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Nonlinear micropolar continuum model of a composite reinforced
by elements of finite rigidity
Part 1. Equations of motion and constitutive relations

A. BLINOWSKI]1 (WARSZAWA)

A NONLINEAR orthotropic continuum model of an elastic composite reinforced by a single family
of rods is considered. Finite rigidity of fibers and local nonhomogeneity of the stress field in
the neighbourhood of the elements subject to bending are accounted for by introducing the
assumption on the dependence of the elastic energy of the model continuum upon the curvature
of the fibers. In the energy balance the body couples, rotary inertia and torsional rigidity of
the rods are disregarded. The reinforcement elements are also assumed to be kinematically
associated with the matrix. Considerations concerning the energy balance yield the equations
of motion and the constitutive relations which represent a particular case of a micropolar
continuum with constrained rotations, with the boundary conditions expressed in terms of
moments and rotations which possess a clearly determined physical interpretation.

Rozpatruje si¢ nieliniowy ortotropowy model ciagly sprezystego kompozytu zbrojonego jedna
rodzing pretow. Skoﬁaona sztywnoé¢ elementoéw zbrojenia na zginanie oraz lokalng niejedno-
rodno$¢ pola naprezenia w otoczeniu elementu uwzglednia si¢ poprzez wprowadzenie zaloZenia
0 zaleznoéci energii sprezystej modelowego ofrodka cigglego od krzywizny pretow. W bilansie
energetycznym pomija si¢ momenty masowe, bezwladno$¢ momentowa oraz sztywno$¢ pretow
na skrecanie. Zaklada si¢ takze, e elementy zbrojenia sa kinematycznie zwiazane z matryca.
W wyniku rozwazah nad bilansem energetycznym otrzymuje si¢ roOwnania ruchu i réwnania
konstytutywne stanowiace szczegblng realizacje¢ modelu anizotropowego osrodka momento-
wego ze zwigzanymi obrotami o jasno sprecyzowanym sensie fizycznym warunkéw brzego-
gowych w momentach lub obrotach.

PaccmaTpuBaercA HesMHelHAS OPTOTPOMHAS CIUIOMIHAA MOJE/b YIOPYroro KOMIOSHIHOHHOIO
MmaTepuasa, apMHPOBAHHOTO OJHMM CeMeiCTBOM cTepkHeil. Koneunas »KeCTKOCTh apMHPOBKH
npH u3rube M JIOKANbHBIE KOHLEHTPALMM HANPSYKEHHH, BOSHHKAIOUME B OKPECTHOCTH H3rH-
GaeMoro aseMEHTa YUHTHIBAIOTCA IOCPEACTBOM ITPE/TIONIOMKEHHA O S3ABHCHMOCTH YIIpYToif 3Hep-
THH MOJIENTEHOM CPeEI 0T KPHBHAHEI cTepykHel. He yuHTHIBaOTCA MacCOBBIE MOMEHTEI, MOMEHT-
HAsA HHEPIHA H KOHEUHAHA >KECTKOCTb 3JIEMEHTOB apMHPOBKH NpH KpydenuH. Ilpemmonara-
€TCS, YTO apMHPOBKA KHHEMAaTH4eCKH CBA3aHa ¢ matpuueli. Ha ypaBHeHuit SHErpeTHUecKoro
Gananca BBIBOJATCA YPABHEHMsS [BHMKCHHMA M ONpefesiomue ypaBHeHHA. I[Tonyuennan
MOJIe/Ib ABJIACTCA TAKMM YacTHBIM C/IyuaeM aHM3OTPOMHON MOMEHTHOW MOJENH C KHHEMATH-
YeCKH CBASAHHBIMH OBOPOTaMM, [UIA KOTOPOro KpaeBhle YCIOBHMA HA MOMEHTH! H BpalleHHe
HMEIOT 4YeTKoe (PH3HYeCKOe HCTOIKOBAHHE.

Introduction

M. Arcisz [1] in her paper considered a model of deterioration due to the loss of internal
stability of a fiber-reinforced material. Physical interpretation of such type of fracture
lies beyond the frames of continuum models although it appears rather obvious: at the
stability loss of a fiber, its bending produces — under sufficiently small radii of curvature —
a strong nonhomogeneity of the stress field and this leads to detaching of the fibers from
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the matrix. The material considered in that paper was simple and characterized by a sym-
metric stress tensor, i.e. the reinforcement was taken into account only by introducing
anisotropic material properties of the medium. It seems to be of interest, from both the
scientific and technological points of view, to consider the case of finite rigidity of the
reinforcement combined with a considerable flexibility of the matrix. For instance, one
could think of an insulating material of the foam plastic type reinforced by steel wires
to increase its strength in compression. One could not exclude the possibility of applying
such materials to structural purposes since their insulating properties in the direction
perpendicular to the fibers would remain practically unchanged, while their strength
measured along the fibers would considerably increase.

Let us now consider the elastic material reinforced by a single family of fibers or,
more precisely, by elastic rods. It will be assumed that a certain vector A characterizing
the direction of reinforcement can be ascribed to each material particle of the composite.
The cases of reinforcement of finite bending stiffness will be considered. Such material
will be referred to as transversely isotropic elastic micropolar material. The elastic energy
of the material will be assumed to be a function not only of the stress tensor invariants
and the vector A, but also of the vector of curvature of the reinforcement elements; our
considerations will be confined to the cases in which these elements in the unstrained state
will be parallel and uniformly distributed. Torsional stiffnes of the reinforcement will
not be taken into account, and this assumption seems to be justified by the fact that the
cases in which this stiffness might play an important role are rarely encountered in practice.

Such simplifying assumptions make it possible to construct a relatively simple variant
of the couple stress theory with constrained rotations confined to a single specified vector.

1. Geometric relations

Let the positions of the material particles X of the body, identified by the prescribed
values of the material coordinates «*, a = 1, 2, 3, be given in the form

(1.1) R(X) = R@).
The positions of the particles X in the body at instant ¢ are denoted by
(1.2) R(X, 1) = R(u®, 1).

Let in the undeformed body a certain specified family & of material fibres be given such
that each particle X belongs to one and only one material fiber. Thus, under the given
parametrization of fibers belonging to the family £, a vector A tangent to the material
fiber may be ascribed to each material particle X. If the parametric equation of the fiber
containing a particle X is written as

13 r=r@) = 1) (x=1,2,9),

then the vector A assumes the form

(1.4 ..
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Let S denote a material parameter, i.e. such a paramater which retains its value in
the process of deformation; then the contravariant components of the vector A in the
underformed state written in base ﬁa = 6Rf6u“

A-g
and the components of A written in base g, = 0R/du*:
=A-g
will be the same.

Denoting by g,, the metric tensor in deformed state, we may determine in the
deformed body the field of unit vectors tangent to the family ¢,

a A*
]' a“ Ef ==l
(1.5 Ve A&

Curvature of the material fibers of the family & is expressed in terms of the modulus of
the vector x determined by the formula

(1.6) x =,

where s denotes the natural parametrization in the deformed state. Equation (1.6)
may be rewritten in the form

da dS
(1.7) o
Since s is a natural parameter, then
dR

(1.8) ¥ 1 ke 1,
and hence

dR dS
(9) 7L i ‘— ="

If the parametrization s is selected so that the sense of vector a complies with that of vector-
A, Eq. (1.9) yields

1.10
(1.10) I V@A,

On using Egs. (1.10), the formula (1.7) may be written as

(1.11) x =

1 da 1 i( A )
VA A’g,, as ~ Y A*A%g,, 45 \ y 4*A'g,

while the differentiation with respect to S is written in the form

10*
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(1.12)

whence, for instance,

(1.13)
Due to the fact that A = A%,,

(1.14) ' A* =
and Eq. (1.11) assumes the form

1 o [R A4
1.1 x R e tt - wamii N e B T T — A“
e V4 A'g,, ou* (3u” I/A"A'Sm)

= a* t'::" (a’ga) = (3&4“ gs+a* g::) a‘(—gf—; &+ a,f:;g;),

in which I}, = ag,. -g® is the Christoffel symbol and, finally, multiplication of both

sides by g’ ylelds

(1.16) =ng = (g‘: a“I’,’,,) = a%a",,

the comma denoting the covariant derivative.
It is known that the contravariant components of the metric tensor §*¥ = §* - §f may
be treated as components of the tensor B = FFT [3, 4] in the base g,, and hence instead

of g% we shall write B (obviously, in general, g,s # B,s and also Ay # AD).

2. Elastic energy density and its material derivative

As it was mentioned in the Introduction, the elastic energy will be assumed to be a func-
tion of the strain tensor B and the curvature vector ». Using an approach similar to that
used in [1], the elastic energy of a transversely isotropic body may be treated as an iso-
tropic function of the tensor B, vector x and vector A; obviously, it cannot be dependent
on the method of parametrization and hence it may depend on the direction of A and not
on its modulus in the undeformed state. According to SPENCER [2], in the case of trans-
versal isotropy for x4 symmetric tensors and » vectors, there exist 6u+3v—1 independent
invariants. This means that in the case of a single tensor B and single vector %, the number
of independent invariants should be equal to 8; however, in the case considered here we
have a*g,sa° = 1 and &%, g, = a%,a, = 0, and

@0 ®'a, = a"a"ya, = 0,
and also

22 xA, = 0.
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Vector x is hence ex definitione perpendicular to A. This relation reduces the number
of independent invariants to 7().
For further considerations the following set of invariants J; will be assumed:

J1=B"p3¢3s

J; = %(IZ—B“B”'&A&:)!

= gg—gﬁ = detg,pdetg®,
2.3) J, = A*A’g,,,

Js = A*B” Apgaygdﬁ;

Js = n'x" Euvs

J"_; = "“?"Bapg”g,p.

The material derivatives of the invariants J; will also be needed. To this end the material
derivatives of the corresponding tensor components must be determined. First of all
let us point out the obvious identities:

.
[

2.4) A= A=,
@.5) B® = g% = 0.

The symbols of material derivatives are written above the bars to stress the fact that deriv-
atives of the components are considered here, and not the components of the derivatives
of the tensors and vectors(?).

Furthermore we obtain

. oR xR
00 fumswrein (8] ure ()
R dR

From the equality

.

@7 28" = 8 =0
it follows directly that
(2.8) 2% = —g%%g"(vy,,+9,.,5)

(') To put it more clearly: in order to orient the vectors A and x in the base of eigenvectors of tensor
B, six numbers must be prescribed what, together with the three invariants of B, amounts to nine invariants;
however, taking into account the fact that we are not interested in the modulus of A and that the vectors
A and x are orthogonal, we have seven invariants left.

(®) Let us note that Egs. (2.4) and (2.5) do not imply the vanishing of the material derivatives of Ay
or Bag.
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and
(29) - _g'lgﬁ Uy, v
Equation (1.15) is now used to calculate x",

2.10 "=u-"’=—-————__-—~——7.
( ) x g I/g,., 4’ out \ ouP '/gm A" A’

After transformations and using Egs. (2.4)-(2.9), (1.5) and (1.16) we obtain

@.11) ® = —2%a%a’%, o —a"(%°a’ + %°a%) v, o — 47 0*aa"0, gy +a*aP V7, .

Atg? F) (612 AP )

Using Egs. (2.4)-(2.11), the following relations may easily be found:
(2.12) J, = B*(v,,+v,,),
(2.13) J, = (IB”—B*B"g.)(0,,+9,,),
2.14) J, = 440, ,+v,,),
(2.15) Js = (4“B*A;+ A"B* 45)(v,.,+9,..),
(2.16)  Jg = (%" —2%%a"a")(9,., +9,.,) +2x"a"a" 0, ,,,
2.17)  Jq = —2(%,%3B%a"a" +a, %3 B¥x*a" — %3 B %*)(9,.., +,..)
—2(x,a3B*a? — %3 B*)a"a’v,,,,, .
In order to determine J;, use must be made of the relation [3]:
(2.18) Jy = (-9—")2,
e

where g,, o denote the mass densities in the undeformed and actual states, respectively.
The known relation

(2.19) 0= —08%0, 5,
yields
(2.20) Js = J38%(0up+9p.0)
Let w = w(J;) denote the elastic energy density. Denoting
Q21) =2 g}" B+ "’ =¥ (J,B”—B*Bg,)
2

3 Jag"+ Ow AFA’+ -ﬂv- 24*B"Ag+ —— it —— (2" — 22*a"a’)
6.1' oJ, dJs

+ —g_—;fw 2(x, %sB*a"a” +a, %3 B*xa” — %, B"’x")} g
7
we obtain

d d
(2.22) ew = o™y, ,+ 20 [ W o a—}:— (%qap B""‘a"—-x,B"‘)] (- 5. -
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3. Energy balance, constitutive relations, equations of motion

Let us postulate the energy balance which takes into account the work done by the
moment on the corresponding rotation of vector a; it will also be assumed that the fibers
do not exhibit any torsional rigidity, and postulate the existence of such tensor of moments
M*® that the moment vector M” at a surface with the unit normal n is expressed by the
formula

(3.1) M? = M"n,.
Assumption of zero torsional rigidity yields
(3.2) MPag = 0.

Under such assumptions the energy balance for each material region D and for each velocity
field assumes the form

R, P —.__f.i._
(3.3) f owdV = f n,T"0,dS+ fgf“v,.dV+ fn,,M""eha’(i)‘dS— f Q"TdV.
D éD D D D

Here
(3.4) @r =a g = (g +a°8) &,

and f is the density of body forces.
Due to the fact that

(3.5) ;.5 = ]/éTf:—:Z; = —% ﬁ%s (0, +9,0)= — %—a‘a“a'(v,.,,+o,,,.),
and

36 R

we obtain

(%) @) = (a%g”—a%'a")v,,,

whence it follows

(3.8) Epp0a°(A)° = £p5,0%a"g% 0, ,.

Reducing Eq. (3.3) to the volume integral and taking into account the fact that Eq. (3.3)
must hold for each material subdomain D, we obtain for each point and each velocity
field
3.9 —ow+(T"0,),, +of v, + (M g5, a%a’g%v,,,) , — oW'0, = 0,
where w = v.

Calculating the covariant derivatives, substituting for w the expression (2.22) and
rearranging the terms at the consecutive velocity gradients, we obtain

(.10) (T, +of* —ew)vu+ (T + 8™, — 01",

+ [M " £50,0%8% — 20 % wa’+2p % (#xas B*a" — xpB"’)a?] a'v,,, =0,
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with the notation
(3.11) ST = M"gg,,a%a"g%,
The equality (3.10) must be fulfilled for each velocity field and at every point. Selection

of the suitable velocity fields at a fixed point enables us to prescribe arbitrary values of
v, and v,,, hence the following relations must also hold true:

(3.12) T, +of*—ew* = 0,
(3.13) T4+ 8", —p1™ = 0.
The values of v,,, cannot be chosen arbitrarily since they are restrained by the condi-
tion of the space to be Euclidean,
(3.149) Yury = Up,yo-

Let us note that, on the ohter hand, the values a"v,.,, may assume arbitrary values equal
to the components of an arbitrary tensor of rank 2(®), so that we can write on the basis

of Eq. (3.10)

(3.15) M7 ep,,a%g% = 2g—x" ?’—29 o, Y (%85 B*a" — %, B*)a,

whence

(3.16) s = 20| -2 -al(xaaﬁB"a“—-ng“ﬁ)]a’a".
oJe oJ4

The expression for M*® which does not appear in the equations of motion is, never-
theless, necessary in formulating the boundary conditions; it is determined in the follow-
ing manner: Eq. (3.15) is multiplied by g,:c"“a, :

3.17) M?(83 62— 64 8%)a’a, = 29[2{ xeeta, — g}v xpB‘““g,,eeE"‘a,] a’.
7

Furthermore, from the assumption, for each n we have

. n ?a =0,
(3.18) yM?"a; =0
whence

(3.19) M"qg = 0,

and Eq. (3.17) may be written in the form
aw ., Ow " v ]
a.fﬁ b F? ngﬂ Bma g’o ¥

Here b° = a,6*x, are components of the unit binormal vector multiplied by the modulus
of vector x. The set of equations (3.12), (3.13) and (3.16) is written in the simple form

(3‘21) T":,'l'gfﬂ e Q‘V“Q

(3.20) M = 29a”[

(%) Let a tensor have the components Aj,; then from the condition a”vyu,yy = Auy follow 9 equations
for 18 independent components of the tensor vu.sy.
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where

) ow ow
T = Q'{( o P | [9(—6—.,-6—#— —a—J’— (x‘aﬂB“paﬂ_xﬂBﬂ#)a’ay)]'?.
The boundary conditions expressed in terms of stresses or displacements are written
in the usual manner, while the additional conditions in terms of moments or rotations
are formulated as follows:
a) Moments:

(3.22) MP|op = n,M"|;p,

M?? being taken from Eq. (3.20). It is easily observed that for the boundary regions of
the bodies parallel to the reinforcement, the identity M”|;p = 0 must hold.
b) Rotations:

(3.23) a’lsp = N?,

N? being the field of unit vectors prescribed at the surface dD; if dD is a material surface
parallel to the fibers, then the identity N - n = 0 follows; the density p in Eq. (3.21) is
found from Eq. (2.18).

The second part of this paper will be devoted to the application of the model introduc-
ed here to the simplest cases of material instability.
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