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Application of convex analysis to the calculation of stress-state 
in elastic-plastic plates 

D. WEICHERT (BOCHUM) 

FoR AN ARBITRARY dead-load-type loading process minimum principles for stress-state in elastic
plastic plates are derived assuming infinitesimal deformations. Numerical application is given 
to some simple problems. 

Dla dowolnego procesu obci~a typu zachowawczego wyprowadzono zasady minimum 
doty(:7Jlce stan6w napr~ienia w plytach spr~zysto-plastycznych przy zaloieniu infinitezymalnych 
odksztalcen. Podano przyklady zastosowan numerycznych do pewnych prostych zagadnien 

. · szczeg6lowych. 

,I:'(.Jm npOH3BOJILHOro npo~ecca Harpy>KeHWI I<OHCepBaTHBHOrO THIIil BbiBe~eH nplfHWUI MHHH
MyMa, I<acaiO~CH HanpH>KeHHOro COCTOHHWI B ynpyro-IIJiaCTIAeCI<HX IIJIHTaX, npH npeAIIO
JIO>KeHHH HH$HHHTe3HMil.JILHbiX ~e<PopMarurlt. IlpHBe~eHbi npHMepbi tmCJieHHbiX npHMeaemm 
I< Hei<OTOpbiM npoCTbiM qaCTHbiM 3a~aqaM. 

1. Introduction 

IF NONPROPORTIONAL loading processes are considered, methods using only moments 
and curvature to describe material behaviour in plates fail in . principle and can 
only be regarded as rough approximations. By the expansion of arbitrary smooth stress 
and strain distributions by Taylor series a more realistic mathematical plate model can 
be systematically derived and related to the general three-dimensional theory. In [1, 2] 
the initial boundary value problem for generalized standard elastic-visco-plastic material 
[3] has been solved by introducing appropriately chosen Hilbert spaces using the mathema
tical tool of convex analysis. In [5] the rate boundary value problem for thin elastic
ideal plastic plates was investigated. Here an application to thin plates tinder the assum
ption of infinitesimal displacements and linear hardening material behaviour is given and 
applied numerically to some simple problems. 

2. Three-dimensional foundation 

2.1. Local formuladon of the problem 

At every instant ! 0 of the deformation process the following system of differential 
equations and_ inequalities defines the mechanical state of an elastic-plastic body (general
ized standard elastic-plastic material [2]) occupying the volume V (x1 , x2 , x3 , t) in the 
Cartesian product space of R3 and space T of time t e [0, oo), with the regular boundary 
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B = B,vB,., with the prescribed forces p on B11 and the prescribed displacements u• 
onB,.: 

2£ = (Gradu)aym in V, 

u = u* on B,., 
Diva= -f in V, 

(2.1) a ,:il=p on B11 , 

e•+e" = e } 

e• e 01p(S) in 

~ E OfP(S) 

V 

with a=a(x1 ,x2 ,x3 ,t) as the symmetric stress tensor, £=£(x1 ,x2 ,x3 ,t) as the 
symmetric strain tensor, p surface forces, f body forces (dead-load-type), n unit normal 
vector, Orad and Div gradient and divergence operator. Following [2], the generalized 
stress s = [a, ft] ·and generalized strain e = [£, 0], composed of an elastic part e• = 
= [£•, w] and plastic part e" = [£', x] are introduced with ft, w and x as internal para
meters, determined by the (linear) hardening rule [2, 3]. The superposed dot denotes the 
time derivative, 1p(s) and 9'(s) denote the generalized elastic and plastic potential, assumed 
as independent of each other [1]. The elastic part of the generalized strain e• and the rate 
of the plastic part of the generalized strain e' are assumed to be elements of the subdifferen
tial of 1p(s) and 9'(s) resp. [I]: 

1p(s)- is assumed to be strictly convex. In the case of differentiability of 1p{s) for linear 
elastic behaviour as we shall assume in the following, we have 

e OVJ(s•) 
e = as• ' (2.2) 

2tp( e•) = e• ... G -t ... e•-= ef1 L111" e:,z + w,.,.,.w,.; 

(2.3) G-'=lo ~]. i,J=l,2,3; m,n=l,2, ... ,r 

with r as the number of internal parameters. L and Z denote coefficients of elasticity 
resp. hardening, both positive definit tensors. 

V'(s)! . rp{s> 

s s 

FIG. 1. 
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cp(s) is defined as an indicator function of the domain Et of admissible generalized' 
stress tensors, attaining minimum at the origin s = 0. 

(2.4) cp(s) = { 0 
+oo 

if sE Et, 

if s ~Et, 

where Et is determined by the yield condition. In [1] it is proved that the relations (2d) 
describe adequately the initial boundary value problem of a three-dimensional elastiC~, 

plastic body (Fig. 1 ). 

2.2. Global formulation of the problem 

Starting from space coo of the smooth tensor fields and introducing the scalar product 

(T, T*)G = J T ... G ·~· T*e-'dV, T* e coo 
y 

(2.5) 

in [I] the Hilbert space n of all the generalized tensor fields T with the finite norm 11 ttt; : 
induced by Eq. (2.5) is constructed by completion of coo. n may be decotrtposed into· 
ne and ns of all kinematically admissible stress fields se defined by . 

(2.6) se= [ae, 0] := {se H:a = L ... (Grad~)sym in V, u = 0 on Bt} 

and statically admissible stress fields S11 defined by 

(2.7) s' = [as, n] := {se H:Diva = 0 in V, a· n = 0 on B11}. 

From the Gauss divergence theorem it follows that all fields se E ne are orthog()'nal) 
:to afl fields s' e H' with respect to the scalar product (2.5). The definition of the global 
~lastic potential c/J(s) and restriction on the subspaces ns' and He' of all time-differentiable 
~elds allows a global definition of material behaviour [1]. For a given perfectly' elastic 
is<>lution s0 representing external loading of the body, in [1] it is proved that the functional 

!(2.8) Ao(s') = 4>o(s0 -s')+c/Jt(s11)-(s0 -S11
, S11

)G 

twith 

{

c/J(s) = lim J CTJe(s)e-tdV 
c/J 0 (s) = e-+oo v 

for --s e s0 + H'', 

(2.9) 

and 

(2.10) 

+oo 

for 

for 

O<c<+oo, 

is strictly convex and attains miit'imum value equal to zero for the solution if a solution 
in the chosen space exists. In [I] it is proved that the solution is unique. 
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514 D. WEICHERT 

3. Application to plates 

3.1. Two-dimensional representadon of tbree-dlmensional fields 

For the arbitrary loading process of plates no unique relation between stress and 
strain distribution over the thickness of the plate can be assumed. However, every differen
tiable three-dimensional function g(x1 , x2, x3 , t) can be represented by a set {G} of two
dimensional functions G<k>(x1 , x2, t), k = 0, 1, 2, ... , n by means of the Taylor-expansion 
of order n: 

(3.1) n 

g(xt, x2, x 3 , t) = _2; G<k>x1k-t>+R11+1 
k 

k = I, 2, ... n, 

with R,.+ 1 as remainder. If we restrict our considerations to those fields g(x1 , x2, x3 , t) 
with a vanishing remainder, then the relation between {G} and g is a one-to-one mapping 
and all relations of Chapter 2 can be equivalently expressed by relations between two
dimensional fields [6]. 

We substitute the three-dimensional generalized tensor fields s = [a, n]and e = [E, w] 
by two~dimensional representatives n(x1 , x2 , t) and q(x1 , x2 , t): 

(3.2) li = [N4, fi4]' q = (Q4, 04]. 
With 

(3.3) 

N4 : = {N<l) N<2 > ,.,. N<4>} 
ij ' lj ' ••• ' ij ' 

fi4 . - {IJ<l) IJ<2> IJ<4>} 
.- 11 ' 11 ' ... , 11 ' 

Q4 : = {QU>, Q~j>, ... , Q~J>}, 

ij = 1' 2, 3, 

n = 1,2, ... ,r, 

n4: = {n~l), .Q~2>, ... , .Q~4>}. 
q?J;I, 

Here r denotes the number of internal parameters describing linear hardening [3] 
and q the order of two-dimensional representatives. For all three-dimensional fields charac
terized by a vanishing remainder in Eq. (3.1) of the Taylor-expansion we obtain equi
valently to Eq. (2.5) the scalar product defined in terms of two-dimensional quantities: 

(3.4) (n, q) = J (Nf1mQ11+Il!m.Q1.)e-tdx1 dx2dt 
F . 

with 
q 4 

Nf1mQf1: = 2 2 N~~>mklQg>, 
k=1 1=1 

q q 

(3.5) I/4 moO!. - '\1 ). n<k>m .Q<'> 
11 11. - .L.; ~ ,. kl ,. ' 

k=1 1=1 

h 

m . J xk+l-2dx tl· = . 3 3• 

-h 

Respecting Eq. (3.1) by this procedure· the three-dimensional problem is equivalently 
express~<l.by two-dimensional quantities. -
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3.2. Assumptions for plates 

If we split up Eq. (3.4) into parts containing solely quantities in the x1 , x 2-direction 
parallel to the midspan of the plate and parts containing quantities in the x3-direction 
orthogonal to the midspan, we obtain 

(3.6) (niJ,qll)-= (nrxp,qrxp)+2(n«3,qrx3)+(n33,q33); a.,p = 1,2. 

For plates we assume in general: 

(3.7) 

For thin plates we assume 

(3.8) 2(n«3, q«3) +(n33, q33) ~ (n,b qll) · 

Both assumptions are compatible with the conventional assumptions of vanishing 
normal stress in the x 3 -direction and, additionally, vanishing of the shear deformation 
of the cross section in the plate-theory [4]. In the following we restrict our considerations 
to thin plates. 

In Eqs. (2.6) and (2. 7) kinematical and statical admissibility was defined for three
dimensional bodies. For application to the plate theory we introduce the displacement 
representatives uq 
(3.9) 

with the corresponding strain representatives Qc: 

(3.10) 

related to three-dimensional strain distribution by· Eq. (3.1) 

e~(x., x2, t) ~ (U~~J),ym+(U~~~)symx3+ ... (U~~l)symx~-·+ ... (U~~l)symxt-•. 

From definition Ec fulfills the condition of compatibility in the volume of the plate. 
If we introduce the displacement representatives U!0 such that 

(3.11) 6~~1 = u~~1, i =I, 3, ... ,q, D~?J = u~:J, 

then U<2> can be identified with the deflection of the considered plate. The kinematically 
admissible generalized strain representatives qc will be called every set q = [Qc, Sl] for 
which uq vanishes on the boundary Z" and n = 0. By the generalized elastic coefficients 
G, qc is then uniquely related to se in Eq. (2.6). Statical admissibility will be defined by 
the orthogonality condition; every set n fulfilling 

(3. 12) 

will be called the statically admissible stress representative n". 

EXAMPLE 

We consider a thin plate of arbitrary shape with a regular boundary and elastic-ideal 
plastic material behaviour. We choose the order ofTaylor expansion q = 4, corresponding 
to the shape-functions for stress and strain distribution in the x 3-direction of Fig. 2 . . 
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(3.13) 2 0 3 0 5 
----------

3 
2h3 

0 
2h5 

0 -3- 5 
----------

4 0 
2h5 

0 
2h1 

-5- 7 

We obtain for Eq. (3.12) 
-

(3.14) (n, q') = - J[2hN.\)>U~'J+ 2~
3 

(Nl$1 U~+N.\)1 U~~J+NU'U~~J) 
F . 

2~
5 

(NlJ> U1~J + NlJ> U~~J + N!J> U~) + 2~ 
1 

N~> U~~J] e-'dx1 dx2dt 

= f [(2hN<t>+ 2h3 N<3>) (2h3 N<l>+ 2hs N<4>) (2h3 N<t>+ 2hs NH>) 
~ 3 a.p, 3 iJ./1 5 ~' 3 «tJ 5 ...,, 

F 

(~'NW+ 2~' NiJ>)][u~~J, u~, U1!J, u~~we-'dx,dx,dt = o. 

Applying the divergence theorem twice gives: 

(3.15) (n, q•) = - J [ (2hN,\.&~~+ 2~
3 

NW..s), ( 2~
3 

Nl$~,..+ ~· NIJ~~~o)• 
F 

(~' N'J~,+ ~· N~,), (~' NlJ~,+ 2~
1 

N~~n 
. I 

X [U~1>' u<2>, U~3>, U~4>ye-'dxtdx2dtl 

http://rcin.org.pl



APPUCATION OF CONVEX ANALYSIS 10 THE CALCULATION OF ~STATE IN . PLATIIS 517 

f [(2hN<t> 2h3 N<l>) (V M ) M (2h3 N<t> 2h' <l>) + CXII +3 (Ill ' + 11&,1 '. ""' -3- exll +sNexll ' 
z 

(
2h

5 

N<2>+ 
2
h' N<">)J [U< 1> U<2> U< 2> U< 3> U<">]Te-'dsdt- 0 5 exll 7 exn ex ' ' oil' . ex , ex - • 

With 

a a a 
-a- = n2 -a +nt -a ' 

X2 n s 

(3.16) V - ( 2hl N<2> 2hs N<">) 
- n« 3 r,p + 5 "11 . ' 

• ,fJ 
No>- .. "(o cxn - IV«!J np, 

M - ( 2hl N<t> 2hs N<">) ( 2h3 <2> 2hs <•>) 
11s- -n2nex 3 «1 +-5- «1 +ntnex - 3-Nex2 +-

5
-Nex2 t 

M ( 
2h3 N<2> 2hs N<">) 

1111 = ncxnp T ex/1 +-5- i4J • 

FIG. 3. 

From Eq. (3.15) follow immediately the conditions for statical admissibiUty. In the 
'nterior F of the plate we have 

. h2 
Ni1>11 +-NH>11 = 0 

"'f'• 3 ' "'f'• ' 

( 2) 3h2 (4) 
N il.fJ,«/1 + S N il.fJ,«<J = 0, 

(3.17) 

NU~P + 
3~

2 

N~~fJ = 0' 

(2> 5h2 <"> 
Nil.fJ,p+ TNiA/J,fJ = 0. 
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518 D. WEICHERT 

On the boundary Z the conditions of statical admissibility depend on the support of the 
plate. In the line integral of Eq. (3.15) either the s~tical or the dual kinematical quantity 
must vanish. On a free boundary, for example, we have: 

(3.18) 

3.3. Minimum principles for thin plates 

N<t>+ ~N<3>- 0 
CXII 3 CXII - ' 

V+M,.s,~ = 0, 

M,.,.=O, 

N!Js> + 3h2 N~> = 0' 
5 

N<2>+ 5h2 N<4>- 0 
CXII 7 CXII- • 

From the preceding derivations minimum principles for stresses as functions of place 
and time can be directly obtained. In the case of elastic-plastic material behaviour the 
domain Et of admissible stress-states remains constant during the deformation proc~ss 
and the functional (2.8) may be reduced to: 

(3.19) 

The test function s!p(x1 , x2 , x3 , t) minimizing Eq. (3.19) is then the solution of the problem 
in the chosen subspace of approximation. 

If we use n~(x1 , x 2 , t) instead of s!p, then we obtain from Eqs. (2.8)-(2.10) and (3.6)
(3.8) the minimizatiOn functional 

(3.20) A~(n~) = sup (n~-n:.;, n;p)G; n2P-n:..: E En 
n2P-n!:eE, 

where Et denotes the domain of admissible stress-states in terms of two-dimensional 
representatives. Minimizing the test function n;p(xh x 2 , t) is then the solution of the 
problem in the chosen subspace of appr_oximation. 

4. Numerical example 

A simply supported elastic-ideal plastic square plate is proportionally loaded by a 
vertical sinusoidal distributed load q. The von Mises and Tresca yield criteria are used 
parallely to determine the domain of admissible stress. We determine the state of stress 
at the end of the loading process (Fig. 4). 

(4.1) 
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FIO. 4. 

We introduce the dimensionless quantities 

x. = :: • q = ~ (;S. 
(4.2) 

<1, 
u,= E' 

Na.11 a .. ( 4 

N .. =Ea1 2h} ' 
with E as the elastic modulus. The Poisson's ratio v and the dimensionless uniaxial yield
limit Us are chosen as v = 0.3 and u, = 1.8 · 10- 3 respectively in our calculations. 

We use the two-dimensional representatives N~(x1 , x2 ) up to order two. As we con
sider a special case of proportional loading, time does not appear as a parameter [1]. 
As test functions fulfilling statical boundary conditions we choose 

N1<f> = ct{l-xf) (1-x~)+c2(1-xD (1-x~), 

(4.3) 
N~<f> = c3{l-xf) (1-xl~+c4{1-xf) (1-xi), 

After fulfilling the conditions of statical admissibility in F (3.17) and using the symmetry 
ofload and geometry of the plate, we obtain for the analytically given purely elastic solution 
N°< 2> [4] the minimization functional A~ as a function of c1 and c2 : 

(4.4) A~(ct, c2) = sup [(d-c1 c!) · 4.01468+(ci-c2c!) · 6.01351 
Noii>-NS«2>(c~, c!)eEr 

i, is determined either by the Tresca or von Mises yield criteria expressed by Nfj>. Mini
mizing A~, we obtain the unknown coefficients c1 , c2 as result: 
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qo I Ct I c2 I yield cond. 

(4.5) 
1.5 

0.1933 -0.2708 v. Mises 
0.1575 -0.2351 Tresca 

2.5 
-0.3327 

I 
0.1234 v. Mises 

-0.3673 0.1580 Tresca 

Figures 5 and 6 show the domain of admissible stresses defined in the c1 , c2-plane. Figure 1 
shows the qualitative distribution of the purely elastic solution N°<2>, statically admissible 
representative N8<2> ·minimizing A~ and superposition N°< 2> + N8<2> as the researched 
solution N<2> using the von Mises yield criterion for q0 = 2.5. 

cz 

Pio. S. Domain of admissible parameters c1 , c::~. for load parameter qo = l.S; inner domain: Tresca yield
condition, outer domain: Mises yield-condition. 

Cz 
0.45 

o.ao 

0.15 

0 

-0.15 -0.45 

FIG. 6. Domain of admissible parameters c1 , c2 for load parameter qo z 2.5; inner domain: Tresca yield
condition; outer domain: Mises yield-condition. 
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x, 
~~~~~~~~~-~ 

FIG. 7. 
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