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Nonlinear niicropolar continuum model of a composite · reinforced 
by elements of finite rigidity 
Part I. Equations of motion and constitutive relations 

A. BLINOWSKl (WARSZA WA) 
-. 

A NONLINEAil orthotropic continuum model of an elastic composite reinforced by a single family 
of rods is considered. Finite rigidity of fi.bers and local nonhomogeneity of the stress field in 
the neighbourhood of the elements subject to bending are accounted for by introducing the 
assumption on the dependence of the elastic energy of the model continuum upon the curvature 
of the fibers. In the energy balance the body couples, rotary inertia and torsional rigidity of 
the rods are disregarded. The reinforcement elements are also assumed to be kinematically 
associated with the matrix. Considerations concerning the energy balance yield the equations 
of motion and the constitutive relations which represent a particular case of a micropolar 
continuum with constrained rotations, with the boundary conditions expressed in terms of 
moments and rotations which possess a clearly determined physical interpretation. 

Rozpatruje si~ nieliniowy ortotropowy model ci~gly sp~zystego kompozytu zbrojonego jedrul 
rodzin~ p~t6w. Skoflczo~ sztywnosc element6w zbrojenia na zginanie oraz lokaln~ niejedno
rodnosc pola napr~i:enia w otocZeniu elementu uwzgl~ia si~ poprzez wprowadzenie zaloi:enia 
o zalemoSci energii spr~zystej modelowego o§rodka ci~glego od krzywizny p~t6w. W bilansie 
energetycznym pomija si~ momenty masowe, bezwladnosc momentow~ oraz sztywnosc pr~t6w 
na skr~nie. Zaldada si~ taki:e, i:e elementy zbrojenia ~ kinematycznie zwi~ne z matry~. 
W wyniku rozwai:afl nad bilansem energetycznym otrzymuje si~ r6wnania ruchu i r6wnania 
konstytutywne stanowi~ce szczeg6ln~ realizacj~ modelu anizotropowego osrodka momento
wego ze zwi~ymi obrotami o jasno sprecyzowanym sensie fizycznym warunk6w brzego
gowych w momentach lub obrotach. 

PacCMaTpHB8eTC.R HeJIHHeHHaH OpTOTpOIIHa.R CllJIOIIma.R MO~eJib ynpyroro KOMII03~0HHOro 
MarepuaJia, apMHpoBaHHoro o~ ceMeikTBOM crep>KHeit. KoHe'llla.R >KeCTKocn. apMHpoBKH 

npH H3rH6e H JIOKam.Hbie KOHI.teHTplmHH Hanp.R>KeHHit, B03HHKBIO~e B OKpeCTHOCTH H3rH· 

6aeMoro 3JieMeHTa ytiHTbmarorc.R nocpe~CTBOM npe~oJio>KeHH.R o 3aBHCHMOCTH ynpyroit 3Hep
rHH MO~eJThHOft cpe,rn,I OT KpHBH3Hbl CTep>KHeit. He ytiHTbffiBIOTC.R MaCCOBbie MOMeHTbi, MOMeHT

Ha.R HHep~ H KOHe'llla.R >KeCTKOCTb 3JieMeHTOB apMHpOBKH npH KpyqeHHH. flpe~o.nara
eTCH, 'llTO apMHpOBKa KHHeMaTHlleCKH CB.R3aHa C MBTpHUeH. 113 ypaBHeHHft 3HerpeTIIllecKOrO 
6aJiaaca BbiBo~c.R ypasHemm ~H>KeHH.R H onpe~eruno~e ypasHeHH.R. lloJiyqeHHa.R 

MO~em. .RBJI.ReTC.R TaKHM 'llaCTHbiM CJiyqaeM 8HH30Tp0IIHOH MOMeHTHOH MO~eJIH C KHHeMaTH

qeCKH CB.R3aHHbiMH OOOpOTaMH, M.fl KOTOporo KpaeBbie yCJIOBH.R Ha MOMeHTbi H BpameHHe 

HMeiOT 'lleTKoe <f>H3H'tleCKoe HCTOJIKOBaHHe. 

Introduction 

M. ARcisz [1] in her paper considered a model of deterioration due to the loss of internal 
stability of a fiber-reinforced material. Physical interpretation of such type of fracture 
lies beyond the frames of continuum models although it appears rather obvious: at the 
stability loss of a fiber, its bending produces- under sufficiently small radii of curvature.-:
a strong nonhomogeneity of the stress field and this leads to detaching of the fibers from 
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the matrix. The material considered in that paper was simple and characterized by a sym
metric stress tensor, i.e. the reinforcement was taken into account only by introducing 
anisotropic material properties of the medium. It seems to be of interest, from both the 
scientific and technological points of view, to consider the case of finite rigidity of the 
reinforrenient combined with a 'considerable tlexibility of the matrix. For instance, one 
could think of an insulating material of the foam plastic type reinforced by steel wires 
to increase its strength in compression. One could not exclude the possibility of applying 
such materials to structural purposes since their insulating properties in the direction 
perpendicular to the fibers would remain practically unchanged, while their strength 
measured along the fibers would considerably increase. 

Let us now consider the elastic material reinforced by a single family of fibers or, 
more precisely, by elastic rods. It will be assumed that a ~rtain vector A characterizing 
the direction of reinforcement can be aScribed to each material particle of the composite. 
The cases of reinforcement of finite bending stiffness will be considered. Such material 
will be referred to as transversely isotropic elastic micropolar material. The elastic energy 
of the material will be assumed to be a function not only of the stress tensor invariants 
and the vector A, but also of the vector of curvature of the reinforcement elements; our 
considerations will be confined to the cases in which these elements in the unstrained state 
will be parallel and uniformly distributed. Torsional stiffnes of the reinforcement will 
not be taken into account, and this assumption seems to be justified by the fact that the 
cases in which this stiffness might play an important role are rarely encountered in practice. 

Such simplifying assumptions make it possible to construct a relatively simple variant 
of the couple stress theory with constrained rotations confined to a single specified vector. 

1. Geometric relations 

Let the positions of the material particles X of the body, identified by the prescribed 
values of the material coordinates If", IX = I , 2, 3, be given in the form 

(1.1) 

The positions of the particles X in the body at instant t are denoted by 

(1.2) R(X, t) = R(u«, t). 

Let in the undeformed body a certain specified family E of material fibres be given such 
that each particle X belongs to one and only one material fiber. Thus, under the given 
parametrization of fibers belonging to the family E, a vector A tangent to the material 
fiber may be ascribed to each material particle X. If the parametric equation of the fiber 
containing a particle X is written as 

(1.3) r = r(s) = r(u«(S)) (IX = I, 2, 3), 

then the vector A assumes the form 

(1.4) 
dr 

A= dS" 
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Let S denote a material parameter, i.e. such a paramater which retains its value in 
the process of deformation; then the contra variant components of the vector A in the 
underformed state written in base ix = oRfoua.: 

and the components of A written in base 1a. = oRfaua.: 
Aa. =A· g' 

will be the same. 
Denoting by gPII the metric tensor in deformed state, we may determine iti ·the 

deformed body the field of unit vectors tangent to the .family E, 

dr Aa. aa.= . . 
JfgpvAPA• 

(1.5) 

Curvature of the material fibers of the family ~ is expressed in terms of the modulus of 
the vector x determined by the formula 

(1.6) 
da 

X=
ds' 

where s denotes the natural parametrization in the deformed state. Equation (1.6) 
may be rewritten in the form 

(1.7) 

Since s is a natural parameter, then 

(1.8) 1:1 =I, 

and hence 

(1.9) I~ ~~1=1~11~~1= I. 
If the parametrization s is selected so that the sense of vector a complies with that of vector
A, Eq. (1.9) yields 

( 1.10) 
dS 1 1 

ds = ~~~ = }"A"A'g••. 

On using Eqs. (1.10), the formula (1.7) may be written as 

(l.ll) 

while the differentiation with respect to S is written in the form 

to• 
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(1.12) 
d a(·) aua. 
dS ( . ) = aua. as 

whence, for instance, 

(1.13) 
dR aR aua. oua. 
dS = aua. oS = Ice as . 

Due to the fact that A = A~, 

(1.14) 

and Eq. (1.11) assumes the form 

(1.15) x = t a ( aR A~' )Aa. 
y A11 A"g11, aua. oufl y All A"g~'" 

- QC a ( {J ) - a. ( aa~' "' Ogll) - a.( oa~' "' ) - a aua. a gp - a aua. gp +a aua. - a aua. gp + a Ill ;la. gp , 

in which rta. = ~~ · gfl is the Christoffel symbol and, finally, multiplication of both 

. sides by g" yields 

(1.16) 

· the comma denoting the covariant derivative. 
It is known that the contravariant components of the metric tensor gxfl = gx • r/ may 

be treated ·as components of the tensor B = FFT [3, 4] in the base L, and hence instead 

of ftP we shall write gxl1 (obviously, in general, K«P i= B«P and also AOt i= AOt). 

2. Elastic energy density and its material derivative 

As it was mentioned in the Introduction, the elastic energy will be assumed to be a func
tion of the strain tensor Band the curvature vector x. Using an approach similar to that 
used in [1], the elastic energy of a. transversely isotropic body may be treated as an iso
tropic function of the tensor B, vector x and vector A; obviously, it cannot be dependent 
on the method of parametrization and hence it may depend on the direction of A and not 
on its modulus in the undeformed state. According to SPENCER [2], in the case of trans
versal isotropy for p, symmetric tensors and v vectors, there exist 6p,+ 3v-l independent 
invariants. This means that in the case of a single tensor B and single vector x, the number 
of independent invariants should be equal to 8; however,jn the .. case considered. b~r.e we 
have aetg«Pal' = 1 and d';ygrzl'cl = d';yaOt = 0, and 

(2.1) ~·a, = aOta:Ota, = b, 

and also 

(2.2) 
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Vector x is hence ex de.finitione perpendicular to A. This relation reduces the number 
of independent invariants to 7(1). 

For further considerations the fol1owing set of invariants J" will be assumed: 

(2.3) 

Jl = JJ«<lg«P, 

12 = ~ (J2-gt.4BPYg~ga.fJ), 

detg«P ~ 
J 3 = d o = detg«Pdetg · , 

etga.fJ 

14 = APA"gP"' 

Is = A«B~ A.'1g«yK4P• 

}6 = . #""gP"' 

11 = ~""Jrllgp«g .. p. 

The material derivatives of the invariants J" will also be needed. To this end the material 
derivatives of the corresponding tensor components must be determined. First of all 
let us point out the obvious identities: 

(2.4) 

(2.5) 

The symbols of material derivatives are written above the bars to stress the fact that deriv
atives of the components are considered here, and not the components of the derivatives 
of the tensors and vectors(l). 

Furthermore we obtain 

(2.6) g.,.= t:. · &s+t:.. g, = ( t). r..+t:. (,t!) 
a:R a:R CJv CJv 

= ou« • gp+L. ouP = Bu« • ~+lex. oufJ = fJp,ca+fJr~,p· 

From the equality 
. . 

(2.7) K«PgflY = ~ = 0 

it follows directly that 

(2.8) 

(1) To put it more clearly: in order to orient the vectors A and x in the base of eigenvectors of tensor 
B, six numbers must be prescribed what, together with the three invariants of B, amounts to nine invariants; 
however, taking into account the fact that we are not interested in the moduluS of A and that the vectors 
A and x are orthogonal, we have seven invariants left. 

(2) Let us note that Eqs. (2.4) and (2.5) do not imply the vanishing of the material derivatives of .Ar~ 
or Bry.p. 
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·and 

(2.9) '{J ,.p-8• g = -~; .5: v, .•. 

Equation (1.15) is now used to calculate H7, 

(2.10) 
..!.. -· - Aatg-, --a ( ali Afl ) 
,, = x . gY = J! g,. A" A• . iJuat iJufl J! g~'. A" A• . 

After transformations and using Eqs. (2.4)-(2.9), (1.5) and (1.16) we obtain 

(2.11) 

Using Eqs. (2.4)-(2.11), the following relations may easily be found: 

(2.12) i 1 = BP(v, .• +v •. ,), 

(2.13) i2 = (JBP•-Bpa.B•flgatfl)(v, .• +v •. ,), 

(2~14) i 4 = A"A•(vp .• +v.,,), 

{2.15) is = (A"B•PAp+A•BPPAfJ)(v, •• +v •• 11), 

(2.16) i6 = (~,·-2,2a"a•)(v, .• +v •. ,)+2,,a"a•v,,p., 

(2.17) i, = -2("at"fJJFla11a•+aat"tJJFl#a•-,pB•fl~)(v, .• +v •. p) 

A. BLINOWSKI 

-2(,ata/l~flaY _,fJBflY)a"a•v,., •• 

In order to determine i3 , use must be made of the relation [3]: 

(2.18) . J,=(~)'. 
where e0 , e denote the mass densities in the undeformed and actual states, respectively. 

The known relation 

(2.19) 

yields 

(2.20) . 

Let w = w(Jt) denote th~ elastic energy density. Denoting 

(2.21) rs· = 2 { iJw BP• + aw (J BP• -Bpa.B•flu ) 
- iJJ1 iJJ2 1 oa./J 

iJw iJw aw fJ aw + -- J 3 g"• +--A" A• + --2A" B• Ap + --(~,·-~2a"a•) 
iJJ3 iJJ4 iJJs iJJ6 

+ :;, 2( x. upll"" a" a' +a. up B"' x"a'- "P B'P ><")} , 

we obtain 

(2.22) 
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3. Energy balance, constitutive relations, equations of motion 

Let us postulate the energy balance which takes into account the work done by the 
moment on the cortesponding rotation of vector a; it will also be assumed that the fibers 
do not exhibit any torsional rigidity, and postulate the existence of such tensor of moments 
Ma.fJ that the moment vector Mfl at a surface with the unit normal n is expressed by the 
formula 

(3.1) Mfl = MYflny. 

Assumption of zero torsional rigidity yields 

(3.2) Mflap = 0. 

Under such assumptions the energy balance for each material region D and for each velocity 
field assumes the form 

Here 

(3.4) 

and f is the dynsity of, body forces. 
Due to the fact that 

(3.5) 

and 

(3.6) 

we obtain 

(3.7) 

whence it follows 

(3.8) eflwafl(a'f = ef1flflafla•~Pvp, •· 

Reducing Eq. (3.3) to the volume integral and taking into account the fact that Eq. (3.3) 
must hold for each material subdo.main D, we obtain for each point and each velocity 
field 

(3.9) 

where w = v. 
Calculating the covariant derivatives, substituting for w the expression (2.22) and 

rearranging the terms at the consecutive velocity gradients, we obtain 

(3.10) ( P~., + efP- ewP)vp + ( T"P + sr·~Y- e-r<P•>)vp . ., 

+ [ M""e""" a• g"' - 2e ;;. ><"a'+ 2{> ;;, (""a, B"" a•-"' ll"'•)a'] a•v,...,. = 0, 
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with the notation 

(3.11) 

The equality (3.10) must be fuUilled for each velocity field and at every point. Selection 
of the suitabl~ velocity fields at a fixed point enables us to prescribe arbitrary values of 
""' and v,..,.,, hence the following relations must also hold true: 

(3.12) 

(3.13) 

T"~.,+ef"'-ewP = o, 
T""' + sr·~,- e:r<"'"> = 0. 

The values of v11,,., cannot be chosen arbitrarily since they are restrained by the condi-
tion of the space to be Euclidean, · 

(3.14) 

Let us note that, on the ohter hand, the values d'v,.. ... , may assume arbitrary values equal 
to the components of an arbitrary tensor of rank 2(3), so that we can write on the basis 
of Eq. (3.10) 

(3.15) 

whence 

(3.16) S''" = 2e [ :;. >I'- :;
7 

( "•apll"" a•- "P B"")] a' a'. 

The expression for M"6 which does not appear in the equations of motion is, never
theless, necessary in formulating the boundary conditions; it is determined in the follow
ing manner: Eq. (3.15) is multiplied by g,..;e;H~J ~: 

(3.17) M""(c5;b:- c!J.!;)a•a. = 2e [ :;. "eel"' a.- :;
7 

"pd•g,.eee .. a.] a'. 

Furthermore, from the assumption, for each n we have 

(3.18) 

whence 

(3.19) 

and Eq. (3.17) may be written in the form 

(3.20) 

He~e b6 = aHeatpB", are components of the unit binormal vector multiplied by the modulus 
of vector x. The set of equations (3.12), (3.13) and (3.16) is written in the simple fo~ 

(3.21) r~,. + ef"' = ewP, 

(l) Let a tensor have the components Apy; then from the condition a"v,..,.,, = Apy follow 9 equations 
for 18 independent components of the tensor vu ... ,. 
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where 

-r• = e .,<••) - 2 [ e {:;. ,q' - iJa;, (,..a, B"' a"-"' .aft•) a' a'} L 
The boundary conditions expressed in terms of stresses or displacements are written 

in the usual manner, while the additional conditions in terms of moments or rotations 
are formulated as follows: 

a) Moments: 

(3.22) MPiaD = n,.MYPiaD, 

MYP being taken from Eq. (3.20). It is easily observed that for the boundary regions of 
the bodies parallel to the reinforcement, the identity MPiaD = 0 must hold. 

b) Rotations: 

(3.23) aY!aD = NY, 

NY being the field of unit vectors prescribed at the surface aD; if aD is a material surface 
parallel to the fibers, then the identity N · o = 0 follows; the density e in Eq. (3.21) is 
found from Eq. (2.18). 

The second part of this paper will be devoted to the application of the model introduc
ed here to the simplest cases of material instability. 
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