2) 
2(rl-k)2(2rl+k)-3k(1 +x1)(p2-cx2) = 0, 

2(1-P)2(1+2p)-3(l+x2)(P2-rl2) = o. 
The curves representing the p0 a2 /4M0 ratio depending on the k = b/a parameter for the 
four variants of support of edges have been shown in Fig. 3. 

In the limit state of the plate under consideration, the field of internal forces is determin
ed by the following equations: 

in the region of the AB ring (k ~ e ~ rl) 

Mlp = -Mo, 

(2.3) M · = M [1- 2(rl-e)2(2rl+(!)] 
, o 3e(P2- rl2) . 

2M o ( cx2 - (!2 ) 
T, = -- 1 + p2 2 ; ea -Cl 

in the region of the BC ring (Cl ~ e ~ p) 

(2.3') 
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in the region of the CD ring (ft ~ e ~ 1) 

(2.3") 

3. Analysis of motion of plate 

The dynamic load p( t) > p 0 causes a motion of plate, accompanied by the formation 
of forces of inertia. In order to determine the proper form of the motion, nu.merou 
kinematically possible mechanisms have been analysed. In the simplest of them it has 
been assumed that the velocity field is similar to that encountered in the static problem 
of ultimate load carrying capacity (Fig. 2b). In the most complicated configuration, the 
motion of five annular regions with four nonsteady circumferential hinge lines has been 
considered. The investigation of the form of the motion for the velocity field identical 
to that encountered in the problem of ultimate load carrying capacity seemes to be justified 
since as a result of such an analysis, a range of the so-called mean values has been obtained 
(vide [1, 3 and 4]). From the condition of the extremum of radial moment in the internal 
region of the plate under consideration, the maximum medium load has been obtained. 
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PuLSE lOAD OF ANNULAR PLASTIC PLATES SUPPORTED ON BOTH EDGES 679 

If the loads exceed this maximum value (high load range) the motion of the plates takes 
place in the nonsteady velocity field. 

However, the situation is quite different in the case of plates considered in this paper. 
It may be seen that in the problem studied, the form of the motion wherein the hinge 
circles are steady and occupy the positions e = ex and (! = {3 is impossible. As it will be 
proved later, such positions of hinge circles lead to contradictions in acceleration fields. 
In consequence, the problem must be considered in a class of nonsteady problems for all 
loads p(t) > p 0 • The aforementioned contradictions in the description of the motion 
of a plate do not occur only if the velocity field has an identical shape with that encountered 
in the problem of ultimate load carrying capacity provided the positions of both circum
ferential hinge lines are the functions of time (Fig. 4a). 

a b 
p(t) 

P. a-,, jw KR I ~/1:i 11. 

c~--~ I. ~itJ J 
Fio. 4. 

Therefore, let us assume that the action of the load p(t) within the region of the plate 
brings about the appearance of two nonsteady circles of the positive hinges e(t) and f](t). 
Further, let us separate the three annular regions AB, BC, and CD within this plate. In 
consequence, we will have the following plastic states within this plate (Fig. 4b): 

i) PR state ("1 = 0) or OR ("1 = I) 

(3.1) Mtp((!, t) = -Mo, -"1Mo ~ Mr(e, t~ ~ M0 , k ~ (! ~ e(t); 

ii) RK state 

(3.1') -M0 ~ Mtp((!, t) ~ M 0 , M "r((!, t) = M 0 , ;(t) ~ (! ~ fJ(t); 

iii) KL state ("2 = 0) or KM ("2 = 1) 

(3.1") Mtp((!, t) ·= i\{o, Mo ~ Mr((!, t) ~ -"2Mo, fJ(t) ~ (! ~ I. 

In the region of the centre ring BC Mr((!, t) = M 0 = const. , 
According to Eq. (1.5) the circumferential moment in this region must satisfy the 

equation 

(3.2) Mo-Mtp((!, t) = eaTr(e)- p(t1a
2 

(e2 -e)+ ~
2 

W(t)(e 2 -;2 ), 

where W( t) is a function determining the acceleration in a translatory motion (krp = 0) 
of the ring BC. Making use of the conditions on the hinge circles in Eq. (3.2) 

(3.3) Mtp(;, t) = -M0 and Mtp(fJ, t) = M 0 , 
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680 D. NIEPOSTYN AND A. STANCZYK 

we will obtain the formulae for transversal forces 

(3.4) and T,.(1J, t) = 0 

and an equation for the acceleration of the region BC 

(3.5) W(t) = p(t) _ 4M0 I 
I' a2 172_~2 • 

Should we make use of the relationship (2.1) in Eq. (3.5), then we may present the follow-
ing: 

·· p(t) Po {J2- a2 

W(t) = ---- 2 ~2. 
I' ,_, 'YJ -

(3.6) 

The second term on the right-hand side of Eq. (3.6) corresponds to a plastic resistance 
on the plate. This resistance is the greater, the nearer the hinge circles are to one another. 
During the motion of the plate the s~pport zones AB and CD revolve relative to the axes 
passing through the supports. Linear accelerations of points lying on these lobes can be 
expressed by the following formulae: 

(3.7) W(e, t) = [ r~~ J<e-k) for k <;; e <;; ~(t), 

(3.8) W(e. t) = [ 7~~ J(l ~e) for 'I( I) <e.; I. 

Taking into account the above-mentioned expressions in the equations of equilibrium 
(1.5), we will obtain the following formulae for determining the . distribution of radial 
bending moments: 

i) in the zone AB 

(3.9) · eM,.(e, t) = Mo[e-k(l+xt)1- p(tJa
2 

(e-k) [(e-k)-(e+2k)-3(~2 -k2)] 

+ 7; ( ~~k r (e-k)[(e-k)2(e+k)-2(~-k)2(2Hk)]; 
ii) in the zone CD 

(3.10) eM,.(e, t) = -M0(l+x2 -e)- p(tJa
2 

(I-e)[(I-e)(2+e)-3(l-TJ2)] 

+ 7; ( I ~'I r (l-e)[(l-e}2(1 +e)-2(1-'1)2(1 +2'1)]. 

Integration constants have been derived from the boundary stress conditions (1.3). The 
reaction R(k, t) has been eliminated by making use of the first equation in the set (3.4) 
and of the equation of transversal forces (1.5'). 

Having used the conditions for the lines limiting the BC ring 

(3.11) M,.(~, t) = M,.(1J, t) = M 0 
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PuLsE LOAD OF ANNULAR PLASTIC PLATES SUPPORTED ON BOTH EDGES 681 

we will obtain two differential equations: 

(3.12) ( E~kr 2p(t) 2~+k 12M0 k(l +x1) 

f-l (~-k)(3~+k) - f-la2 (e-k)3(3~+k) ' 

(3.13) (~~J 2p(t) 1 +217 12M0 1+x2 

f-l (1-17) (1 +317) - f-la2 (1-17)3 (1+317)' 

which, together with Eq. (3.5), constitute the system of equations for our problem. 
It may now be easily proved why a steady form of deformation, wherein the hinge 

circles occupy a position such as that encountered in the problem of ultimate load carrying 
capacity is not possible. In order to prove this, we introduce ~(t) = a and 17(t) =. f3 in 
Eqs. (3.12), (3.5) and (3.13), and next use the formulae (2.1) and (2.2) in these equations. 
As a result, we obtain the three following expressions for accelerations: 

.. ( ) = p(t)-Po (.I a+k ) e-k 
w (!, t + 3 k k , k ~ (! ~ a, 

fl a+ a-

•• p(t)-Po 
(3.14) W(t) = ' IX~ (! ~ {3, 

fl 

···( t) = p(t)-Po( 1 +~) 1-e 
W(!, f-l 1+3{3 1-{3' 

From these equations it follows that on the hinge circles (for e = a and (! = {3) we 
will obtain discontinuous accelerations, being in contradiction with the condition (1.6") 
from which it follows that accelerations on the steady hinge lines should be continuous. 
This condition is satisfied then and only then when the loads p( t) = Po. In such a case 

W(t) = 0; we shall hence pass to the ultimate load carrying capacity. 

4. General solution 

The motion on a plate under an arbitrary pulse load is fully described by the three 
functions W(t), ~(t) and 17(1). We will rewrite the system of equations for the determina
tion of these functions in a form more convenient for diffrentation. To this aim it is only 
necessary to perform the operations of differentation in Eqs. (3.12) and (3.13) and then 
to substitute in them, in turn, the expressions (3.5). Consequently we will obtain 

f-la2 W · p(t)a2 ~+k [ 3k(1 +x1) 1 ] 
(
4

.1) 4M0 ~-k .~ = 4M0 3~+k + (3~+k)(~-k)2 172 -~2 ' 

p,a2 W . p(t)a2 1 +11 [ 3(1 +x2) 1 ] 
(
4

.1') 4M0 1-17 17 = 4M0 1+317- (1+317)(1-17)2 17 2 -~2 ' 

(4.1") f-la2 w·· p(t)a2 1 
4M

0 
= 4M

0 
- 172_~2 • 

The first -two equations may be interpreted as equivalent to an appropriately trans
formed kinematic condition (1.6"). The functions on the right hand side of these equations 
describe the discontinuities of acceleration in the sections with instantaneous circum
ferential hinge lines. 
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682 D. NIEPOSTYN AND A. STANCZ\'IC 

Let us next consider the problem of initial conditions. By using the condition W(O) = 0 
in Eqs. ( 4.1) and ( 4.1 ') considered at the moment, t = 0, we will obtain a system of algebraic 
equations enabling the initial position of the hinge circles to be determined. 

Having denoted 

(4.2) fP = p(O)fpo, E(O) = Eo, 17(0) = 1Jo 

we can rewrite this system of equations in the following form: 

qJ Eo+k 3k(1+"1) 1 
{J2-a.2 3Eo+k + (3Eo+k)(Eo-k)2 1J5-E5 = o, 

(4.3) 
qJ 1 +1}o 

{P - a.2 1 + 31Jo 

The most effective method of solution consists in solving the equation 

(44) 2qJ (E -k)2( Eo _ 1Jo ) 3[k(1+"1) _ (1+"2)(Eo-k)
2

] = 0 
· {J2-a.2 0 3E0 +k 1+31]0 + 3Eo+k (1+31]o)(1-1}o)2 ' 

where 

(4.5) 

1Z 
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Figure 5 presents the curves of solutions of the system of equations (4.3) for a plate simply 
supported on both edges. The curves of the solutions for the remaining edge support 
variants have a similar character. There is a general regularity consisting in the fact that 
the greater the load p(O), the closer the hinge circles are to the supports. Moreover, for 
p(O) ~ p0 , we always obtain Eo ~ ex and 1Jo ~ {3. 
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The conditions (1.4) and the roots of the system of equations (4.3) formally constitute 
a system of initial conditions for the system of differential equations (4.1), but they are 
not sufficient for numerical solution since Eqs. (4.1) and (4.1') transformed with respect 
to ~ and ij have singularity of the 0/0 type at the initial point. For this reason, in order 
to find the velocities f(O) and 1}(0), an additional analysis must be performed. To this 
aim we will differentiate Eqs. (4.1) and (4.1') with respect to time and we will make use 
of Eq. ( 4.1 "). After elementary transformations we will obtain the two following differential 
equations: 

p,a 2 w~ [p(t)a2 3e+2k~+k2 3k(1+"1)(3~-k) ~(~-k) ]i 
8M0 + 2M0 (3~+k)2 + (3;+k)2(;-k)2 + (1}2 -~2)2 "' 

1}(~-k) • 
(4.6) - (1}2-~2)2 1} = 

p(t)a2 ~2-k2 

8M0 3;+k ' 

p,a2 w·· [p(t)a 2 31]2+21]+ 1 3(1 +"2)(31]-1) 1](1-1]) ] . 
8M0 rJ+ 2Mo (1 +31})2 + (1+31])2(1-1])2 + (1]2-~2)2 rJ 

- · ~(1-1]) ~ = p(t)a 2 1-1]2 

(1]2-~2)2 8Mo 1 +31] . 

Considering these equations at moment t = 0 and making use of the condition W(O) = 0, 
we will obtain a system of algebraic equations with respect to ~(0) and 1}(0). Solving this 
system and taking into account the relationships resulting from Eq. (4.6), we will find 

~(O) = _ p(O)a
2 1]~-~~ [ ~o+k A(~ )- 1}0 (1 +t]o) 1 ] 

8Mo L1 3~o+k 0
' 1Jo 1 +31]0 1}~-~~ ' 

• (O) = p(O)a
2 1}~-~~ [ 1 +1]0 B(t: )- ~0(;0 +k) 1 ] 

1} 8Mo L1 1+31]0 \Oo, rJo 3;0 +k 1}~-~~ ' 

(4.7) 

where 

1 ( 1]~-~~ 31]0 -1) 1}o 
A(~o, rJo) = -1-- ffJ {Jl 2 + 1 + 3 + 2 ~2' -rJo -IX rJo 1}o- o 

(4.7') 1 ( 1]~-;~ 3;0 -k) ;o 
B(~o, rJo) = ;o-k rp {J2-IX 2 + 3;o+k + 175-;~' 

L1 = A(~o, rJo)B(;o, rJo)-~orJo(rJ5-~~)- 2 . 

The expressions (4.7') are positive. The expressions in square brackets in Eq. (4.7) 
were investigated for various values of the parameters rp and k and for the remaining edge 
support variants. They are also positive. Hence, decisive for the signs of horizontal ve
locities of both hinge circles is the derivative of load at ,the initial moment. Now we can 
give the following information on the initial stage of the motion on the basis of solutions 
of the system of equations ( 4.3) and analysis of the expressions ( 4. 7). 

1. For the loads p(O) = p0 plastic hinges are formed on the circles of the radii e = cc 
and e = p. The system of equations (4.3) is then equivalent to Eqs. (2.2). The further 
course of the process depends on the character of the load determining function. Three 
cases are possible. If p(t) < p 0 , then there is no motion in the plate. If p(t) = p0 , we 
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obtain the problem of limit load carrying capacity. If p(t) > p 0 and the load increases 
in the initial period, and then decreases, we obtain the problem of a dynamic bending 
under impact load. The hinge circles will then move toward the supports and the width 
of the middle ring BC will increase. After some time the signs E(t) and ~(t) will change. 

t 

2. In case of a ,blast" load (p(O) > p0 and J p(t)dt ~ tp(t)), the derivative p(O) ~ 0. 
0 

The hinge circles will then move away from the supports thus decreasing the width of the 
ring BC. In the special case of a rectangular pulse corresponding to a blast loading, the 
hinge circles are immovable for the whole duration of the application of a load. Their 
relative motion toward each other begins at the moment when the load is being removed. 

In the next phase the motion of a plate is in conformity with the system of.differential 
equations ( 4.1 ). Radial bending moments in the support regions vary according to the 
expressions (3.9) and (3.10). Within the region of the centre ring BC we have, accordingly, 

M ,(e, t) = M o, 

(4.8) ( e2 -e ) M,p((!, t) = M 0 2 r/-e -1 (~(t) ~ (! ~ 'f}(t)), 

2Mo ( e2 -e) 
T,((!, t) = ---ae 1 r/-~2 • 

. The functions of radial moments reach the maximum values M 0 on the circles e = ~( t) 
and e = 'f)( t). In the region BC the circumferential moment increases from - M 0 for e = 

= ~(t) to M 0 for e = n(t). 
The motion of plate will be terminated at the moment tk determined by the following 

formula: 
llr. 

(4.9) tk = -1 f p(t)dt. 
Po 

0 

This formula is generally true for ideally rigid-plastic structures. The final positions ~1 
and 'f} 1 of the hinge circles corresponding to this moment can be found from the solution 
of the following system of equations: 

3k(I + :~e1 ) p( tk)a 2 ~1 + k 

(~~-k)2(3~1 +k) ni-~i 4Mo 3~1 +k' 

3(1 +:~e2) p(tk)a2 I +'f}t 
(4.10) 

(I-n1)2(1+3nl) ni-~i 4Mo 1+3nl' 

which has been obtained after substituting the condition W(tk) = 0 in the equations of 
motion (4.1) and (4.1 '). 

Due to the complexity of the equations describing the motion of the plate, the functions 
W(t), ~(t) and n(t) can be determined in a numerical way only. We will perform numerical 
analysis for the loads in the shape of a rectangular pulse. However, prior to presenting 
the results of this analysis let us make one short remark. It may be noticed that the region 
of the ring BC cannot be reduced to a circle, that is to such a situation where ~1 = 1Jt· 
Should this be the case then, firstly, we would obtain an infinite value of retardation for 
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finite values of the load equation (4.1 ") of the circle B = C and, secondly, the transversal 
force on the above mentioned circle would be discontinuous. Therefore, at the moment 
of the termination of motion some plane plasticized region would remain in the plate 
in the radial direction with non-full circumferential plasticizing. Maximum permanent 
deflection in that region can be calculated according to the same rule independently of 
the type of the load 

(4.11) 
'" '" 

w(t,) = [ [f p(t)dt]dt- : 2° [ [f r/'~~2 ]at. 

S. Rectangular pressure pulse 

In the case of a rectangular pressure pulse the load is determined by a discontinuous 
function. In the connection, two phases must be distinguished in the motion of the plate. 
In the first phase at the time interval 0 ~ t ~ T plate is under the steady load p. In the 
second phase, the load is equal to zero. 

5.1. Phase I, 0 ~ t ~ T 

In accordance with Eq. (4.7), the horizontal velocities i(O) = ~(0) = 0. The hinge 
circles are steady and occupy the position Eo and fJo, derived from the solution of the 
system of equations ( 4.3). The graphical form of solutions for the simply-supported plate 
fork= 0.20; 0.30 and 0.40 in terms of fP = p(O)fp0 is shown in Fig. 5. The first two 
equations of the system ( 4.1) are satisfied as identities. The ring BC moves downward 
in a uniformly accelerated motion with uniform initial conditions. 

By integrating twice the second equation in the set (4.1) and using the formulae (3.7) 
and (3.8), we will find the deflection 

(5.1) 

where 

1

1 .. e-k 2 

2W0 Eo-k 1
' 

p,a2 

1

1 .. 2 
4Mo w(e, t) = 2 Wot ' 

1 .. 1-e 2 
-
2 

Wo-
1
--t , fJo ~ (! ~ 1, 
-f}o 

.. fP 1 
( 5.2) w - --=--=-~ 

o- p2_a.2 : fJ~-E~ 

is dimensionless acceleration of the region BC. 
On the steady hinge circles there will appear discontinuities of the inclination angle 

of the normal to the section and discontinuities of velocity of circumferep.tial curvature. 
The above mentioned discontinuities reach maximum value at the end of the first phase 
and remain unchanged during the further motion of the plate. Within the first phase the 
field of internal forces in the plate (3.9), (3.10) and (4.8) is independent of time. 
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5.2. Phase IT, T < t < lt 

Upon removal of the load the hinge circles are no longer steady. Asswning p = 0 
in the equations of motion, we will obtain 

. [ 3k(l +:let) 
E = (3E+k)(E-k) 

(5.3) 

The initial conditions for the system of differential equations (5.3) result from the end 
of the first phase. Therefore 

(5.4) 
f.Ui2 • •• 

4Mo W(T) = W0T, E(T) = Eo, 'YJ(T) = 'YJo· 

Having substituted Eq. (5.4) in Eqs. (5.3)t, 2 we will obtain explicit information about 
the direction of the motion of the hinge line at the beginning of the second phase of 
motion: 

• q; Eo+k 
E(T+) = P2 -a.2 3Eo+k W

0 
T > O, 

• q; I +'YJo I 
'YJ(T+) = - p2 2 I 3 - .. - < 0. 

-a. + 'YJo W 0 T 

(5.5) 

In accordance with Eq. (4.9) the motion of the plate will be terminated at the time 
t~c = q;T. The duration of the second phase is equal to (q;-I)T accordingly. The final 
positions Et and 'Y/t of the hinge circles can be found from the system of equations (4.10) 
by substituting in them p( t~c) = 0. The curves of the solutions for a simply supported plate 
for various dimensions of the hole are presented in Fig. 6. 

Irrespective of the support of edges the points corresponding to the roots of the system 
of equations (4.10) lie always inside a ring limited by the circles e = a. and e = p. For 
this reason the hinge circles do not coincide with bents encountered in the problem of 
ultimate load carrying capacity. In consequence, in plates supported on both edges there 
is no phase of a rigid rotation characteristic of the solutions of dynamic bending of plates 
supported on one edge only. 

The equations of motion (5.3) have been integrated nwnerically for all the four edge 
support variants [5] and the hole radii varying within the range k E [0.2, 0.5]. Loads 
varied within the range p E [2p0 ; 15p0]. The Runge-Kutta-Gill method of the fourth' 
order has been used. The integration step has been asswned equal to I /250 of the duration 
of the second phase. The results of the nwnerical analysis will be discussed on the basis 
of an example of a simply supported plate assuming that p = 1 Op0 and k = 0.20. The 
presented example is also representative for the remaining edge support variants. 
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Horizontal motion of hinge circles has been presented in Fig. 7. Horizontal velocities 
have been shown with dashed lines and their integers, with full lines. The velocity of the 
circle C(e = 'f}(t)) is always negative. The motion of the circle B is more complicated. 
For about half the phase it moves away frpm the inner edge a.nd then reverses. However, 
because of the decreasing width of the ring BC for the whole duration of the second phase 
the retardation of the motion of this ring is even greater. In the final phase of the motion 
the velocities ~and ~ are equal to zero (with very good accuracy, errors being as low as 
0.2% and 0.1% of the initial values). 

Also transversal velocity at the end of the motion has been determined with high 
accuracy, the error being as low as 2% of the initial value; this is a consequence of a singu
larity of the 0/0 type, included in Eqs. (5.3).at the moment t~c. In spite of the above mention
ed singularity, in case of the method of integration of the equations of motion being used, 
the error in the estimate of the value W(t)~c is always insignificant independently of the 
supporting conditions. 
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Figure 8 shows the curve of maximum permanent deflections k = 0.20 depending 
the load. The deflections at the end of the first phase are shown with dashed lines. The 
influence of this phase upon the final deflections decreases with an increasing load. Within 
the load range p e [2p0 ; 5p0] the deflection w1 decreases from 48% to 18% Wmax· A more 
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detailed analysis of deflections indicated that the percentage of w1 in final deflection is 
almost independent of the size of the plate hole and is mainly due to the load. Hence, 
in case of a dynamic load only three times as great as the limit one, there is a clearly visible 
decisivJ! (quantitative) influence of the phase of nonsteady hinge lines. 

The comparison of final deflections depending on boundary conditions and hole size 
has been visualized in Fig. 9. The curves of deflections lie in reversed order to the lines 
determining the ratio p0 a2 /4M0 (Fig. 2). The deflections of fixed plates are 1.6 to 1.8 
times smaller than those of freely supported plates. In the case of plates with mixed bound
ary conditions, the deflections of plates with fixed outer edge are smaller: 

6. Conclusions 

Deformation of rigid-plastic plates which are supported on both edges under pulse loads 
is substantially different from the deformation of plates supported on one edge only. 
In the case of the former, there is neither a range of medium loads nor a final phase of 
rigid rotation characteristic of the plates supported on one edge only. In the case of plates 
supported on both edges, the rotation terminates in the phase of movable hinge lines. 
This very phase is decisive for the amount of permanent deflection. 

Extremely high accuracy of numerical calculations and very smal~ errors observed 
confirm that a proper method of integration of the equations of motion has been used. 
This method has also been tested on the basis of an example of a triangular pressure pulse. 
Here also this test yielded positive results. An insignificant influence of the form of pressure 
variations upon the value of the final deflection of the plates has been proved. Should 
identical values of pulse acting on the plate be assumed, then final deflection due to a trian• 
gular pulse would be greater by almost 5% than that due to a rectangular pulse. 
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