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Finite endochronic theory for ratcheting and cyclic plasticity 

W. KOSINSKI (WARSZAWA) and T. NASHIRO (CINCINNATI) 

MATBRIAL objective noillfnear constitUtive relations of the endochronic theory are conStructed. 
In the free energy function terms up to the third order in principal values of a tensorial state 
variable and the right Cauchy-Green· strain tensor are retained. The operational defmition 
of the internal variable is given. Systematic .approximation to all constitutive relations is per
formed. The dual constitutive relations are derived as well. A number of problems are solved 
by means of the derived equations. 

Skonstruowano nieliniowe, materialnie obiektywne, zwiC\Zki . konstytutywne -~orii endochrQ
nicznej. W funkcji energii swobodnej zachowano wyrazy do trzeciego r~u w gl6wnych war
to8ciach tensorowej zmiennej stanu i prawego tensora Cauchy'ego:-Greena. Podailo operacyjn'l 
definicj~ zmiennej wewn~trznej. Przeprowadzono systematyczn'l aproksymacj~ wszystkich 
zwi(\Zk6w konstytut}'Wnych. Wyprowadzono taki:e zwiC\Zki dualne. Rozwi'lUno kilka probte
m6w, wyJcorzystuj'lc wyprowadzone r6wnania. 

TiocrpoeHbi Hemm:eiiHhie, MaTepnam.Ho o6'beKTHBHbie, onpe,l:\eJI.fiiOI.IUie cooTHoweHHH 3HAO
xpo~ecKoH TeopHH. B $}'HKIUIH cBo6oAHOH 3Hepnrn coxpaHeHbi lVICHbi AO TpeTbero nop
.RJ:n<a . B r1IBBHJ>Ix 3HatiCHIDIX TCH30pHOH nepeMCHHOH COCT01IHWI H npaBoro TCH30pa KoWH
.rpHHa • . :,UaeTC.a onep~oHHoe · onpeAeJieHHe BHYTPCHHeH nepeMeHHoH. llpoBeAe:Ha· CHCTC
MaTHtieCKa.R: annpoKcHM~ Bcex . onpeAeJI.fiiOI.IUiX cOOTHoiiieHHH. BbiBe.l:{eHbi TaiDKe ,l:{yam.
HhiC COOTHoineHH.R:. PeiiieHO HCKOTOpoe K01IHlleCTBO 3a,l:{all, HCll01Ib3y.R: BbiBC,l:\CHHbie ypaB
HCHIDI. 

1. Introduction 

THE PAPERS BY COLEMAN and GURTIN (1) and V ALANIS (2) published in the late 60's should 
be treated as the first serious applications of the internal state variable approach to thermo
dynamics of nonlinear continua. 

The first attempt at describing nonelastic, mainly viscoplastic, materials within thermo
dynamics with internal state variables is found in the paper [3] by PERZYNA and WoJNO. 

After that paper appeared, a number of articles were published. There the concept of internal 
variables (internal parameters) was used in the constitutive modelling of nonelastic (plastic) 
material behaviour. 

In 1971 V ALANIS [4] proposed his theory of plasticity without a yield surface but with 
the intrinsic time and in the conceptual formalism of the internal variable theory. Several 
versions of Valanis' endochronic theory (ET) were published together with .its applications 
to dynamic and quasi-static problems of plasticity and viscoplasticity, and fracture. More- . 
over, ET has been used in the description ·of cyclic phenomena in plasticity. 

Although ET has been constructed in the framework of the general nonlinear conti
nuum mechanics approach, most of its applications have been performed under the assump
tions of infinitesimal strains. 
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The main aim of this paper is to construct material objective nonlinear constitutive 
relations of the endochronic theory of plasticity which can be successfully used in the 
description of complex ratcheting and cyclic hardening or softening phenomena. 

The existing plasticity theories (among them the original Valanis endochronic theory) 
can describe ratcheting and cyclic phenomena only up to some level of account (i.e. strain 
and cycle number). 

In the authors' opinion there is no theory of plasticity in the framework of which 
the following features could be described(1): 

1) nonlinear dependence of ratchet strain on the amplitude of cyclic strain; 
2) nonlinear dependence of ratchet strain on steady stress; 
3) cyclic hardening and cyclic softening, i.e. changes in the number od cycles of the 

peak stress and the shape of the hysteresis loop. 
Applying the internal state variable approach constitutive and evolution equations 

of the endochronic theory of plasticity are 4!erived; these equations are more general 
than those of ET. Moreover, the equations satisfy the principle ~f material objectivity. 

For an isotr:opic material we retain in the free energy function terms up to the third 
order in principal values of a tensQrial state variable and the right Cauchy-Green strain 
tensor. The operational definition requires the internal variable to coincide with the per· 
~nent strain at unloaded (i.e. stress-free) state. The assumption of plastic incompressi
bility is made. 

Systematic approximation to all constitutive relations of the developed theory by 
polynomials in the tensorial state variable and the Cauchy-Green strain tensor is peifor
med. The ,procedure leads to the nonlinear evolution equation with only one material 
constant. 

The dual constitutive relations (i.e. in terms of the stress and the internal variable) 
are derived as well. For the problems of cyclic plasticity appropriate time scale and time 
measure are proposed. 

A number of problems solved by means of the derived equations shows the effective
ness of ET in a broad domain of plasticity. 

It should be pointed out that there exists a number of concepts of generalization of the 
classical ET to problems of cyclic plasticity, ratcheting and strain-rate effect, for example 
H~ C. Wu, K. C. VALANIS and A. R.-F. YAo [5], A. R.-F. YAO [6], H. C. Wu and· M. C. YIP 
{7], K. C. V ALANIS and H. C. Wu [8]. 

2. Framework of the theory 

In the internal state variable approach of irreversible thermodynamics a state of a 
material particle is .given by a set of the following quantities defined for the particle: the 
right Cauchy-Green strain tensor C, internal variables q1 , ••• , q,. and the system of thermal 
variables, namely the temperature and the temperature gradient. Restricting our attention 

(
1
) When a material element (a sample) is under a uniaxial steady stress and superposed cyclic- stress 

or strain in a perpendicular direction, a permanent deformation (called ratchet strain) accumulates in the 
direction of the steady stress implying large strain. This phenomenon is called ratcheting. 
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to isothermal processes, the temperature is assumed to be constant with the vanishing 
temperature gradient. 

The internal variables may be tensors, scalars or vectors. If they are tensors or vectors, 
they remain invariant with the rotation of the spatial system of reference unless the spatial 
(Euler) description is adopted instead of the material (Lagrange) one. 

For the purpose of the present paper we assume that one tensorial (symmetric) internal 
state variable q behaves as a scalar in the spatial system. 

This and the previous assumptions mean that two tensors C and q have the same 
geometric properties and both define a state. 

In the internal state variable approach (in the case considered), constitutive equations 
for the free energy V' and the second Piola-Kirchhoff stress T given as functions V"'(C, q) 
and :T(C, q), respectively, are accompanied with the evolution equation for the internal 
state variable q. In the classical approach the form of the equation is as follows: 

(2.1) it = a(C, q), q(O) = qo, 

where the superposed dot denotes the time (material) derivative. Assuming every process 
to be compatible with the second law of thermodynamics, the following potential rela
tion 

(2.2) 
a 

T = 2e ac P(c, q) 

and the dissipation inequality 

(2.3) 
a aq !P(C, q) · a(C, q) ~ 0 

can be derived as the necessary and sufficient conditions. 
It is obvious that the evolution equation (2.1) leads to the rate-dependent description, 

i.e. the theory with viscosity. The original idea of V ALANIS [4] was to formulate a rate
independent internal variable theory. To do this the (natural) time derivative in the left
hand side of Eq. (2.1) should be replaced with a "new" time derivative. This new time 
measure, called by Valanis intrinsic, is in the simplest case an arc-length E in the deforma
tion space, i.e. 

(2.4) 

where Pis a fourth order tensor. In order to describe more complex strain-history dependent 
phenomena, the differentiation with respect to some new time scale z may be incorporated 
in Eq. (2.1) provided tfte time scale z is a positive and monotonically increasing function 
of a time measure E and the state variables, i.e. 

(2.5) 
dz 
dE = h(E, C, q) > 0, zle=o = 0. 

ForE we postulate a general equation 

(2.6) e = k(D, c), Elt=O = o, 
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where D is the stretching and k is a non-negative function, homogeneous of order one, 
i.e. satisfying k(cD, cC) = lclk(D, C) for any real c. In the applications the following form 
will be used: 

k1 -material constants. 
It--is not difficult to show (compare V ALANIS [4]} that under these assumptions the 

relations (2.2) and (2.3) still hold even if we have replaced the evolution equation (2.1) 
with the equation 

(2.7) 
dq 
dz = A(C, q), ql.=o = qo. 

Now we are going to give a more precise definition of q. We assume fhe tensor q to be 
a measure of inelastic (permanent) deformation in the material coordinate system. From 
the experimental point of view the measurement of permanent deformations can be only 
performed in unloaded (stress-free) states in which total strains are permanent strains. 
Hence the tensor q should coincide in those states with the total strain. 

Mathematically the following relation 

(2.8) T = 9'"(C, q)lc=q = 0 

expresses this fact. 
Since a rate-independent (inviscid) plastic material cannot begin to change neither 

the stress nor the plastic strain at any unloaded state, the next relation 

(2.9) 
dq 
dz = A(C, q)lc=q = 0 

is physically obvious. 
We make at this stage an important assumption regarding materials to which the 

proposed equations are to be applied, namely in all deformation processes an inelastic 
deformation is isochoric. This incompressibility assumption in the inelastic (plastic) 
region is natural when metallic media are considered. As a consequence of this require
ment we have the following constraint: 

(2.10) detq = I. 
Note that in a small strain theory Eq. (2.10) is replaced by trq = 0. 

Essential for any endochronic theory is the concept of intrinsic time. It consists of the 
time measure (2.6) and the time scale (2.5). 

Valanis has used the time scale of the form 

(2.11) 
dz I 
dE= l+PE' P = const. 

In problems of cyclic plasticity the time scale reflects the deformation history and must 
cover the limit case E--. oo. In this limit case the Valanis time scale does not make any 
sense, for dzfdE tends to zero and, consequently, (cf. Eq. (2.7)) q vanishes, i.e. the material 
behaves as a perfectly elastic one. This is why Valanis' original time scale-cannot be used 
for the analysis of cyclic loading. 
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In experiments with cyclic loading, periodic inputs either in strain (strain-control 
tests) or in stress (stress-control tests) are used. In steady-state outputs, i.e. stress or strain, 
are periodic as well. Hence the constitutive relations proposed should have some periodic 
properties. Two possibilities are conceivable. The first one is to introduce a periodic func
tion (e.g. sinE) into the time scale, but this form restricts considerations to special loading 
conditions and is not applicable to nonperiodic loadings; Another possibility is to intro
duce state variables (cf. Eq. (2.5)) in the definition of time scale imitating BAZANT and 
his eo-workers (cf. [9]). The form (2.5) is different from that of Bafant's for it includes 
the d'ependence on the internal variable. The reason for this is the following: when the cycle 
number is small, the material is in general in transient stage, where the hysteresis curve 
is .not constant. In order to describe this, one h~ to incorporate the dependence on q; 
moreover, in this stage the accumulation rate of ,ratchet strain is not constant, either. 

To describe the behaviour of a material in long deformation histories and in a wide 
range of cycle number, let the time scale be an explicit function of the time measure. There
fore the function h(E, C, q) in Eq. (2.5) is split as follows: 

(2.12) 
dz 
dE= ht(C,q)h1,_(E), 

where h1 ( C, q) has to express the periodic property o( material behaviour and h2 (E) -
the influence of long deformation histories on dz/dE. We have found that the following 
forms of h1 and h2 are suitable: 

(2.13) 

c1, i = 2, ... , 5 material constants. 
For problems of material behaviour and some boundary-value problems it is often 

more suitable to formulate constitutive relations in terms of stress and internal variable 
(compa~e [5, 6]). In such a dual formulation one treats the stress tensor T and the internal 
state variable q as a state and introduce the complementary energy function 

(2.14) q; = tr(TC)- 2r;/P or q; = tr(TE)- e tf! 

using the Lagrange strain tensor 

(2.15) 

and the reduced internal variable 

(2.16) 

and the free energy function 

(2.17) 

1 
E = -(C-1) 

2 

1 
q =- (q-1) 

2 

" " 1Jl = P(E,ij). 

We can get the Lagrange strain tensor E by the relation 

(2.18) E = oq; 
aT 
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Similarly, we formulate the evolution equation, the intriasic time me~sure and time 
scale in terms of the state variables T, q: 

dq = B(T, v, E2 = l(i}, 
dz 

dz " dE= g(T, q, E). 

Note that ,the scalar-valued function I as well ask in Eq. (2.6) will depend on the invariants · 
oft, and D and C, respectively. In the next section we derive explicit expressions for the 
functions introduced. 

3. Second-order constitutive equation 

Assuming that the material under consideration is isotropic, the representation theorem 
for an isotropic scalar-valued function of twQ symmetric tensors C and q (or E and V 
states that there exist only 10 independent invariants through which the free energy func
tion can be expressed. In the case of E and q as the state variables the following set of 
invariants can be chosen: 

{3.1) 

J 1 = 21E = lc-3, J 2 = 4llE = llc-2(Ic-3)-3, 

J 3 = 8IIIE = lllc- 1 - (lie..: 3) +le - 3, 

J4 = 214, Js = 4114, J6 = 81114, !1 = 4tr(EQ), 

Ja = 8tr(E2Q), J9 = 8tr{Efi2), J 10 = 16tr(E2q2
). 

We have decided to introduce the invariants (3.1) since they vanish in the reference 
configuration, where 

C = q = 1 and E = q = 0. 

The aim of this section is to derive the explicit equations of the second-order theory 
for isotropic plastically incompressible materiais. To fulfill this we need the precise defini
tion of the order as well as the list of all invariants with their orders. 

DEFINITION. When a function f is a polynomial function in a small quantity a, then the 
order off is defined as the exponent of the lowest degree term. 

Our main assumption is: 
The principal extensions t51, i = 1 , 2, 3 are of the first order in some small parameter 

a. 
According to the classical result, the strain tensor C in the basis of its principal direc

tion has the form 
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while the Lagrange strain tensor 

[E) = [oO~~ ~2 ~ ] +_!_ r~~ ~! ~ ] . 
0 ~3 2 

0 0 ~~ 
In view of our definition of the internal variable q, the following representation is 

obvious o~ the basis of the eigenvectors of q, namely 

and, consequently, 

-[tiJ = o P2 o +!__ o Pi o . [
p 1 0 0 ] [p~ 0 0 ] 

0 0 p3 2 
0 0 p~ 

Note that at any unloaded state (i.e. T = 0) the "permanent" extensions p,, i = 1 , 2, 3 
coincide with the (total) principal extensions ~~, i = 1 , 2, 3. So we assume that P1, i = 
= 1, 2, 3, are of the first order. 

It is a standard procedure to show that 

(3.2) ord(J1) = 1, ord(J2) = 2, ord(J3) = 3. 

It should be noted that the incompressibility condition in the plastic region (2.10) changes 
the orders of the invariants of q; Both the invariants ! 4 and ] 5 are of the second order 
in the extensions P1• In fact 

!4 = trq-3 = 2(Pl +P2 +P3)+CPt+Pi +P~) = -4(f3tP2 +IJ2fl3 +P3Pt)+o(a 3
), 

where we have used the equalities 

detq = (1 + P1)
2 (1 + P2)

2 (1 + P3)
2 = 1 , 

(3.3) 
2ep1 +P2+P3) ~ -CP~+Pi+P~)-4CPtP2+P:iP3+P3Pt)+o(a3). 

The symbol o(a3
) denotes a term of the third order in a. The order of ! 5 is two, for 

! !5 = ~~~ = P1P2+P2P3+P3P1 +o(a 3
). 

Note that in the present case there is no invariant of q of the first order. The order of 16 

is three. For the consistent notation we introduce the new invariant J~ of the third order, 
using the standard method (see RIVLIN [10]), 

(3.4) . -]~ = ]6 = lllq-1- (llq-3)+1q-3 = -llq+lq. 

For further derivation we choose ! 4 and J; as the complete set of the invariants of q. 
Basing on the last results it is not difficult to show that 

(3.5) ord(J7) = 2, ord(J8 ) = 3, ord(J9) = 3, ord(J10) = 4. 

Now we make the fundamental assumption on the second order approximation. 
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The free energy function is a polynomial function of the 1's invariants and contains 
terms up to and including the third order. 

The mathematical formula of this assumption is the following expression: 

(3.6) V'= tj/(JhJ2,J3,14,J~,J7,Js,J9) = ao+a1J1 +a2J2+a3J3+a4J4 

+asJ~ +a,J7 +asJ s +agJ 9 +atoJf +au Jt +a12J1 12 +a14J1 14 +a11J1 J,, 

where a's are the material constants. 
We assume that in the natural state (the reference configuration) 1p = 0 and T = O, 

then a0 = a1 = 0. We can see that the free energy has 12 constants in this case. 
The second Piola-Kirchhoff stress relation in the case considered will be 

(3.7) T -
2
1 

= [2(a2 +2ato)IE+4(at2 +3au)Ii+4(a3 +a12)IIE)l+ [2a14Li' e . 
+4a17 E · q]l-2[a2 +2(a3 +a12)1E]E+4a3E2+2a7 q 

+ 4a 11 lEft+ 4a 8 (Eq + qE) +4a9 q2
, 

where the potential relation (2.2) has been used. 
In order to determine the material constants we make the following assumption: 
The linear part of the initial response of the material from its natural state (i.e. E = 

= q = 0) is given by the classical Lame constants A. and p. 
This gives us the following relationships: 

-2ea2 = p, 4e(a2+2ato) = A.. 

Hence 

(3.8) 
1 

ato = Be (.A.+2p). 

The condition (2.8) gives us the further constraints on the material constants. 
At any unloaded state 14 = 11 , 15 = 12, 17 = 1~- 215 and hence 

0 = ( :e +a,.)J.l +( :. +2a, }0.+(a12 +3a11 +a17)J~1 +4(a, +2a8 +a9)il.' 

+ (a 3 +a12 -2a17)Jsl +2(a17 -a3 -a12)J4q. 

This relation should be true for any symmetric tensor q and its invariants 14 and 1, 
with only constraint det (2q + 1) = 1. From this we get 

-4ea14 = A., a3 +a12 = a12 +3a11 = a17 = 0, 
(3.9) 

-2ea7 = p, a3+2a8+a9 = 0. 

Substituting these relations into Eq. (3.7) gives the stress relation 

(3.10) T = Atr(E-~1+2p(E-~+8e [a,E2
- ~(a, +a.)<Ea+O.E)+a.q•]. 

Now the number of unknown cons taRts reduces to two. The constant a3 can be inter
preted as the third-order material constant. In order to determine it we make the following 
assumption: 
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The free energy function 'l' can be decomposed into the purely elastic strain energy 
'Pc ·and the energy '1'1 of the elasto-plastic coupling effects, i.e. 

7'(E, V= 'l'e(E)+'l',(E, V, 
where 

'l'e = a101~+a212 +a11 1~ +a12111z +a3 13 = 4a1oli+4a2IIE 

+ 8d11 Ii + 8a12 lE liE+ 8a 3 I liE, 

'l', = a4 J 4 +as!~ +a,J, +a si s +agJ 9 +a14J1 J 4 +a11J1 J,. 

Now we identify the coefficient of TilE with the third-order modulus in the strain energy 
function of acousto-elasticity. In that function defined per unit mass, the third-order 
modulus is denoted by 4v3. Hence we have the relation 

(3.11) 

It should be noted that the _material constant v3, in hyperelasticity known as the coeffi
cient of second-order elasticity, can be measured using acoustic methods. 

Under the condition (3.11) the final form of the stress relation will be 

(3.12) T = 2tr(E-v1+2,u(E-q)+4v3E2+8eagq2-2(v3+2ea9)(Eq+qE). 

Now we have only the unknown constant a9 • Assuming'for simplicity--that 2ea9 = v3, 
we get the following relation: 

(3.13) T = .i.tr(E-vt+2,u(E-v+4v3(E-v2
• 

In the first approximation identifying the strain tensor E with the infinitesimal strain 
tensor E = 1/2 (H +HT) where H is the displacement gradient, both relations (3.13) 
give the V ALANIS classical stress relation [4]. 

4. Evolution equation for internal variable 

In the derivation of the evolution equation for the internal variable q we have to satisfy 
the identity (cf. Eq. (2.10)) 

(4.1) !!_ (detq) = tr (q- 1 dq) = dq · q- 1 = 0 
dz dz dz 

with det q(z)z=o = 1. This means that the products q- 1dqfdz and (dq/dz)q- 1 should 
be the deviatoric part of some tensor s treated as a function of E and q. The tensor: function 
s = s(E, v must be linear in E and q in order to be consistent with the assumptions of the 
second-order app,roxima~ion, i.e. 

s(E, V= boE+btq+b2tr(E)l, 

where b0 , b1 , b2 are material constants. The condition (2.9) results in b1 = b0 , b2 = 0. 
Hence the final form of the evolution equation will be 

(4.2) 1 dq ( A 1 ( A A A A A 2 ( A ) A -- = E-ij)--tr E-ij)l+(E-ij)q+q(E-ij)-- tr(E-ij) q. 
b0 dz 3 3 
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The nonlinear terms in Eq. (4.2) manifest the existence of elasto-plastic coupling 
effects. For the small strain theory the plastic incompressibility condition reduces to 
tr(cfq/dz) = 0 and two first linear terms in Eq. ·(4.2) are sufficient. Note that in the finite 
deformation theory there is no linear evolution equation satisfying Eq. (2.10). 

5. Dual constitutive relations 

As it has been stated above, in some particular problems another set of state variables 
may be more useful, namely the stress T and the internal variable q. Introducing the com
plementary energy function .(/) and making the second-order approximation, we arrive 
at the following strain relation: 

(5.1) E = [2b1oiT+b1211T+3b11 1}+b14I;+b1,T·4]1+[b2+b121T](IT1-T) 

+b3 (11Tl- Ir T + T2)+b7 q +b8 q2 +b9 (Tq +qT), 

where h" are material constants. 
Imposing the constraint ElT= 0 = q we get ha = h13 = 0, h1 = 1. Assuming that 

the linear part of the initial response from the natural state (i .. e. T = 0, q = 0) is governed 
by the classical elasticity coefficients, we get 

and the final form of the strain relation will be 

v l+v 2 E = --E Irl+-E-T+ [(b3 +3b11)h+(b3+b12)llT]l-(b3 +bt2)1TT 
0 0 . 

(5.2) 

+b3 T2+q+b11(T ·ci)l+b9(Tq+qT),_ 

where v is the Poisson ratio, E0 is the Young modulus. In order to determine the unknown 
constants h3 , ha, h11 , h12 and h17 , we may use the idea preSented in Sect. 3. Moreover, 
if one wishes to known the relationships between h's constants and .a's the following pro
cedure shuld be applied: Find the expressions for the invariants of E in terms of the inva
riants ofT using the dual equation for the elastic part of the complementary energy ~ e; 
express <I> e in terms of the invariants of E and finally identify this function with 

. ( a'P ) l/> e = e tr oEe E - r!'Jie. 

It should be pointed out that this method does not supply any expression for h9 and 
h1 , appearing in the elasto-plastic coupling terms. 

To obtain a dual form of the evolution equation, we use the restrictions (2.9) and 
(2.10). In the same manner as in Sect. 4 we find that q- 1dq/dz and (dq/dz)q- 1 should 
be the deviatoric part of some tensor t. The tensor t treated as a function ofT and q must 
be linear (of the first order) in order to be consistent with the second-order approximation 
procedure, i.e. 
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with d0 , d1 and d2 as material constants. The condition (2.9) results in d1 = 0 and d2 = 
= d0 ; this leads to · 

(5.3) 

where T' is the deviator of the stress tensor T. 
It is interesiing to note that in the linear case the evolution equation (5.3) reduces to 

(5.4) dq =-d0 T'dz, 

that is the increment of q is proportional to the stress deviator, with the factor of propor
tionality d0 dz. This is similar to the Prandtl-Reuss equation but here we have the Lagrange 
measures~ 

The stress-based intrinsic time measure can be defined as follows: 

E~ = Rl(lt)2 +Rllllti+R31IDtl 2
'
3, 

where the superposed dot denotes the time (material) derivative. For the time scale we 
propose 

dz A 

dET = gt(T, ii)g2(ET), 

where g1 and g2 are positive scalar-valued functions. 

6. Plastic anlsotropy In the endocbronlc theory 

In this section we are going to show an important feature of the constitutive equation 
proposed. Let us assume that at the intrinsic time E = E* the values of C and q are equal, 
i.e. C = q = q* and the material is at an unloaded state. Then, in view of our assumptions 
(2.8) and (2.9) 

(6.1) dq I - 0 9'"(C(E.*), q(E*)) = 0. 
dz z•z<t•> - ' 

Let us make a small increment LIE and find the linear part of the increment in the stress T. 
We have 

For dfdET(E*) we .. have 

dT (E*) = ()§' dC I + ()§' ~I = ()§' dC I 
dE ac dE t-t• oq dE t-t• ac dE t-t•' 

because of Eq. (6.1). Using the constitutive equation (3.10), we obtaip 

(6.2) T(E*+LIE.) = J.tr(LIE)l+2,uLIE+(4ea9 -2,3)(q*LIE+LIEq*)'+o(LIE.2
), . 

where 

dC I 2LIE = dE t•E-LIE. 
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This equation shows the existence of elasticity in the linear approximation ·without 
introducing explicitly the yield criterion concept. It should be noted that V ALANIS showed 
in his recent paper [11] the existence of elasticity in ET; however, he used a new definition 
of intrinsic time measure. Moreover, even in the linear part of the material response from 
any unloaded but prestrained state some kind of "plastic" anisotropy occurs. This is 
seen in the last term of Eq. (6.2), where the previous permanent deformation q* influences 
the linear elastic properties of the material. At virgin state ~ = 0 and q = · 0, the linear 
response is purely elastic and isotropic: This is a consequence of our .first assumption 
made in Sect. 3. 

7. Steady axial stress and cyclic shear strain ratcheting 

In this section we analyse by means of the derived equatif)n the representative ratchet
ing test: a steady normal , stress superposed on cyclic shear strain. 

c 
Under this simple loading condition the Cauchy skess T must have the form 

(7.1) [
.;.~ 

c c 

. (T] = T(t~12 

c 

c 

T(t)12 0] 
0 0 

0 0 

in the Cartesian coordinate system. T~ is constant throughout the experiment while 
c 
T(t)12 is a time dependent. The deformation gradient F, the strain E and the internal 

c 
state variable q related to T are 

(7.2) 
[

a d 0] 
[F]~ ObO, 

0 0 c 

c 

Using the known relation the second Piola-Kirchho.ff stress T = (detF) F-1T(F- 1)T 

can be expressed as follows: 

(7.3) 
[

Tt 
[T]-

- ~12 0 
0 

while the relations between the components of E and F are the following: 

(7.4) 
a=~' d = 2E12/y1+2E1 , 

b = y1+2E2 -d2
, c = y1+2E3 • 
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In the further investigation the evolution equation (4.2) with the nonlinear coupling 
terms are used together with the constitutive equation (5.2). For the axial strain E 1 we get 

· I (be c 2cd c ) (be c 2cd c )
2 

- c 
(7.5) E1 = Eo a T~-;a Tt2 +(b3-bu +3bt'2) a T~--a- T12 -b11 c(T12)2 

c 
One can see here the nonlinear dependence of Ei on the steady state T~. This follows 

c 
not only from the second quadratic term in Eq. (7.5), but also in'the coupled term T~q1 , 

c 
for the component q1 depends throughout the evolution equation . (cf. Eq. (5.3)) on T?. 

In the V ALANIS and Wu theory [8] the axial ratcheting strain e 1 is a linear function 

of the axial steady stress 0'0 • On the other hand most experiments report nonlinear depe~d

ence of the ratchet strain on the steady stress. In his thesis NASHIRO [12] has calculated 

the theoretical prediction of Eq. (7.5) of the presented theory and compared with the 

experimental data reported by IKEGAMI et al. [I3]. These data were based on observa

tions of a thin-walled tube of annealed 6:4 brass under steady axial stress arid strain
controlled cyclic shear strain. For numerical calculations Nashiro used the following 

material constants: 

E0 = I0960 kg/mm2
, E1 = 4248 kg/mm2

, c1 = 0.29;, b0 = 1300, 

c2 = 0.2, c3 = 0.6, c4 = 0.4, c5 = 2, b9 = 0.0001 mm2 /kg, 

b1, = 0.0001 mm 2 /kg, b3 = b11 = b12 = 0. 
c c 

Figure I shows two steady axial stress Tf = 6.88 kg/mm2 and Tf = 9.65 kg/mm2 super-
posell shear strain amplitude ya = J.73% (engineering strain) ratcheting curves. The 

marks ".&" and "e" denote experimental data, and the solid lines calculated values. In 

6 • • Experiment ( Ikegami et at [29]) 
-Theory .. 

10 

c, 2 Tc11· g_63 kg/mm 

c c 

20 

Cycles 

FIG. 1. Axial ratchet strain accumulation. Here T~11 = TY and [29] = [13]. 
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spite of the fact that in small cycle number agreement is not good, as a whole it can de
scribe the ratchet strain accumulating behaviour in a cyclic process. 

Figure 2 shows the influence of the steady stress on accumulated axfal strain. A very 
good agreement is seen in the description of the nonlinear lhftuence of the steady ·stress 
on the ratchet strain. 

• • Experiment {lkegami et a/ [29]) 
Theory 

Steady axial stress kg/mm2 10 

F1o. 2-Inftuence of steady stress. Here [29] = [13]. 

F10: 3. Cyclic shear stress-strain curve. 

Figure 3 represents the cyclic shear stress-strain curves. In a large cycle ~umber the 
hysteresis loop does not tend to elastic response as Valan.is' original theory predicted. 

8. Description of cyclic hardening and cyclic softening 

When metallic materials are under strain-controlled large cyclic straining accomp
anying plastic strains, then they (a) cyclically harden, (b) soften or (c) harden at first 
and soften later, depending upon the initial internal structure of the material. The cyclic 
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hardening and cyclic softening can be characterized by two factors, that is the peak stress 
and the shape of the hysteresis loop at each cycl~ number. Both phenomena, cyclic hard
ening and cyclic softening, have transient and steady stat~s.- Our objective is to describe 
consistently the peak stress and the hysteresis loop, and both phenomena using our endo
chronic theory proposed above. 

When we apply only shear stress T12 , we can assume that E and q have the following 
forms: 

in some Cartesian coordinate system. We cannot write in general E1 = E2 = E3 = q1 = 
= q2 = q3 = 0 in this shear stress loading condition because this theory is not of infinites
imal strain. The linear part of the constitutive equation (3.12) has the following form: 

(8.1) 

T12 = 2!-'(Etl -q~~), 
0 = (A+21')(Et-q1)+A(E2-q2)+A(Ea-qa), 

0 = A(Et-qt)+(A+21')(E2-q2)+A(Ea-qa), 

0 = A(E1 -ql)+A(E'J.-q'J.)+(A+21')(E3 -q3). 

The last three equations give the relation E1 -q1 = E2 -q = E3 -q3 = 0. But it does 
. I 

not 'mean that E1 = E2 = E3 • The evolution equation (4.2) under cyclic torsion is 

dq1 -- dq2 - " " dqa _ dqu _ dq23 _ 
0 dz = dz = 2bo(Eu -q12)q12 ' dz - dz - dz - ' 

dq12 " " " dz = bo(El2 -qu) +bo(Eu -qu)(ql +q2) = bo(El2 -qu)(l +2q1). 

(8.2) 

The relations dq1 jdz = dq2jdz, dq3jdz = dq13/dz = dq23 /dz = 0 mean that the tensor 
dqfdz can be expressed by two components dq1 jdz and dq12 jdz in this case. Note that 
q. = q'J., q3 = 0, E1 = ql, E2 = q2. The invariants of E are 

(8.3) J· = 2 dqt II· = (dql )2 -( dEu )2 Ill.,.= 0. 
E dt ' E dt dt ' A 

Then the-time measure is 

{8.4) d~ = ktl2dqll+k21(dq1)2-(dE12)
211'

2. 

For the function / 1 Eqs. (2.13) and (8.1) give IJI<E-~Ic~ = IE12 -q12 1 2c~; then the 
time scale (2.12) is given by 

(8.5) 

Numerical calculation was made with material constants of annealed copper 

E0 = 16700 ksi, I' = 5600 ksi, 

(8.6) v = 0.33 and b0 = 14270, k1 = k2 = k3 = 1, c2 = 0.125, 

c3 = 0.4, c4 = 0.6, c5 = 20.0 

and compared with the experimental data by LAMBA [14]. 

2 Arch. Mcch. Stos. 4/81 
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Figure 4 is Lamba's figure of the torsional cyclic straining of amplitude y = 1.1% 
(engineering strain) of annealed copper. Figure 5 shows a theoretical description using 
the above material constants of the same material under the same loading condition. 

~I 

FIG. 4. Reording of torsion~! cyclic hardening by LAMBA [14]. 

t 

FIG. 5. Description of torsional cyclic hardening. 
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• 

5 10 15 

FIG. 6. Change of peak stress. Here [33] = [14]. 

• 

20 

Cycle number 

499 

• 

Figure 6 shows the change of peak stress with respect to the cycle number n, where the 
solid line is the theoretical prediction. Figures 5 and p are in good accordance with the 
experiment. It can also describe properties in both the transient state and the steady state. 

Note added in proof: Recently K. C. Valanis and the second author have descri
bed that phenomenon using different procedure. 
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