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Nonlinear micropolar continuum model of a composite reinforced 
by elements of finite rigidity 
Part ll. Stability at compression 

A. BLINOWSKI (WARSZAWA) 

THE MODEL of elastic composite proposed in the first part of the paper is appied to the analysis 
of internal stability of a layer cut out from the body in the direction transversal to the fibers 
and compressed normally to the middle surface. The stability is investigated using the method 
of superposition of small periodic strains on finite uniform deformation. In the limiting case 
of inextensible reinforcement elements relations are obtained, which enable the prediction of 
the instability point on the basis of the formulae expressing the phase and group velocities of 
transversal waves in terms of the applied load. 

Zaproponowany w pierwszej ~i pracy model momentowy kompozytu spr~iystego wyko
rzystuje sict do badania statecznoSci wewn~trznej warstwy materialu wyci~tcgo poprzecznie do 
kierunku zbrojenia i 8ciskanej prostopadle do plaszczyzny srodkowej. Statecznosc bada si~ 
met~ nalot.enia malych periodycznych odksztalcefl na dut.e jcdnorodne. Dla granicznego 
przypadku niewydlui:alnych element6w zbrojenia otrzymuje sict zalemoSci pozwalaj~ce prze
widziee punkt ut.raty stateczno8ci na podstawie zalemo8ci prctdkoSci fazowej i grupowej fal 
poprzecznych od przyloionego obci~nia. 

llpeMO>KC.HH&H B nepBOH q&CTH pa6on.I MOMCH'l'H1UI MOAeJib KOMn03HTHOI'O M8Tepii8Jia HC
UOJIL3YeTCH AJU1 HCCJICAOB&BIDI BH)'TpCHHCH yCTOillJHBOCTH CJIOH C nonepetmbiM mmpasneHHeM 
apMHpOBKH, C>KHMaeMoro nepneHAHI<YnJIPHO cepeAHHHOH nnOCKOTH. Y CTOitlmsocn. HCCJie
AfeTCH nocpeACTBOM HanO>J<CHHH MaJibiX nepHOAJNCCKHX Ae<l>opM~ Ha K8 KOHCtmbiC O~o
poAHble Ae<l><>P~· ,Ilml npeAem.Horo cnyllaH HepaCTH>KHMOH apMHpOBKH UOJIYliCHbl 38BH
CHMOCTH, U03BOIDIIOIInfC npeAS~eT& 3HaqeHHe KpHTHliCCKOH Harpy3KH no xapaKTepy 38BH
CHMOCTH <t»aaosoi H rpynnosoi CKopocrei nonepe'IHhiX BOnH OT npuno>KeHHoro C>KHMalO~ero 
yCHnHH. 

1. Introduction 

IN' PART I of this paper [1] we have derived the equations of motion and equilibrium 
of a composite material reinforced by a single family of elements characterized by finite 
stiffness; the equations have the form 

(1.1) 

the stress tensor 'P11 being, in general, not symmetric. The tensor is determined from the 
constitutive relation 

(1.2) T"P = (}'r<"P)_ {2e [ aw ~- ow ("a.apSXflaP-"pBflP)]a"aY} ' 
oJ6 oJ1 ., 

in which B = FFT; in the reference frame of convective material coordinates the contra
variant components of tensor B are equal to the components of the metric tensor in the 
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764 . A. BLINOWRI 

undeformed state. ~ denote the components of the vector of curvature of the reinforce
ow 

ment elements, a• are components of the unit vector tangent to the fibers. -
0 

and 
J6 

:;, denote the respective derivatives of the elastic energy density function w with respect 

to x · x and xBx, and the symmetric tensor e-r<"P> is reduced, in the case of reinforcement 
of vanishing stiffness, to the classical stress tensor. The complete expression for 1:"P will 
be derived in this paper; other notations have been explained in [1]. 

The relations derived in [1] will now be applied to the analysis of stability of the 
material reinforced (in the undeformed state) by rectilinear and parallel elements. To 
this end we shall consider the field of infinitesimal strains superposed on uniform finite 
deformations. 

Let us first reduce the expressions for ,(1- to a more convenient form than that derived 
in [1]. From the definition we have 

(1.3) ,(1- - a« aY - 'Y ~==== · ( Acx ) AY 
- ,y - ygP"APA" , ygcpeA91A8' 

where A« are components of the vector tangent to the fibers i n the actual base and remain 
independent of the deformation. Equation (1.3) is transformed by differentiation to 
yield 

(1.4) 

In the case of a material which is (in the undeformed state) reinforced by a family 
of rectilinear fibers, the components ,(« = 0 vanish, the index o referring to the initial 

state; on remembering that .Jcx = A11
, we obtain 

(1.5) 
A" AY A~yA91 £191QeQCIP 0 

(geA., A8)2 gP• = 0, 

the semicolon denoting the covariant differentiation in the base icx. The vector with the 

components AY A~yA"e191Q is orthogonal to the vector A since 

(1.6) AY At,A91e.,IPQA(/ = o, · 
and thus the vanishing of their vector product (1.5) implies 

(1.7) 

The values e.," and e.," are related to each other, 

(1.8) 0 vdetgcxp 
e61PQ = E61PQ -d t o , e Kcxp 

and thus by writing doWn the expression for the covariant derivative, Eq. (I. 7) may be 
put in the form 

(1.9) 
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Consequently, after writing the necessary expression for the covariant derivative ·in Eq. ( 1.4) 
and using the relation (1.9) in order to eliminate the term containing the partial derivative 
we obtain 

( 1.10) 

where 

( 1.11) 

2. Equations for infinitesimal strains imposed of finite homogeneous deformation 

Without reducing the generality of our approach, let us confine our considerations 
to homogeneous deformations along the principal axes of tensor B, and assume the initial 
system of material coordinates to be an orthonormal Cartesian frame of reference. The 
position vector of the material particle R(rn is transformed to the form 

(2.1) 

where the primed symbols are referred to the small deformations (e ~ 1); moreover, 

(2.2) 

whence it follows that 

(2.3) 

-1 

icx{J = Bcxp = da.{h 

iu = li, i:Z2 = l~, i33 = l~, 

iu = i13 = i23 = o, 

Jrfl = frP, 
f;y p= 0, 

-1 -;1 

Bcxp = Bcxp, 

r;y = 0. 

In the following considerations the nonlinear terms in e will be disregarded in the 
expressions for the metric and stress tensors. From the assumptions (2.2) and (2.1) it 
follows that 

(2.4) 

This immediately yields the following relations · for th~ primed magnitudes, i.e. those 
referring to the superposed small deformations: 

(2.5) 

e) Expre5sion (1.11) is valid iD convectiv~ coordinates only; the fact that the magnitudes K!y form 

inthe base gcx the components of a certain· t~nsor of rank -3 follows 'immediately from the transformation 
' 1 -1 

properties of the Christoffel symbols. It can be easily verified that in an arbitrary base K!r :::;:: 2 (B,. a-:-

-1 -1 y~ 
-Bif!a,y-Bay,,)/J'Pd and, moreover, in convective material coordinates -the interesting relation .AQy = 
= v~ay holds true. . 
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The relation 

(2o6) 

yields 

(2o7) 

and 

(2o8) 

g'cx = _ (gp o (')gP 

Due to Eqso (2.3), the Christoffel symbols are written in the form 

(2o9) 
'ex iJg'/1 "ex 

Fp, = eFpy = E iJuY g o 

From Eqs. (1.10) an~ (1.11) we obtain . 

and hence we obtain for the divergence of the second right-hand term in Eq. (1.2) denoted 
in [1] by the symbol s:;f the following expression: 

(2o10) SY•" = e = 2e~ - ----
iJS'Y•P [ ow I iJ2x,'P ow I iJ2x,'fJ 

·Y• iJuYiJu• t:" iJJ6 l=c ou>'ou• iJJ, l=e iJuYiJu• 

(A na.fJ"u" A DCXU)]>AyA• x gfJcxD a ap- gfJcxD • a a . 

The con variant derivative appearing in Eq 0 (2.1 0) is reduced to . the partial derivative 
owing to the fact that both the SY•P and the Christoffel symbols are of the order of e; in the 
case of the covariant derivative [(!T(I••>],. the situation is different: 

(2o11) ((!-rCP•>],. = O~" ((!-rCP•>)+ E(!( TCIICX>F~+ T<cx•>F~) 

= E ( ~ ~ T'Cil•) + O(!' T(pex) + ~T(pex) F.'"+ ~T<cx•> F.:P) 
t:" ou• ou• t:" (1, t:" ex• ' 

Use being made Of the proprety O~ (e.f<P•>) = 00 

In order to determine e', let us use the formula 

(2012) (~)
2 

= det~a.S . 
(! detgcx/1 

It can be easily proved that, with an accuracy up to the higher order terms, 

(2.13) detga.S = detgcxp( 1 + sg;,.?•), 
and hence 

(2.14) 
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where 

(2.16) 

The first and second derivatives with respect to the invariants are assumed to be 

bounded; it is then found that the coefficients of :;. and ~;7 are of the ~rder of s2 

(the invariants J6 , J 7 are of the same order) what implies 

(2.1 1) 

(~)' - ( aJ4)'- o ( aJ2)' ~ J' B"'·-B"'a.B•P, a - a - ' a~u - 1 Ka.JJ, 
'gp. 'gp• OJJ• 

( aJ3 )I- (JI ,.p.• J '"'•)! " ( aJs )' = 2A• .B'fl A" I ag"'. - 36 + 3g I= I, agP· g,p. 

In the case of ( :;. r (k 1 = I, ... , 5), we obtain 

(2.18) 

where 

and finally 

(2.19) 

It is easily observed (cf. Eqs. (2.15}-(1.28)) that 

(2.20) '(I'•) - 2 a2w I I T - ga.{J, 
ag"'. aga.fJ 1-i 

i<a.·> = 2 aw I . 
ag". •-• 

Introducing the notations 

(2.21) 
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768 A. BI..!Nowaa 

and taking into account Eqs. (2.9) and (2.10) we· obtain the final form of equations of 
motion (in the absence of body forces): 

(2.22) olr, (4 o2w I 2 ow I ~) o4r, "a(tc"cx"· 
aucxau• og,. ogcze ·-· + ogcx. •=• -Ou0 0u"oucxau• a a a 

· [ iJw I !IIC ~" ow I " ~ "~"' ] .. x2 - (~- --uwa")+- (K''"-a'"Q'P)B (~"-a"afl} = r". 
aJ6 , ... 1 aJ, •-• 9'Q 

3. Uniform deformatj~n with the principal axis of the strain tensor directed parallel to tbe 
fibers; plane transversal wave 

The problem is obtained by assuming 

(3.1) 

that is 

(3.2) 

"3 1 
a =1;, 

a3 = .A.3, 

a2 = o, a1 = o, 

Equation (2.22) is then simplified to the form 

(3.3) 

F 11 . h . t d arcx a,cx 0 . I o owmg t e assumptiOns r =:== 0 an ou1 = au2 = , representing a p ane wave 

propagating in the direction of g3 , we obtain 

·;1 = 0, 

•• 2 { a2r2 ( i32w · ow 1 ) · · a2r3 a2w 
r = a 3 a 3 4 a a + 2 -a-12 + a 3 a 3 4 a a u u K23 K23 g33 11.2 u u g23 KH 

(3.4) 

2 a4
r 2 ( 1 aw 1 aw )}I 

-.A.; (ou 3) 4 .A.~ aJ6 + A~ a11 ·•=•' 
·;3 = { o

2
r3 (4 (32w +2~-1) + o2

r2 4 ·. a2
w -}1 

ou2au 3 og33 og33 ag33 A~ ou3iJu3 og33 og23 I=K. 

'Differentiation with respectto t~e natural space coordin~te z equal to the distance measur
ed along fibers in the· direction of g3 (denoted by primes) yields 

(3.5) 
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(3.5) 
(cont.] 

-2V<IV>(-l ~+4~)}1 . 
A2 a16 A2 oJ1 •-• 

Here V, W are the physical components of displacements in the respective directions g3 

and g2 : W = r 3
/ A3 ; V = r 2

/ A2 • It is easily verified that if g 23 = 0, if the vectors g and 
B are coaxial and the vector A is parallel to one of the principal directions of B (and hence 
of g), then, for each K and L the following equalities are satisfied: 

(3.6) 

Equations (3.5) are then decoupled to yield 

(3.7) 

w = W" (4 °2

w A~+2 ow Ai )I ' 
og33 og33 og33 · - • 

The solutions may now be sought for in the form of a transversal wave: 

(3.8) 
W= 0. 

Substituting the expressions (3.8) into Eq. (3.7), performing the differentiation and divid
ing by V0 , we are led to. the following characteristic equation: 

(3.9) 

a2w " " " Here A2 = 4 a a ,t~ A~j 1 ,;,&, P33 = - T33 (T33 is the physical component of 
g23 g23 

. h d' . f fi d ( aw 1 aw 1 ) stress tn t e trecttOn o bers), an R = 2 aJ
6 
1; + aJ

1 
,t~ · 

Confine our considerations to the solutions periodic in z; this means that k eRe. 
It follows directly from Eq. (3.9) that w may assume either purely imaginary or real 
values, and if ro is a root of Eq . . (3.9), then ( -ro) is . also a root of ··that equation; 
in the case of real-valued w Eq. (3.8) describes a dispersive wave, and for ro = 0 the 
material is statically "wrinkled". In contrast, imaginary values of ro always lead to ex
ponential instability in time. It is noted that A2 may be interpreted as the shear modulus 
measured in the ,direction perpendicular to the fibers and so, in accordance with Eq. (3 ~9), 
the problem of stability loss is physically sensible only in the case of reinforcement char
acterized by the S\lffi.ciently high Young's modulus and sufficiently low shear modulus 
of the matrix. 
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770 A. BLINOWSICI 

Let us now consider the limiting case: compression of the material along inextensible 
fibers; it follows that A-1 = A-2 = A3 = I and e = eo, 

(3.10) 2 2 . w21 A = Coo = hm -k2 " . 
k-+0 P33 =0 

This means that c00 is the limiting phase velocity of the wave at P 33 = 0, k ~ 0. 
. aw b . 

For the group velocity Cg = ok ' we 0 tam 

(3.11) c, = 
k(A2--l-

0 
P33)+2Rk

3 

~ 1 w2+Rk4 w k Rk2 

-. /k2( 2 1 " ) .k4 = k w = k +Rk2c; = c+-c-' 
Jl A -eo P33 + R 

where c = c(k, P33)- phase velocity. Consequently, 

(3.12) 

Expression (3.12) may serve for the effective determination of Rand as an important 
criterion of correctness of the theory; if all the preceding considerations were true, the 
right-hand side of Eq. (3.12) should not depend on P33 and k (or w). Denoting by kcr 
and P 33cr the respective values of k and p 33 corresponding to the point w = 0 of the stab
ility loss, we obtain 

(3.13) P33cr = eo(C~o+Rkcr). 
It means that in an infinite domain P33cr is independent of R since, once the value e0 c~0 
is exceeded, one can always find such value of k at which the stability will be lost. 

H now the compression of a layer between two rough plates is considered, it is seen 
that, depending on the assumption whether rotations at the points of contact with the 
plates are allowed or not (what corresponds to the manner of fixing the ends of fibers in 

the plates), two cases of minimal P33cr' are possible: 

(a) 

(b) 

X 

Fro. 1. 

V v, .nx k n = oSIDh, = h 

2n 
k=

h 

Fro. 2. 

(Fig. 1), 

(Fig. 2). 
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Final remarks 

The fragmentary and incomplete study in the second part of this paper, illustrated 
by only two examples, is a mere presentation of certain possibilities of utilization of the 
model introduced in the first part. In order to establish whether the model might be used 
in solving certain practical engineering problems, one snould be able to evaluate the 
necessary material functions. Due to the rather complex character of interaction between 
the reinforcement and the matrix, this is not necessarily a trivial task. A study of the 
wave propagation and stability problems under slightly more general assumptions as to 
deformation geometry and material properties would also be of interest. These problems 
will be dealt with in the author's next paper. 
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