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One-dimensional shock waves in JDaglletized .· eledrically 
conductine: elastic 1118terials 

M.F. McCARTHY (GALWAY) 

IN THIS PAPER we consider the behaviour of plane shock waves in elastic media of finite electrical 
conductivity which aro subjected to a magnetic field whose direction lies in the plane of the wave. 
The equation which governs the amplitude of shock waves is derived and its implications are 
examined in detail. Finally, the results which bold when the amplitude of the shack becomes 
infinitesimally small are also discussed, 

W pracy rozwaiono zachowanie si~ pjaskich fal uderzeniowych w cialach sp~iystych o skon­
czonej przewodnoSci elektrycznej poddanych dzialaniu pola magnetycznego, kt6rego kierunek 
leiy w plaszczyinie fal. Wyprowadzono r6wnanie 174dz4ce amplitu~ fal uderzeniowych. i roz­
wai:ono jego implikacje. Przedyskutowano r6wniei: wyniki odpowiadaj~ce przypadkowi, gdy 
amplitudy fal uderzeniowych staja sict infi.oitezymalne. 

B pa6otre pac:c.rcrpeuo HOBe,AeiDie WlOCIQIX YuPBWX BOJIII 1t JDPYl'HX rrenax c KOHe11110i 
3JieKTpOnpoao~OCTbiO, no~pmyTbiX ~ACTI»JJI _Marmrmoro n~, mmpaBJJeBHe Koroporo 
Jle>KHT B WIOCKOCTH BOJIH. BbiBe,zteHO ypaBHeHHe OIIBCblB810~ee BMIIJ'OITYA&I Y1t&P11h1X 
BOJIH H pa.ccM.~I el'O ~CTBHfl, ~BW mxte pe'O'JJ1>1:Jmd OTBelJMlBIRC CJJYl1810, 
J<Or.rta aMilJIHTy'Abl y,ztapllbiX BOJIH C1'8BOBRTCJI HHcbmun'eaHMilJli>HhiMH. 

1. Introduction 

IN THI~ PAPER we examine the behaviour of plane shock waves in elastic non~gnetic 
media of finite electrical conductivity. We assume that the material is uniformly magnetized 
ahead of the shock wave and that the magnetic induction vector lies in the plane of the wave. 

After dispensing with · prelitninaries, . we derive · an expression for th~ Intrinsic velOcity 
·of the shock. We find that the intrinsic velocity is not influenced by the magnetic induction 
fieid. The differential equation which the ·amplitude · of the shock must obey is derived. 
We ·find that the evolutionary behaviour ot the ·amplitude of' the shock depends on the 
relative magnitudes of the jump in the deformation gradient and the quality A.* which we 
call the critical jump in the deformation gradient, and that A.* depends on the shock am­
plitude as well as on:the. mechanical and eleetro~gnetic conditions prevailing immediately 
ahead of the wavefront. The implications of the amplitude equation on the propagation 
of compressive shocks are studied in detail. Finally, we apply our results to the study of 
the propagation of shock waves of infinitesimal amplitude and we show that the amplitudes 
of such waves decay exponentially as- the waves propagate. 

2. Basic equations and formulae 

Let (X, Y, Z) be the Cartesian coordinates of a material point of a homogeneous elastic 
electrically conducting body in a fixed reference configuration with mass density eo We 
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assume that the motion of the body is one-dimensional and may be described by a scalar 
function x = x(X, t) which gives the locationx = (x, Y, Z) at timet of the material point 
X =.(X, Y, Z). . . . 

We let the vetturs lr, b, e and j' denote the· magnetic field, magnetic induttion fietd, 
electric field and conduction current vectors, respectively, ·at ·tt. .spatial 'Point·• at time ·t. 
We assume that the material · is nonmagnetic so that b = "•, where " is a constant. The 
deformation gradient at the material point X has the representation 

(2.1) 
[

F 0 0] 
F= ~ 1 o_ , 

0 0 1 

Let us now define the vectors H, B, ~and. ~ by the relations 

(2.2) 
H = (Fh 1 , h1 , h3), B = (b, Fb, Fb3), 

where 

(2.3) c=e+vxb 

and· ~ = (x, 0, 0) is the velocity of the ·point x. Here and in what follows a superposed 
dot denotes material tim.e differentiation. 

We assume ·that the electromapetic. raponse of the material is quasi-static and that 
all electromagnetic variables are functions of X and t only. It follows that Maxwell's 
equations assume the forms, see e.g. McCAllmY [1], . 

(2.4) 

B1 (X., t) = B1(X~, t), B1 (X, t) = 0, 

91(X, t) = 0, _ 

X~ 

H1(XI, t)-H1(X., t) =· f ,J(X, t)dX, 
x. 

. x, 
H3(X,, t)-H:s(X.,O = - - f f'I2(X, t)dX, 

x. 

x, 
;, f B1(x, t)dX = ll{x,, t)-IJ(x., 1). 

x. 

Equations (2.4) hold at all times t and for all x., x, and X in !/t 
It results from Eq. (2.4)1 •2 that B1 is a constant. In what follows we assume that B. 

vanishes identically at all points of the material, i.e. we assume that the magnetic induction_ 
field · is · transvene. 



In the absence of external body force and free charge, the Jaw of balance of momentum 
takes the form 

X~ Xp 

(2.5) :, .f ~oxdx = .r<x11 , t)- T(Xc" t)+ f J(x, t)dx, 
X« X« 

where 

(2.6) 

is the electromagnetic . body force density per unit volume .and T == T(X, t) -is the stress. 
Finally, we assume that the response of the material is described by the constitutive 

equations 

(2.7) 
T = T(X, t) = i'(F), 

A 

~=~(X, t) = '-(F, ~) 

and we assume that T( ·) is of class C1, while ~( ·, ·) is of claSs C1 • 

3. Geaenl properties of slaock waves 

We assume that the motion contains a shock wave moving with intrinsic velocity 

d " . 
U(t) = -d X(t) > 0, . t 

(3.1) 

A 

where X(t) is the material point at which the wave is to be found at timet. Thus we a5$Wile 
that x( ·, ·) is a continuous function everywllere; while x and F and their derivatives 
suffer jump discontinuities across the shock; they are continuous every\¥ here else. 

The kinematical coadition of compatibility 

(3.2) ~I fgJ - fif+U [ :; ] 

with g = x( . ' . ) implies that 

(3.3) (FI = -U(X). 

Here (gJ denotes thejump in the function g, i.e. 

(g)= g- -g+ with g* = lim g(X, t). 
x ... Y<t>:t 

Since U(t) > 0, g- and g-+: are, respectively, the limiting values of g immediately behind 
and just in. front of the wave. 

Equations (2.4)3-{2.4)6 imply -that for aU X :1= X(t) 

(3.4) 

oH3 
--= -·l oH . ' 
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.and across :the · shock 

(H2J ~ 0, (H3) = 0, 

(82 ) = U(B3 ), .. (83) = -U(B2), 

(3.5) [ail2] · · ax ·.= 1~3), [ aa~~] = -iZJ. 

[ ~~ l =c -giB~J. [a:;]= 1B21· 

When ~ . .(2.2)1 •2 and (3.4)1•2 ar~ .usedin;Eq.,(2.6), we find that.Eq.(2.5) may~ rewritten 
in ithe form 

Xp 

(3.6) . ;t f eo~dX = S,(XI!, ,t)-~(Xa., t), 
X a. 

where 

(3.7) 
:. " . . ' ' . . 

S = T-2 (H~+Hi). 

It follows from Eq. (3.6) that when X =1= X(t) 

( as .. 
3.~) ax . ~ -e~x .. 

and, when Eqs. (3.5).. ,2 are used, it follows that across the shock we have 

(SJ = [T) ~ -eo u (x), 

(3.9) [ ~1 >= ~·f"J; 
Equation (3.9) 1 with Eq. (3.3) yields ~he well-.known formula 

(310) U2 = .~ 
· ; · '·t!o IF) 

. . 

for the intrinsic velocity of the shock. · Equation (3.9)2 , together with the condition (3.2) 
with g = x and g = F, respectively, implies that 

(3.11) d dU r:aF ]- 1 [oS] 2 Udt"(FJ+ [F) dt = U~L ·ax- - ~o 'oX : 

This is the equation whiCh.theamplitude of the shock must e~y. 

4. The shock amplitude equation 

Here we shall derive the equation which governs the amplitude of' a shock wave prop­
agat~ng in a magnetised electricaJly conducting elasti~ material. It follows from Eqs. (3. 7) 
and (3.4)1 , 2 and the definition (3.7) that 

as . oF ,. 1 . 
(4.1) ax =· E ax- -;e {H2~3.,_H3<§2}, 
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for all X :f= X(t), where 

(4.2) E = E(F) =a~~>. 
Since the jump in the product <PIJI may be written in the form 

(4.3) 

it follows from Eqs. (4.1) and (3.5)IJ 2 that 

(4.4) 

Differentiation of Eq. (3.10) yields the formula _ 

(4.5) 
dU 
dt 

Finally, when Eqs. (3.11), (4.4) and (4.5) are combined, we have 
THEOREM. The amplitude of a shock wave propagating in a magnetised electrically 

conducting elastic body obeys the equation 

(4.6) 

where· 

d 
-(FJ = 
dt 

{4.7) A* = -i(E -=-J~ u'){[E) t; +3 [£)( !i r -2x(H 2 [~3 )-H, [!121)}. 
Equation ( 4.6) has the same form as. that which is satisfied by the amplitude of shock 

waves in various other theories [2-4]. However, the similarity between the equation given 
here and that which arises in the aforementioned works is purely superficial. In its present 
form, the growth equation is quite complicated; and, in general, it is not possible to de~ 
duce any information from it regarding the behaviour of a shock without adopting addi­
tional assumptions. In the following section we consider the implications of Eq. (4.7) in 
a particular case. 

5. The behaviour of some particular shock waves 

We now consider the implications of Eq. (4.9) on the behaviour of certain types of 
shock waves. Consider a compressive shock wave propagating in a material which is 
initially in compression so that 

(5.1) F+ < 1 , (F) < 0. 

We assume that the stress-strain law (2.7) in compression is sue~ that 

(5.2) ff. = ff.(F) =a'~~) < 0 for all F <:I, 
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and that 
A 

(5.3) E = E(F) >0. 

It follows from Eqs. (3.10) and (5.1)-(5.3) that 

(5.4) 

(5.5) (E) > 0. 

Hence by Eqs. (4.17) and (5.4) we have 

M. F. McCARTHY 

THEOREM. Consider a compression shock propagating in an elastic material of finite 
electrical conductivity which is initially in compression and is subjected .to a magnetic in­
duction field which is initially in the plane of the wave. If the stress-strain law is such that 
Eqs. (5.1)-(5.3) hold, then at any instant 

[ :~ ] < J. • +-+ :, IIFll < 0, 

(5.6) [ :~] > J.• +-+ :t IIFJI > 0, 

[ !.n = A*+-+ :t IIFII = 0. 

Clearly, the formulae (5.6) have the usual form in that they state that whether a shock 
grows or decays depends on the relative values of the jump [oF/oX] and the parameter 
).*,defined by Eq. (4.7). We call).* the critical jump in the deformation gradient for shock 
waves in transversely magnetized elastic media of finite electrical conductivity. It is clear 
from Eq. (4.7) that).* depends on the strength of the shock wave as well as on the mechani­
cal and electromagnetic conditions prevailing immediately ahead of the wavefront. 

Next, it follows from Eqs. (3.5h,3 and the definitions (2.2) that 

(5. 7) (ell = U (F)b3, (e3) = - U (F)b2 

so that 

(5.8) (£). b = 0. 

Thus the jump [c) in£ lies in the plane of the wave and its direction is orthogonal to the 
original direction of the magnetic induction field. Of course, in view of Eqs. (2.2)1 and 
(3.5)~. 2 , neither the magnitude nor directions of the magnetic induction field is altered 
by the shock wave. 

Let us now consider the implications of Eq. ( 4.6) when the material ahead of the shock 
wave is at rest in a uniform state of magnetization and deformation. In this case the critical 
jump in the deformation gradient, defined by Eq. ( 4. 7), has the reduced form 

(5.9) 

The expression (5.9) clearly illustrates the critical role played by the applied magnetic 
induction field and the electrical conduction properties of the material on the evolutionary 
behaviour of shock waves propagating into a material which is initially at rest in a uniform 
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state. If it is further assumed that the material is a homogeneous isotropic ohmic conductor 
of electricity in its natural state so that j = 0'£ where a(> 0) is the electrical conductivity 
of the material, then the expression (5.9) may be simplified still further. 

6. Shock waves of infinitesimal amplitude 

Here we consider the implications of Eq. (4.9) in the limit as F- --. F+, i.e. we consider 
the behaviour of a shock wave of infinitesimal amplitude. We assume that the material 
ahead of the wave is at rest in a uniform state of deformation and that the magnetic in­
duction field is uniform and lies in the plane of the wave. 

It follows from Eqs. (2.7) 1 , (4_.2) and (5.2) that 

(6.1) 

and 

(6.2) 

where 

(6.3) 

The fo~mulae (3.10) and (6.1) together imply that 

(6.4) 

where 

(6.5) 

In view of Eqs. (6.2) and (6.4), we have 

(6.6) 1 
E- -e0 U 2 = 2 E0 (f)+o(I(F)I). 

Next we assume that h2 = h and h3 = 0 and that the material is an isotropic ohmic 
conductor of electricity in its natural state. Thus, by Eqs. (5.9) and (6.6) we have 

(6.7) 
).* = _ -~2U0 ab2F+ _ 

£ 
If we further assume that l(oFfoX)-1 = O{(F)), then the governing equation of the ampli­
tude (4.6) reduces to 

(6.8) 
d -O'b2 

dt (F)= ~(F), 

which may be readily integrated to give 

(6.9) { 
ab

2 
} (f)(t) = (f)(O)exp - -

2
l?o t . 
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Since a > 0, we see that the amplitude of an infinitesimal shock wave decays exponentially 
as it traverses the material. We observe that the rate of decay of the amplitude of an in­
finitesimal shock wave is precisely the same as that of an acceleration wave of infinitesima-l 
amplitude or that of a plane· progressive wave with high frequency harmonic time depend­
ence and infinitesimal amplitude (see e.g. McCARTHY, [5]). 
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