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Viscous flow through a haH-intinite channel 
with moving and porous walls 

A. ZACHARA (WARSZAWA) 

THE SUBJECT of this paper is a flow in the interior of the channel, considered as a slightly dis
turbed Poiseuille flow as well as a flow inside the wall treated as an anisotropic porous material, 
where the flow obeys the Darcy law. The flow is driven by the wall motion which generates 
the suction of a fluid from the environment into the channel. Similarity laws connected with 
this problem have been found and pressure, velocity and streamline distributions have been 
calculated for the wall and channel flow. The validity of the adopted approximation has been 
discussed. 

Przedmiotem pracy jest przeplyw wewnl!trz .kanalu opisywany r6wnaniami cieczy lepkiej 
w ramach przyblii:enia slabo za.burzonego przeplywu Poiseuille'a, a taki:e przeplyw wewnlltrz 
S<:ianki kanalu (traktowanej jako anizotropowy osrodek filtracyjny) opisywany uproszczonymi 
r6wnaniami Darcy'ego. Ruch cieczy wymuszony jest ruchem S<:ianki, kt6ry powoduje zasysanie 
cieczy z otoczenia przez S<:iankct do wncttrza kanalu. Zbadano prawa podobienstwa zwi1!Z3.ne 
z rozpatrywanym przeplywem oraz wyznaczono rozklady cisnien, prctdkoS<:i i linii prl!dU we 
wncttrzu kanalu oraz w 8ciance. Przedyskutowano za.kres stosowa1no8ci przyjcttego modelu. 

B CT~Tbe npe~crrumeHo TeqeHHe BHYTPH KaHana, OnHCbiBaeMoe ypaBHeHIDIMH BH3KOH >KH~
KOCTH, KaK CJia6o B03MymeHHoe TeqeHHe llya3eHJIH, a TaiOKe TeqeHHe BHYTPH CTeHOK KaHaJia, 
KOTopbie paccMaTpHBaiOTCH KaK aHH30TpOirnaH nopHCTaH cpe~a, onHcaHHoe ynpoii(eHHbiMH 
ypaBHeHIDIMH ,UapCH. ,llBIDKeHHe ~OCTH Bbi3BaHO ~BIDKeHHeM CTeHOK, B pe3yJibTaTe 
KOToporo >I<~KOCTb scacbmaeTCH CKB03b creHKy B KaHaJI. PaccMoTpeHbi 3aKOHbi no~o6HH, 
CBH3aHHhie C OllHCbiBaeMbiM TeqeHHeM, onpe~eJieHO pacnpe~eJieHHe ~aBJieHIDI, CKOpOCTH 
H JIHHHH TOKa KaK B KaHaJie, TaK H B CTeHKe. 06cym~eHbi YCJIOBHH ~OnyCTHMOCTH llpHHHTOH 
anpOKCHMa~HH. 

1. Introduction 

THE THEORETICAL investigation of a laminar flow in a channel with porous walls was in
itiated in 1953 by A. BERMAN [1]. Since then a number of papers have appeared where 
this problem was considered in its various aspects and types of approximation. Some 
examples of these works are listed in [2]. The purpose of this paper is to consider a channel 
of a particular type, as shown in Fig. 1. The characteristic feature of our analysis is to 
study not only a flow in a channel but also detailed structure of a flow ·within a wall which, 
thus far, has not been investigated. 

The channel of plane or axisymmetrical geometry, shown in Fig. 1, is closed at one 
end by an impermeable diaphragm while the other, infinitely distant from the diaphragm, 
is open. We introduce the Cartesian or cylindrical coordinate system in which the z-axis 
coincides with the axis of symmetry and the x-axis is posed at the closed end of the channel. 
The velocity components in the x- and z-directions are denoted by u and w, the symbols 
referring to the inner and outer dimension of a wall R1 and R2 are marked by the subscripts 
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1 and 2, respectively. Permeable walls move in the z-direction from the diaphragm with 
an increasing velocity W(z), whose final value W CX) is reached some distance from the 
plane z = 0. As a result of viscous effects, the motion of the wall induces the flow of a fluid 
which penetrates through the porous wall into the channel and is then transported in 
the z-direction. 

X 
W(z) 

\ 
--------------------

--w 
0~--------------------~~--~z 

FIG. 1. 

The problem set here-forth takes its origin in the field of man-made fibre technology 
and the picture described above presents one of the methods of fibre manufacturing. The 
moving wall of a channel corresponds to a bundle of fibres which is being extruded from 
a spinnerent fixed at z = 0, . through a large nember of orifices uniformly distributed over 
an area of annular form. The case of plane geometry has here been included for the sake 
of completeness. Hydrodynamics of multifilament spinning has been subject of a series 
of studies reported in a survey paper [3] and in ~ monograph [4]. 

In this paper a channel as well as a wall flow will be treated with equal attention since 
the type of ilow here considered results from the mutual interaction of both elements 
of the system. To calculate a flow in a wall, we shall apply the theoretical model introduced 
by A. SZANIAWSKI and the present author in [5]. We shall assume that the wall consists 
of a large number of identical, parallel fibres uniformly distributed over a cross-section 
of the wall and moving with the same velocity W(z). The wall will be treated as an aniso
tropic porous material where the filtration velocity obeys the linear Darcy law. The number 
of fibers is large enough to consider the wall as a continuous porous medium; however, 
fibers are so thin that their volume is small compared with the total volume of the wall. 
The channel flow will be treated as a motion of a viscous fluid and described by the Navier
Stokes equations. 

Although governed by equations of a different kind, the flows in the wall and in the 
channel are coupled by a proper condition at their boundary x = R 1 , thus obtaining 
a flow description of a continuous character in the whole channel-wall system. 

2. Wall and channel flow 

Since the problem posed in the previous section is very complex, there is a need for 
certain model simplifications which would take into account merely the most important 
effects and make the problem more tractable for effective theoretical analysis. In this way 
the wall flow will be considered not in frames of a full filtration model [5], but in terms of its 
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simplified version [6] which we call a transversal model. In this version the only com
ponent of the filtration velocity taken into account is the component transversal to fibres 
while in the z-wise direction the fluid moves with t~e velocity of fibres. Although these 
assumptions are fully adequate some distance from the spinneret, they also give surprisingly 
good results within its vicinity, as it was given in [6]. 

Thus the components of the filtration velocity in a laboratory reference system are 
as follows: 

(2.1) uf = - !_p (m)!!!._, wf = (1-qJ) W(z), 
f-t .l T OX 

where S is the cross-section of a wall per one fibre, F.L ( f/J) is a non dimensional coefficient 
of filtration perpendicular to the fibres 

(2.1') F~(rp) = 8~ (In ~ -1.5), 

and (/l(z) is the volume fraction of fibres in the wall. 
Inserting u = u1 and w = w1 from Eq. (2.1) into the continuity equation 

(2.2) 
plane case, 

cylindrical case 

and taking into account the fact that f/J ~ I, we obtain the following differential equation 
containing pressure as an unknown function: 

(2.3) 

Making use of the two boundary conditions 

(2.4) p(Rh z) = Pt (z) p(R2, z) = P2 = const, 

we find the solution, which has the following final forms corresponding to the plane (k = 0) 

(2.5) W'(z)(R~-Rf) (E-l}(z-E) 
2SFl. z2 -l 

p-p2 = P(z) x-E 
"' x-I 

and the axisymmetrical (k = I) case 

(2.5') 

where 

(2.6) 

p-p2 = P(z) (t- lnE) _ W'(z)· (R~-RD [ lnE _ E2-l] 
p, Inz 4SF.L Inz z2-I ' 

X 

E= R;' P(z) = Pt-P2. 
p, 

From Eqs. (2.1) and (2.5) we have the transversal velocity distribution for the plane and 
axisymmetrical case: 

(2.7) "r = KP(z) :. - W'~~R, ( ~- G~<;) ) ' 
7 Arch. Mech. Stos. S/81 
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where 

k = 0, 

(2.7') 
k =I. 

For the channel flow we shall confine our attention to the case which may be consider
ed as a slightly disturbed Poisseulle flow [7]. This approximation imposes certain require
ments on the geometry of streamlines as well as on the permeability and the velocity 
distribution of the wall. This question will be discussed in Sect. 5. According to this ap
proximation, velocity components may be presented as follows: 

(2.8) 

where 

(2.9) 

w = wJ.I+w, 
u = u, 

- u~:( ) P'(z) 2(1 1:2) w J.l - P'P'I z - 2k+ 1 Rl - ~ 

is basic Poiseuille solution and w, u are its small perturbations. Inserting Eqs. (2.8) and 
(2.9) into the continuity equation (2.2) and neglecting ow I oz as small compared with 
owp/ oz, we obtain the transversal velocity distribution in a channel 

- 1 [ P"R~ I ] (2.10) u = ')} 21(k+J) U(E)- W R1E , 

where 

U(E) = ~ E[(k+3)-(k+ l)E2
]. 

A knowledge of the velocity field makes it possible to calculate the streamlines-Q = 

= const from the equation 

(2.11) dQ = (mx)k(wdx-udz) 
where Q denotes the volume flow rate. 

Inserting w = w1 , u = u1 (2.1) for the wall flow and w = Wp (2.9), u = u (2.10) for 
the channel flow, after some rearrangements we obtain the following expressions in which 
the axes x and z of the coordinate system coincide with the streamline q = 0: 

. Q P'R~ {E1 U(E), 0 ~ E ~ 1. 
(2.12) q = (nRt)kRt = const = WEt+t_ (k+1)(k+3) 1, 1 < E ~X· 

As it was pointed out in [7] the pressure in the x-wise direction may be taken as 
constant, which means that the pressure distribution in the channel flow is determined 
merely by the pressure value at the boundary of the wall p(R1 , z) = Pt (z) or, in terms 
of our notation, by the function P(z) (2.6). This quantity and its derivatives, unknown 
as yet, which appear in all expressions for the pressure, velocity and streamline distrib
utions in the wall as weit as in the channel flow (2.5), (2.7), (2.9}, (2.1b) and (2.12) may 
be found from the continuity condition for the transversal velocity at the boundary x = Rt 

(2.13) u1(Rh z) = u(Rh z). 
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Putting ~ = 1 into Eqs. (2.7) and (2.10) and inserting them into Eq. (2.13), we obtain 
after some rearrangements the second-order ordinary differential equation for the pressure 
function 

(2.14) 

With the aid of this equation we are able to transform Eq. (2.10) into the following form: 

(2.15) u = KPU(~)+W'R1 ;" [G(z)U(~) ~ ~]. 
The transversal velocity in the channel is then a linear combination of two separate com
ponents determined by the permeability and the extensibility of the wall. 

The axial velocity perturbation w in the channel flow has been neglected in Eqs. (2.2) 
and (2.12) as small in comparison with the other terms. However, we shall use it to estimate 
the range of validity of the applied approximation. Putting Eq. (2.8) into the Navier
Stokes equations and linearizing them with respect to small perturbations, we obtain 
the equation [7] 

(owp _fowp _ ., a ( " aw) 
WP-!:1-+u-!:1--k~ X~. 

uz uX X uX uX 

With the use of Eqs. (2.9), (2.15) and the boundary conditions 

:x w(O, z) = 0, w(Rh z) = 0, 

we find the solution 

where 

W1(E) = 2":1 [G(x)· 2 W3(E)-(1-~2)], 

W,W = 2'~' [G(x)· 2W4W-(I-~2)- l~k (I-~)]. 

W3(E) = . 1 ~E
2 

[(k+5)-(k+1)~2], 
b ... ' 

W4(~) = 1 ;(~!
2

5) [2(6k+23)- (15k-1)E2 +(3k+ 1)~4]. 
We can see that w is a linear combination of the two Reynolds numbers based on both 

of the transversal velocity components resulting from the extensibility and the permeability 
of the wall. Thus the axial velocity perturbation w is small in comparison with Wp (2.8)1 

if both Reynolds numbers are small or if the two components of the formula (2.16) are 
of an opposite sign and balance each other. 

The flow in channel of permeable, infinitely thin walls reported in [7] may be treated 
as a limiting case of the problem considered in this paper. For R2 ~ R1 , or x ~ 1 we 
obtain from Eq. (2. 7') 

,. 
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(2.17) limG(x) = 1. 
%-+1 

Putting Eq. (2.17) into the relations (2.14), (2.15) and (2.16), we transform them to the 
corresponding formulae of the paper [7]. 

3. Calculation of the pressure function P(z) 

The pressure function P(z) can be calculated from the differential equation (2.14) 
which contains two functions K(z) and W(z), not specified as yet. 

Throughout the present analysis it will be assumed that the permeability of the wall 
does not vary with z, 

(3.1) K(z) = const. 

while W(z) increases from 0 to W CXl, according to the relation 

(3.2) 

where A is a length scale (see [6]). 
The assumptions (3.1) and (3.2) are justified as the first approximation of real condi

tions in man-made fibre manufacturing. In fact, bundle permeability (2. 7') does vary 
with the distance z since fibre volume fraction q;(z) decreases with z owing to the ex
tensibility of fibres, but this variation is of a logarithmic character (2.1 ') and does not 
have a significant influence on the final results of the calculations. The expression (3.2) 
is also not quite adequate since the initial velocity of the fibres W(O) cannot be equal to 
zero; however, being much less than the final velocity W CXl, it may be neglected in Eq. (3.2). 

Inserting Eqs. (3.1) and (3,2) into Eq. (2.14) and introducing the nondimensional 
parameters 

(3.3) 

we obtain 

(3.4) 

K 
f/J =- and 

Rt P =~ A' 

This equation contains three dimensionless parameters C/>, p, x which determine the effects 
of permeability, extensibility and the thickness of the wall on the pressure function P(z) 
and thereby on the flow in a wall-channel system. To reduce the number of parameters 
we shall transform Eq. (3.4) into nondimensional form 

(3.5) JI" -/I= ye-YC 

where the nondimensional pressure function 

(3.5') 
p 

II(C) = -=-, 
p 

depends on the following coordinate. 

(3.5") 
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and a single free parameter: 

(3.5"') 
p p 

"=a- = 21J!'k+3 y'q, ' 

which comprises the influence of extensibility and permeability of the wall. The other 
effect of finite wall thickness is included in the reference pressure ji (3.5). The parameter y 
takes values from the range (0, oo). The lower bound y = 0 corresponds to the case 
of rest ( W(z) = 0, that is when p = 0 or A -+ oo) or to the case of infinite permeability 
(q,-+ oo), while the upper bound (y-+ oo) may be interpreted as wall motion at constant 
speed W(z) = Woo. However, the latter case exceeds the frames of the · model since it 
implies nonzero flow rate through the diaphragm at z = 0 (see Eq. (2.9)). 

It should be noticed that the form of Eq. (3.5) is common to both plane and axi
symmetrical cases. To find its solution we introduce two boundary conditions: 

(3.6) /1'(0) = 0 lim/I(C) = 0. 
C-+oo 

The first results from the impermeability of a plane z = 0 (see Eqs. (2.9,) (3.2) and (3.5')) 
and the second from the requirement that the pressure function ought to be finite at in
finity. With the use of these boundary conditions the solution of Eq. (3;5) has the form 

1
- 2"_ I (ye-C- e-"c), y =F I, 

(3.7) II(C) = : 
- 2 (1+C)e-', r= 1. 

The distribution of the nondimensional pressure function II(C) has been calculated from 
Eq. (3.7) and presented in Fig. 2. It can be seen that the pressure function is always 
negative and increases monotonically up to zero at infinity, where the pressure on both 
sides of the wall equalize. Thus the greatest sucking effect takes place at the initial section 
of the channel, z = 0. This will be the subject of our detailed examination. 

l 1/?. 

0 0.25 0.5 0.75 0.15 0.5 o.zs 0 

~-0.2 

0.5 

1 
-0.5 

-1 ~--------_.----------~----------~--------~ 
n(~) 

Fio. 2. 
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By means od Eqs. (3.5) and (3.7) we can express this pressure drop at z = 0 in the 
following nondimensional form: 

(3.8) P(O)~ ~ ~G{x) .. I k+ 3 p 
~ V ~ P+~~~+~~ 

which displays the influence of the three factors: permeability, extensibility and thickness 
of the wall for both plane and axisymmetrical geometry. The relation (3.8) has been 
plotted in Fig. -3 for a wide range of the three parameters p, ~' X· It is seen that walls of 

~ ~ ~ 

-fO 

-100 

--------------------
-------------------

-.-~-------------------

.BLp(o) w .... 

Plane f'law (k-0) 

Axisymmetr. Flaw (k=1) 

FIG. 3. 

a high hydrodynamic resistance (large thickness x or small permeability tP) increase the 
pressure drop between the environment and the interior of the channel. The extensibility 
parameter P has a similar influence, which is better seen for walls of large permeability 
(e.g. ~ = to- 2 , Fig. 3). 

4. Pressure and streamlines distributions 

Once the pressure function P(z) has been found, all characteristics of the ftow given 
in Sect. 2 can be calculated. Thus the pressure distribution within the wall, given by 
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Eq. (2.5), may be expressed in a nondimensional form for the plane and axisymmetrical 
geometry, respectively, 

(4.1) p- P2 = II(C) x-; _ _!_ '(C) (;-I)(x-E) 
p,p x- 1 2 'P x2 - 1 ! ' 

(4.2) p-_P2 =li(C)(l-lnE) _ _!_ '(C)(In~ _ :;
2
-1), 

p,p lnx 2 . 'P lnx x2 -1 

where tp(C), derived from Eqs. (3.2), (3.3') and (3.5"'); 

(4.3) 'P = 1-e-,c 

is the nondimensional wall velocity. . 
The pressure distribution in the channel is given by the function ·II(C) itself since, 

according to our approximation, the pressure is uniform throughout the channel cross
section. Introducing the nondimensional flow rate 

(4.4) 
· Q 

q = -=-, 
Q 

where Q = (nR1)"R1 Woo is an asymptotic flow rate far from the plane z = 0, we can 
transform the expressions (2.12) into the following form: 

(4.5) 
o ~ E ~I, 
I .< e ~ x· 

The analysis of Eq. (4.5) displays some peculiar features of the flow pattern. According 
to our definition, the streamline q = 0 coincides with the axes of the coordinate system. 
However, under certain conditions a supplementary streamline q = 0 is also possible. 
It extends from the axis ; to the axis C, thus by passing the origin of the coordinate sys~m 
(Fig. 7b ). Below this streamline we can observe eddy which circulates with a negative 
flow rate forming a kind of separation bubble. It may _be confined to the interior of the 
channel or may also penetrate the wall. The interesection points of the supplementary 
streamline with the axes of the coordinate system are denot~d by (E0 , 0) and (0, C0 ). 

The coordinate ~0 may be calculated from Eq. (4.5) by putting q = 0, 

1

1/-1 [(k+3)- 2(y+ 1)], 0 ~ ~ ~ 1, 
J' 2k yG(x) 

~0 = - I 

I [ G(x) y: I r+ I ' I < ' .; x. 
(4.6) 

whereas the abscissa Co is determined by a transcendental equation q(O, Co) = 0 derived 
from Eq. (4.5). Both coordinates have been plotted against x in Figs. 4 and 5 for the 
plane and axisymmetrical cases. . . 

The eddy intensity q0 can be measured. by the value of a flow rate in the eddy centre 
where fluid velocity drops to zero. The intensity q0 has been calculated and plotted in 
Fig. 6 against x with y as a shape parameter. We can see that the intensity q0 is usually 
very small so that the separation bubble may be considered as a fluid at rest, except in 
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1.4 1.6 X t 

F'Io. 6. 

the cases of higher values y and x where the intensity is comparable with the asymptotic 
flow rate at infinity. 

The eddy appears if the following condition is satisfied: 

2 
(4.7) 

y > (k+3}G(x}- 2 

following from Eq. (4.6) for E5 > 0. 
As an example, detailed calculations of isobars and streamlines have been carried out 

for the axisymmetrical channel in whi~h the geometry is characterized by the parameter 
x = 1.5. The values y = 0.25 and y = 1 have been chosen so as to illustrate the non
separated and separated flow pattern (Figs. 7a, b). 

5. Validity of the model 

The model introduced in this paper enables calculation of the pressure and velocity 
distributions in the wall as well as in the channel using simple formulae. This has been 
made possible owing to simplifying assumptions which, however, limit the generality of 
the model. In this section we shall briefly discuss the range of its applicability in the case 
of axisymmetrical geometry. The results for plane geometry are of a similar character with 
some quantitative discrepancies. 

The main assumption of the model is the adoptee<~ approximation of the slightly disturb
ed Poiseuille flow, which can be expressed by the conditions 

(5.1) 
u 
-~1, 
w, 

w 
-~ l. 
w, 

The first is generally satisfied except for the region near the closed end of the channel 
(z = 0) where it locally fails as it can be seen in Figs. 7a and b. 
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FIG. 7. 

The second is of a dynamical character" as the velocity perturbation w, expressed by 
the relation (2.16), takes partly into account the so-far neglected inertial terms of the . 
Navier-Stokes equations. This condition requires more detailed examination. It is always 
satisfied at the wall (x = R1) and at infinity (z -+ oo ), where w = 0; however, in the interior 
of the channel including its initial cross-section z = 0 the fulfilment of this condition 
depends on flow properties. We shall examine the condition (5.lh in the centre of the 
closing wall of the channel (x = 0, z = 0) where the fulfilment of this condition is 
most difficult. Inserting Eqs. (2.16) and (2.9) into Eq. (5.1)2 we obtain after some rearra
ngements 

(5.2) e= 
w(o, o) 1 [ . 3 , ] 
w (O O) .~ P· Re~ G(X) ·2 -1- -1 ~I, 

11 ' . . +y . 

where 

Re= WooRt. 
. . . , . 

The quantity e/(tJ ·Re) has been plotte_d against y for x = 1, 2 in Fig. 8. It should be 
noticed that e is not proportional to .. the Reynold.s number itself but to the product tJ • Re~ 
which means that the low Reynolds number is not necessarily required to satisfy Eq. (5.2). 
This· relation 'has the same character as irr the case of a viscous .flow ' through~-a slightly' 
divergent channel, where .. :neglecting inertial terms is justified if ~- ·Re ~ - 1; ~ being the 
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angle of divergence. The latter case may also be considered as a slightly disturbed Poiseuille 
flow [7]. It is worth noting that for a given parameter x there exists such a value y that 
e = 0, apart from a magnitude of the product P • Rt. 

e- w(O,O} 1 
0.6 - w,;ro:oy Re13 

-0.4 ....._ _________ _... _________ _.... 

Fi:o. 8. 

It results from our analysis that the validity of the model presented in this paper is 
limited to the case where the parameters determining the flow properties satisfy the con
dition (5.2). A more general model of a wider range of applicability should abandon the 
Poiseuille approximation and take into account inertial terms of the Navier-Stokes 
equations. 
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