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One-dimensional shock waves in magnetized electrically
conducting elastic materials

M.F. McCARTHY (GALWAY)

In THIS PAPER we consider the behaviour of plane shock waves in elastic media of finite electrical
conductivity which are subjected to a magnetic field whose direction lies in the plane of the wave.
The equation which governs the amplitude of shock waves is derived and its implications are
examined in detail. Finally, the results which hold when the amplitude of the shock becomes
infinitesimally small are also discussed,

W pracy rozwazono zachowanie si¢ plaskich fal uderzeniowych w ciafach sprezystych o skon-
czonej przewodnosdci elektrycznej poddanych dzialaniu pola magnetycznego, ktorego kierunek
lezy w plaszczyénie fal. Wyprowadzono réwnanie rzadzace amplituds fal uderzeniowych i roz-
wazono jego implikacje. Przedyskutowano réwniez wyniki odpowiadajace przypadkowi, gdy
amplitudy fal uderzeniowych staja si¢ infinitezymalne,

B paGore paccMOTPEHO HOBEACHME MAOCKEX YAADHKIX BQIR B JHPYTHX Te/laX ¢ KOHCIHOM
ANIEKTPONPOBOAHOCTBIO, NOABEPIHYTEIX NEHCTBHIO MATHHTHOTC NOJIY, HANPABJIEHAE KOTOPOro
JIOKHT B IUTOCKOCTH BONH. BhiBefeHO ypaBHeHWe ONACHLIBHIOMES AMILYATYOEI VIARPHBIX
BOJIH H DPAacCMOTDEHBI BT0 CReJCTBHA. OGQRKACHR: TRMMC PCIYIHTATH OTBCYMOIIRES QYYUAI0,
HOTJa aMIUTHTYIE! YASPHBIX BOJNH CTAHOBATCA HEGUHATEIMMAIBHBLIMHE.

1. Introduction

IN THIS PAPER we examine the behaviour of plane shock waves in elastic nonmagnetic
media of finite electrical conductivity. We assume that the material is uniformly magnetized
ahead of the shock wave and that the magnetic induction vector lies in the plane of the wave.

After dispensing with prelimindries, we derive an expression for the intrinsic velocity
-of the shock. We find that the intrinsic velocity is not influenced by the magnetic induction
field. The differential equation which the amplitude of the shock must obey is derived.
We find that the evolutionary behaviour of the amplitude of the shock depends on the
relative magnitudes of the jump in the deformation gradient and the quality A* which we
call the critical jump in the deformation gradient, and that A* depends on the shock am-
plitude as well as on‘the mechanical and electramagnetic ¢onditions prevailing immediately
ahead of the wavefront. The implications of the amplitude equation on the propagation
of compressive shocks are studied in detail. Finally, we apply our results to the study of
the propagation of shock waves of infinitesimal amplitude and we show that the amplitudes
of such waves decay exponentially as the waves propagate.

2. Basic equations and formulae

Let (X, Y, Z) be the Cartesian coordinates of a material peint of a homogeneous elastic
electrically conducting body in a fixed reference configuration with mass density g, We
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assume that the motion of the body is one-dimensional and may be described by a scalar
function x = y(X, 1) which gives the location x = (x, Y, Z) at time ¢ of the material point
X=(X,Y,2).

We let the vectors b, b, e and J denote the magnetic field, magnetic induction field,
electric field and conduction current vectors, respectively, at the spatial point x at time 1.
We assume that the material is nonmagnetic so that b = x h, where » is a constant. The
deformation gradient at the material point X has the representation
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Let us now define the vectors H, B, £ and & by the relations
H=(Fhl!h2:h3)9 nz(b’Fb:FbJ)’
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where '

(2.3) €e=¢e+vxbh

and v = (x, 0, 0) is the velocity of the point X. Here and in what follows a superposed
dot denotes material time differentiation.

We assume that the electromagnetic response of the material is quasi-static and that
all electromagnetic variables are functions of X and ¢ only. It follows that Maxwell’s
equations assume the forms, see e.g. MCCArTHY [1],

B,(Xe, 1) = By(X,,1), B,(X,1)=0,
’i(x$ ‘) = :
Xp
Hy(Xp, t)—H;(X,, 1) = f 9,(X, 1)dX,
X
Hy(Xp, 1) —Hs(Xey 1) = — xf #,(X, 1)dX,

4 " /
-3'{ B’(x, ‘)dx - ‘2(xﬂl ‘)—‘3(x89 I),
X,

Xp

%- J' By(X, t)dX = J,(X,, !)_‘a(xu 1.
X,

Equations (2.4) hold at all times ¢ and for all X,,, X; and X in &.

It results from Eq. (2.4),,, that B, is a constant. In what follows we assume that B,
vanishes identically at all points of the material, i.c. we assume that the maguenc induction
field is transverse.
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In the absence of external body force and free charge, the law of balance of momentum
takes the form '

X x

@.5) % | eokdX = T(Xp, )~T(Ke, )+ | fix, aX,
i

where

(2.6) f=F9,B;-9,:B,)

is the electromagnetic body force density per unit volume and T = T(X, 1) is the stress.
Finally, we assume that the response of the material is described by the constitutive
equations

T= T, 1) = TtF),
g =9X,0=9F,0
and we assume that f’( ) is of class C2, while é( -, *)is of class C*.

@.7

3. General properties of shock waves
‘We assume that the motion contains a shock wave moving with intrinsic velocity
d -
(3.1) U(t) = IJ((:) >0,

where .f’(r) is the material point at which the wave is to be found at time ¢. Thus we assume
that (-, -) is a continuous function everywhere; while x and F and their derivatives
suffer jump discontinuities across the shock; they are continuous everywhere else.

The kinematical condition of compatibility

d e og
(3.2) kel = E1+U [H
with g = x(-, *) implies that
(3.3) [F] = —U[x].

Here [g] denotes the jump in the function g, i.e.
[g) =g-—g* with g*= lim g(X,1).
X=¥Y(nt

Since U(1) > 0,g~ and g* are, respectively, the limiting values of g immediately behind
and just in front of the wave. R
Equations (2.4),~(2.4)s imply -that for all X # X(r)

oH, dH,s

x ~ > =~ Y
(3.4) " 3

T

ax = "B x =B



.and across 'the -shock

[H,] =0, [H3] =0,
[€,] = UIBs]l, =~ [6:]= —UIBsl,
oH oH '
3.5 [ ’] AR [ 2= -1,
o6 08
[71,1] . —g|[Bs], [ ’] [B,].

When Eqgs. (2.2), ., and (3.4),,, are used in.Eq. (2.6), we find that Eq. (2.5) may be rewritten
in:the form

g
(36 9 [ eotdx = 5k, 1)-5(Xe, 1),
XG
where
G §=7- %(H§+H§).

It follows from Eq. (3.6) that when X # X(¢)
s .
(38) e

and, when Eqgs. (3.5), ,, are used, it follows that across the shock we have

[S]1=I[T]1= —goUlxl,

oS
[ 5X = 0o rxl
Equation (3.9), with Eq. (3.3) yields the well-known formula

,_ 1Tl
(3.10) Ut = i

for the intrinsic velocity of the shock. Equation (3.9),, together with the condition (3.2)
with g = X and g = F, respectively, implies that

d dv _ [oF] 1 [as
@.11) W IFI+ Fl 5 = U [ax] 3‘;?[%1’“]-’

This is the equation which the amplitude of the shock must ebey.

39

4, The shock amplitude equation

Here we shall derive the equation which governs the amplitude of a shock wave prop-
agating in a magnetised electrically conducting elastic material. It follows from Egs. (3.7)
and (3.4), , and the definition (3.7) that

as oF

; 1 .
(4-1) W:E*gf'“’?{-ﬂzgs-—f‘[:gz},
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for all X # A’(r). where

3T
(4.2) E = E(F) = 3F
Since the jump in the product ®¥ may be written in the form
(4.3) [@¥] = - [P+ ¥+ (D),
it follows from Egs. (4.1) and (3.5),,, that
as JF F+
(4.4) [EY] = E- [aX ]+ [El—&~ “*"{Hz [9:]1-H; [9,]}.
Differentiation of Eq. (3.10) yields the formula
du 1 . it [E] dF*
(4.3) it = 2goUiFl E TY) iR ar

Finally, when Egs. (3.11), (4.4) and (4.5) are combined, we have
THEOREM. The amplitude of a shock wave propagating in a magnetised electrically
conducting elastic body obeys the equation

- 2
(4.6) “Fl= —- (E-—00U?) ax_ | 9F
a 2 U{-}-IE__Q“EE} =
Ce 49oU2
where
@n =) {lEl +3w1(‘”r ) —2y(H, [9:]-H, [¢ n}
' 2(E—goU%) U AN adT Ay

Equation (4.6) has the same form as that which is satisfied by the amplitude of shock
waves in various other theories [2-4]. However, the similarity between the equation given
here and that which arises in the aforementioned works is purely superficial. In its present
form, the growth equation is quite complicated; and, in general, it is not possible to de-
duce any information from it regarding the behaviour of a shock without adopting addi-
tional assumptions. In the following section we consider the implications of Eq. (4.7) in
a particular case.

S. The behaviour of some particular shock waves
We now consider the implications of Eq. (4.9) on the behaviour of certain types of

shock waves. Consider a compressive shock wave propagating in a material which is
initially in compression so that

(5.1, Ft <1, |[F]<0.
We assume that the stress-strain law (2.7) in compression is such that
T 27
(5.2) E=E(F)=m«:0 forall F<1,
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and that

(5.3) E = E(F) >0.
It follows from Egs. (3.10) and (5.1)—(5.3) that

(5.4) E- > poU?,

(5.5) |E] > 0.

Hence by Egs. (4.17) and (5.4) we have

TueoREM. Consider a compression shock propagating in an elastic material of finite
electrical conductivity which is initially in compression and is subjected to a magnetic in-
duction field which is initially in the plane of the wave. If the stress-strain law is such that
Egs. (5.1)—(5.3) hold, then at any instant

[oF) ., d
x| < #* e 2 1IFI <0,
[oF|_ ., d

(5.6) Lﬁ_ > A Hjﬁ'”F“ >0,
[oF] ., d . ..

Clearly, the formulae (5.6) have the usual form in that they state that whether a shock
grows or decays depends on the relative values of the jump [¢F/0X] and the parameter
A*, defined by Eq. (4.7). We call A* the critical jump in the deformation gradient for shock
waves in transversely magnetized elastic media of finite electrical conductivity. It is clear
from Eq. (4.7) that A* depends on the strength of the shock wave as well as on the mechani-
cal and electromagnetic conditions prevailing immediately ahead of the wavefront.

Next, it follows from Eqs. (3.5),,5 and the definitions (2.2) that

(5.7 le:] = UIF1bs, le&s]l = —U[F]b,
so that
(5.8) [e]l-b = 0.

Thus the jump [€] in € lies in the plane of the wave and its direction is orthogonal to the
original direction of the magnetic induction field. Of course, in view of Egs. (2.2); and
(3.5),.,, neither the magnitude nor directions of the magnetic induction field is altered
by the shock wave.

Let us now consider the implications of Eq. (4.6) when the material ahead of the shock
wave is at rest in a uniform state of magnetization and deformation. In this case the critical
jump in the deformation gradient, defined by Eq. (4.7), has the reduced form

(5.9 W= (H,[$]-H;[4,]}.

) (E-_e‘,Uz){ 2[ 3] 3[ 2]}
The expression (5.9) clearly illustrates the critical role played by the applied magnetic
induction field and the electrical conduction properties of the material on the evolutionary

behaviour of shock waves propagating into a material which is initially at rest in a uniform
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state. If it is further assumed that the material is a homogeneous isotropic ohmic conductor
of electricity in its natural state so that j = oe where o(> 0) is the electrical conductivity
of the material, then the expression (5.9) may be simplified still further.

6. Shock waves of infinitesimal amplitude

Here we consider the implications of Eq. (4.9) in the limit as F~ — F*, i.e. we consider
the behaviour of a shock wave of infinitesimal amplitude. We assume that the material
ahead of the wave is at rest in a uniform state of deformation and that the magnetic in-
duction field is uniform and lies in the plane of the wave.

It follows from Egs. (2.7),, (4.2) and (5.2) that

1 -~
(6.1) [T] = Eo[F1+ 5 Eo [F1? +o(| [FII)?
and
(6.2) E- = Eo+E, [F],
where
(6.3) E, = E(F*), E, = E(F*).
The formulae (3.10) and (6.1) together imply that
(64 00U* = 0oU3+  EolF,
where
(6.5) 00U3 = E,.

In view of Egs. (6.2) and (6.4), we have

1
(6.6) E-—p,U? = 5 E, [Fl+o(] [F]l)-

Next we assume that s, = 4 and A; = 0 and that the material is an isotropic ohmic
conductor of electricity in its natural state, Thus, by Egs. (5.9) and (6.6) we have

(6.7) i TR

If we further assume that |(0F/0X)~| = O([F]), then the governing equation of the ampli-
tude (4.6) reduces to

d —ab?
(6.8) "FIFI =200 [Fl.

which may be readily integrated to give

k2
(6.9) [FI(t) = [F](O)exp{—z—(:g— r}.
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Since ¢ > 0, we see that the amplitude of an infinitesimal shock wave decays exponentially
as it traverses the material. We observe that the rate of decay of the amplitude of an in-
finitesimal shock wave is precisely the same as that of an acceleration wave of infinitesimal
amplitude or that of a plane progressive wave with high frequency harmonic time depend-
ence and infinitesimal amplitude (see e.g. McCARTHY, [5]).
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