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On coupling acceleration and shock waves
in a thermoviscoplastic medium
I1. One-dimensional waves

K. WOLOSZYNSKA (WARSZAWA)

THE PAPER contains an analysis of one-dimensional shock waves in a thermoviscoplastic medium,
In the linear theory, nonlinear ordinary differential equations were obtained for the thermal
and mechanical amplitude. The governing equations, for plane waves, in the form of quasi-linear
hyperbolic partial differential equations were solved by using Riemann’s method.

Praca poswigcona jest jednowymiarowym falom silnych nieciaglosci w oérodku termolepko-

plastycznym. Dla liniowych zwiazkéw konstytutywnych otrzymano nieliniowe réwnania roznicz-

kowe zwyczajne opisujace zmiane w czasie amplitudy termicznej i mechanicznej. Dla plaskich

;‘:_] rozwigzano hiperboliczny uklad rownan rézniczkowych czastkowych za pomoca metody
iemanna.

PafoTa mocBsllieHa OAHOMEPHBIM BOJHAM CHABHOTO Pa3phlBa B TEPMOBA3KOIJIACTHUECKOI
cpene. st NMHEHHBIX ONpEHENAIOUIHX COOTHOIUEHMI TIONYUEHB! HENHHEHHEIE OOBLIKHOBEH-
Hble auddepeHIansuble YpaBHEHHA, ONHCHIBAIOILME W3MEHEHHE BO BPEMEHM TEPMHUYECKOH
H MeXaHWuecKoH amminTyAbl. Jlna nnockux BonH pelueHa runepGonmueckas cucrema aud-
thepeHlManbHBIX ypaBHEeHMH B YaCTHBIX NMPOH3BOJHEIX C MOMOLUEIO MeToaa Pumana.

1. Introduction

In pART I of the paper [8] the constitutive equations of thermoviscoplasticity with the
Maxwell-Cattaneo relation for the heat flux are formulated. The objective of this paper is
to discuss the propagation of one-dimensional waves as well as the acceleration and the
shock waves. In the problem of the plane shock waves propagating in a thin rod described.
by the system of linear equations, the closed form of the solution is obtained.

2. Acceleration waves

The one-dimensional motion is described by a scalar function x(X, ) = x, which
determines the location x at the time ¢ of the material point X, the displacement u(X, t) =
= x(X,t)—X, the strain E(X,t) = é,u(X,t) and the temperature gradient g(X,1) =
= 0x®(X,1). The thermomechanical state G (cf. Part I) contains the functions.
{E,®, 0x®, a} where there are four internal parameters a = {a, f, ¥, #} introduced in
the Part I of this paper. Parameter g is the inelastic deformation, f — the thermal parame-
ter, x — the strain hardening parameter, y — the viscosity parameter. The material res-
ponse is described by a set of the four functions: T, y, 1, g, where T is the stress, y —
the free energy, 7 — the entropy and ¢ — the heat flux.
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In that case the basic system of equations for the thermoviscoplastic body (cf. Egs. (3.8)
in Part I) reduces to seven equations with respect to v, E, 9, , 8, ¥, %, v is the velocity:

2o Qo o Qo

—"']'— arg.ax?_"]— ﬂjax’t - o;
Qo Qo
E - axv - 0,
'9+GI 6,U+G, axE+ GJ 6'119-!-0461&-}-65 6Iﬁ+66 3:}‘+G-, 5;x+Ga = 0,
a—A4 =0,
.1) B—B,dx®~B, =0,
T4 =0,
x—AA=0,

where G,, i - 1, ..., 8 are the following scalar functions of the arguments E, 4, a, 8, », ¥
(cf. the denotation (3.9) in Part I):

G, = —c'OP, G,=c'R, G;=cY(W+I), G,=c"'M,
(2-2) Gg = C"N, Gq = C_IL, G-p = C_‘L, G. = C_IH,

¢ is the specific heat of the materialand P, R, W, I, M, N, L, £, H are material functions
defined by

9003,/= [ 3.5' = P, QoBl(ﬂag,V+3,'P) = W, 3;@ = R,
a&Q=1v a¢Q=M! 3ﬂQ=N, 67Q=L1 auQ=L'
H = 0o[(89p 4+ 8, V) By + (00, 4+ 0, ) A+ (90, 4+ 0,¥)TA+ (8, 4+ 8, P)N A,

T, ¥, A, Q are constitutive functions for stress, free energy, entropy and heat flux.
From now on we assume that the constitutive function for the free energy v (cf. Eq.
(2.6), in Part I) has the simpler form

23) Y=Y (¥ 0+¥.B)+¥a,y, x).
Additionally, the domain of the function B, is restricted to
24 B, = By(d, 8,7, %).
From Egs. (2.3) and (2.4) it follows that
2.5) I =0, 8,9 =0, ,9=0, G, =0, G;=0
and (cf. Eq. (2.6), in Part I)
(2.6) g = —0o0B, 3, ¥.

The characteristic Eq. (3.12) g:ven in Part I for the direction n = (i ,0,0) has seven
roots A:

en P ‘ﬁ.‘+ 22 (B,G, RPN 6.9") Sl G,a,f}- 0.
2o Qo " Qo :
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The roots are real provided that

2
(BIGS—|—0£3"+-| 61653") +4i B,Gs0: 7 >0,
Qo Qo

2
2.8) —(B, Gs——]a 659"+-—l— G, 6,9') >0,
Qo %9
—-l— B,G;0:F > 0.
Qo

These inequalities are satisfied under the following assumption:
(2.9) 0T >0, >0, 0,9 <0, —-B,Gs>0.
Additionally, the inequality (2.9) implies
(2.10) e >0, G,>0.

Let us consider two simplifications of Eq. (2.7).
1. There is no thermomechanical coupling, 2,7 = 0 (G, = 0). There are two kinds
of symmetric waves, the thermal one and the mechanical one with the speed + A and + 4,,:
i3 = —B,Gs,
2.11)
L A2 = 3 0 7 .
Qo

The first derivative of temperature is discontinuous while ¢, dxE are continuous
([#] # 0, [¢] = 0) at the thermal wave. On the contrary, [#] = 0 and [9] # 0 at the
mechanical wave.

2. In the case of a nonconductor (Q(#,a,f,y,%) =0,Gs =0) two symmetric
waves propagate into the material with the adiabatic speed
2.12) Bl ¥ togaF,

Qo Qo

Here [¢] # 0 and [[19] #0.
We can see that the speeds A2, A2 which are roots of Eq. (2.7) together with A3, A% and

A% satisfy the inequalities

A2 > A2 > 23,
(2:13) toor

2> 2> 2> A%,

3. Propagation of shock waves, linear case

Let us assume that the strain gradient E and temperature ¢ are discontinuous across
2 where

(ER)) Z={(X,1):X=Y(@), rel0,)}

9 Argh Wech Stos. nr 3/81
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This means that
[EJ(®) = E-()—E*(1) # 0, [8](t) = -()-9*(¢) # O,
(3.2) E-(1) = lim E(X,1), #-(t) = lim &X, 1),
X=Y(r)~ X-¥(n)-
E+(f) = lim E(X,t1), ¢*() = lim #(X,1).
X-¥()* X=Y(n*

The derivative-s—;— Y(t) = V() is called the intrinsic velocity of the wave. Furthermore,
let us assume that the free energy ¥ has the biquadratic form

6 VE8.5.h.7. 9 =5 | 5 E— +ax(E-0)0-0%)

+"2—’(0—a#)=+"2—‘ﬁ*+32i(y~y#)=+?(x—x#)’]

where a; = const, i = 1, ..., 6, (g, = ar).
For B we postylate (cf. Eqgs. (2.9) and (2.18) in Part I)

. b 1
(3.4) g = -;3x0—?ﬂ-
Under the constitutive equation (3.3) for y we obtain the constitutive equations for
T, 7 and g (cf. Egs. (2.6) in Part I)
T = a,(E—a)+a,(8—90%),

@3:5) n=—"L(E-d)-">@-0%),
Qo €o
q = —buad¥#p.
Assuming that the coefficients of the system (2.1) G, = i = 1, ..., 7 are constant and
equal to their values at the equilibrium state, the system reduces to ’ ' 3

é'—l—alaxE—L033;0+-gl—alaza = 0,

2o 2o o
E—dyv =0,
O+8,0x9+850x+Ge = 0,
(3.6) a-A=0,

: b 1
ﬁ—";axo-{-?ﬁ =0,

p—T4=0,
x—AA=0,

6B GEn=72 Gt=g= G4=C=Gf=Gt=Cf=0
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and

(38) GS(E"Q'“’?’ x)= _._aiA(E’ﬁ’ ﬁ’,?,?‘)= _‘?-2"&
as a;

In that case 4 as the solutions of Eq. (2.7) are constant. The system (3.9) can be re-
written in the form

0,u+0xF(u)+B(m) =0,
u=(v,E, % a,pB,7,%, F@m) =Riu,

0 —La, ——1-03 —l—al 000 | 0
Qo Qo Qo 0
-1 0 0 0 000 G
g 0 0 0 g,00 —A.
3.9) Q= 0 0 0 0 000, B= 1
0 0 —i:- 0 000 =
-Ir4
0 0 0 0 000 o
0 o o 0 000] -

From the continuity of B with respect to u we have for Eq. (3.9) the Rankine-Hugoniot
condition

(3.10) Afu] = [#],
which for the system (2.1) takes the form

2oA[v] = —a,[E]-a.[9],

A[E] = —[v],

A[9] = g [v]+es[A],
(3.11) Afa] =0,

A[B] = -b,[9],

] = A[x] =0, b, 5%

The last equality implies the continuity of a, y and » across 2. For the known magni-
tude of a jump of one function we can determine another:

[ - - 7245 21,

A1 = 75 g,
(3.12) [«] = —-A[E],

181 = -2 81,

[T] = eo?*[E].

ge
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The speeds 4 # 0 of shock waves are roots of the polynomial obtained from the system
(3.6) provided the condition (3.10) and assumption [u] s O are fulfilled:

f 1 | 1
(3.13) ;-“";-2(!’135_—“|+—“g|az)———b185'ﬂ4=0-
0o Qo @o

After ACHENBACH [1] we can write Eq. (3.13) in the dimensionless form:

4 2
(li) —(ai) (@d*+1+6*)+d* =0,

(3.14)

=g, b= _.5’5;?”--. , M= +b1-:-?, 2 = f;-;-al.

The constant § depends on the coupling of mechanical and thermal effects. For non-
conductors we haved = 0 (4, = 0), the product ba = 0 and then the conductivity coefficient
K = 0 (K = b%a). In the case of materials for which the Fourier law is valid we have
d— (7 = 0) (cf. Sect. 2 in Part I).

Now we derive the differential equation for the magnitude of the strain gradient jump
using the compatibility conditions (3.11), the Maxwell’s theorem of an arbitrary dis-
continuous function f:

(3.15) %[ﬁ] = [6:f]1+ A[0x/]
and the jump form of Egs. (3.6):

a1 I 1
[¢] = —a, [0 E]+ — a:[0x8] — — a,[0xa],
o Qo Qo

[E] = [oxv],
(3.16) [#] = —g:[0xv] —gs[0xB]—[Gsl,
[a] = [4],

. 1
8] = b, [0x9]+ = 11,
(7] = [T4], [x] = [x4]
After substituting f for E in Eq. (3.15) and eliminating E and d4E, we conclude that
d
(3.17) - [E] = —C,[4]-C.[E],
where C, and C, are constants:

12
(3.18) c-l(z)ﬂ_(*’) 510, Cym
. 1= 3 T - 24 » » YR
2\7.] 2

ey SR
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Equation (3.17) describes the change in time of the amplitude [E] for two shock waves.
Equation (3.17) corresponds to three particular cases.
In the case of an elastic/viscoplastic material we have

d 1
Bl = - >[4
Here viscosity leads to the damping of [E], what means that lim [E](t) = 0.
=00

For a thermoplastic material (4 = 0), Eq. (3.17) is linear (cf. ACHENBACH [1]) and the
amplitude decreases in time:

(3.19) [EI(t) = le=€", | = const.

We can see that C; > C3(!) for d? > 1+ 6 and for d2 < 1+ 4 there is stronger damp-
ing at the slow wave. Moreover, for d? < 1(4% < A2) the slow wave is damped more
quickly than the fast one, independently of the quantity 6. However for an elastic material
the amplitude is constant along the shock wave, [E](z) = const and is equal to the
initial condition for jump [E] ().

The initial conditions needed for solving Eq. (3.17) can be obtained from the boundary
conditions of Egs. (3.6) in the following way. Suppose that the pressure p(¢) and tempera-
ture 6(t) are suddenly applied to the boundary X = 0
(3.20) T0,t) = p(t), #0O0,1)=06() for t=0
with

p(0) = po #0, 0(0) = 6, # 0.

There are two wave fronts at time ¢ = 0, this means that the initial stress and tempe-
rature jumps is divided over the two cases and propagate with the speeds A, and 4, (cf.
ACHENBACH [I]),

[T]O) = [TLO+([T].(0) = T®, T? = p,—T#,
[9100) = [9].(0+[9].(0) = #",  9° = 6, —9%.

The indices “1” and “2” in Eq. (3.21) correspond to the first and the second wave,

respectively. The jumps [¢#] and [T are related as follows:

(3.21)

(3.22) [4] =

(2,+bg)g]} A=4 or A=k

This relation leads to

2
[T].(0) = i +bifs [9022 ';blgs 974 T’] :
1

2
[TBZ(O) A:+b135 [90 11+b135 6,4_ T’].

(3.23) —4 v
[0 = - 8o oo ””g’auw]
[91:0) = s p)[ z+blgst9p T,]

(') Ci means the value of C, at the first wave and C3 at the second one.
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The initial condition for [E] (¢) is described by Eq. (3.12) such that
[E];(0) = 00 AI[T].(0)
and
[£].(0) = 00 A3[ T](0).
The initial disturbances can be realized in several ways. One of them is to apply exter-

nally discontinuities in the stress only, [#] (0) = 0 but [T] (0) = 77 # 0. These dis-
turbances are divided over the two waves for temperature

/]
[0hO = s T = - Nl f) I,
(3.24) T
i 5
[3}2(0) (23 A;) s ('F'T% Tp
i)
with

I[1 O = I[9]01

and for stress

A
2
;-1+b185 A
iTJI(O) = 22 T? = __A_-i_# Ag" T’$
A
(3.25) "
- 2
A e LT
P

From Eq. (2.13) we can conclude that sign [T7,(0) =sign 77 (/= 1,2), 77 <0
(compression) is compatible with [#],(0) < 0 and with [#],(0) > 0, on the other hand,
TP > 0 extension is compatible with [#],(0) > 0 and [§].(0) < O.

Also we have the following relation for both waves:

I[THO) > [[T](0)] < d* < 149,
I[T] (0] < I[T](0)] <> d* > 1+4.

The second possibility is to apply only heating without compression or extension then

[#](0) = ¥ # 0. Similarly as in the previous case, there are two parts of discontimities:

(3.26)

[T]l(O) = ('11+blgs)(;‘z+b18's) 0;

IAGE
_ (11+5185)(32+b135)
6 [Th) = —go BEAENELNE) o

I [T}l (0)| e | [le(o)i
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and

_A3+b
BLO = -5 5%,

(3.28) A b
[012(0) + lgs 6"

We can see that: sign [#],(0) = sign 1?’(!= 1,2), sign [T],(0) = —sign §7,
I[81'0)| > |[9].(0)] <> d* > 1+,
1{81,0) < [[9):(0)| < d2 < 1+
and independently of d? and 8 .
(3.30) I[E], (0) < I[E].(0)],
the equality in Eq. (3.30) appears under the condition that A? = 2.

(3.29)

4. One-dimensional plane waves

One of the possible applications of the theory introduced is one-dimensional state of
stress in a semi-infinite (X > 0) rod. Then the material constants in the constitutive equations
(3.5) can be expressed as

1+ c
(4.1) a,=J, a,=-Jgy, a;= "2]—_*2—; -"“:2—'55,

where J is the Young’s modulus, » — the Poisson’s constant, o, — the coefficient of ther-
mal expansion, ¢ — the specific heat of the material. The coefficients of stress, strain,
velocity and inelastic deformation are as follows:

T=T, (Tx=0 for i#1,K#1), E=E,,
Eyy—ay; = Ej3—a33 = —w(Ey, —G”)-‘i-(l +M)a,(3-9¥), o=y, = &.

Let the temperature 6, and pressure p, be suddenly imposed upon the boundary of
the rod

(4.2) T, 1) = poh(t), &0, 1) = boh(r),

where Ah(t) is the Heaviside step function and the material is at the equlhbnum state at
t=10;

T(X,0) = T# = const, o(X,0) =¥ =const, E(X,0)= E¥ = const,
(4.3) &(X,0) =% =const, a(X,0)=o*=0, p(X,0) = f# = const.

We have assumed that the material is elastic/viscoplastic-without hardening (x = const)
the viscosity parameter ¥ = const, the function A is linear,

' v y(ﬂ—l)-——, IT| = x,
4.4) AE,D,a,7,%) = AT,y 9 ={"\ = |TTI
0 s ITI< =,
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and, additionally, the field of the temperature does not depend on the mechanical prop-
erty, therefore we may neglect the coefficient of (¢, ,—2 ) in Eq. (3.6)3(?). These assump-
tions involve the system '

1
é-ial axE"'—gl—alaxd_—— azaxﬂ' = 0,

Qo 0 Q20
E—d,v =0,
(4.5) #+g50xf =0,
4—A4 =0,

. 1
B—=b,dyP+ = g=0
and Eq. (3.13) simplifies to

1
(4.6) A(]_’—-Q—al)(lz+big5) =0.
0
The nonzero roots of Eq. (4.6) correspond to the thermal wave speed A} = A% = - b, g5
1
and the mechanical longitudinal wave in the rod 1% = A2 = g—a,.
[+]

The characteristic lines for the system (4.5) are
X = + Ant+const,
4.7 X = +Art+const,
X =0.

In our case the characteristic lines X = A,f and X = A, are shock waves axd the
jump conditions can be written as

=[] = (- EL

48) | m=gm,

[l = —-A[E].

[T] = eoA*[E],
where 1 should be replaced by 1, or 4,. It is essential that for A2 = A2 the jump [§] = 0
and [#] = 0, but the functions E, v, T are discontinuous, while the functions E, ¢, T}, &
and § are discontinuous at the thermal wave, A2 = A2. For both waves [«], , = 0.

The boundary conditions (4.2) determine the initial stress and temperature jumps
(cf. Egs. (3.21), (3.23)) assigned here by the indices “1” and “2”,

[91.0) = #*, [#].(0) = 0O,

4.9) : 2 -
[T} (0) = 2—%%_-"53,— o, [T].0) =T’ et

2 A2 =22

97,

(%) Several thermomechanical problems with temperature governed by the Fourier law hae bieen
solved in NowAckr's book [6).
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The whole initial temperature propagates with the thermal speed A; but the stress jump
appears as a result of #”, independently of pressure po(T”). The pressure p, influences the
stress jump only at the wave X = A,¢. This is the reason why these waves are called thermal
and mechanical, respectively.

For the magnitude of the propagating temperature and stress we have the following
ordinary differential equations:

d 1
(4.10) _ e 9], = = 191,
with the initial condition (4.9), and

d 1
{4][) .dT [T:ﬂz = — —f%ﬂlET]}z
with the condition (4.9),. '

The straight lines X = A;f and X = A,t divide the phase plane (X > 0, r > 0) into
three subregions 2,, 2, and 2, (Fig. 1). Region 2, is the undisturbed region where

ta

X

(T,v, E, ¥, a, f) = (T#, v#, E¥, §#,0,0). Here we have assumed that the thermal wave
was faster than the mechanical one, 4} > AZ, which is reasonable only at the beginning
of the wave propagation processes(®). In fact, the thermal disturbances propagate with
varying speed and decrease in time such that after some time the mechanical signal is
faster and propagates into the undisturbed matrial. This effect cannot be described in the
linear theory where Ar and 4, are constants. For different material constants Lorp and
SHULMAN [4), KUKUDZANOV [2] have assumed that A% > A2 but Lorp, Loprez [3], NORr-
woop, WARREN [5], that A2 > A}. In this paper the mechanical wave is slower than the
thermal one and propagates into the disturbed region 2,. The solution of Eq. (4.10)
together with Eqgs. (4.8) provides all unknown solutions for X = A1,

(%) This consequence in the case of a conductor satisfying Fourier’s law was obtained by RANIECKI
in [7] :



462 K. WoLoszyNsKA

Br(t) = 9%e T +9%, Tr(t) = '1’“;, e 5 + T#,
141 . | A%L%
6’8 2' +E# ﬂr(t) = ““—’.‘-——R—#Pe 2( +vﬂ:

T

@ g

l
pr(t) = o 19"8 =, a(t)=0

These functions decrease in time and for ¢ — oo reach the equilibrium state, for example
lim 97(¢) = #%. To determine T3 (f) at X = A, from Eq. (4.11) the stress T(X, t) in the

=

region %, is needed:

(4.13) Ty (t) = [T).(0)e 2 ra + T (1),

where
T (t) = lim T(X,t).
X=dmt*
Similarly, to obtain v3(t) and E; (t) from Eq. (4.2), the velocity and strain in region 2,
are required

l -'!"-Y—‘ll
v7(t) = ——— [Th(©0)e 7" +o3(1),
00 Am
(4.149) g :
1 —Layt
E;(t) = = [T].(0)e 2* " +E3(1).
1

For the remainder of this section we note that the temperature # and the parameters o
and B are continuous at X = A,¢t, #7(¢) = #31(1), a5 (t) = af(t), B3 (1) = Bi(1).

Now we change the system of Eqs. (4.5) to two differential equations of the second
order. After differentiating Eq. (4.5); with respect to ¢ and Eq. (4.5)s with respect to X
and eliminating the parameter 8, we obtain a hyperbolic equation for # describing a damp-
ed plane wave:

1 1
§¥3 19.,,-;}-3 #,=0.

But the velocity v fulfills the so-called telegraph equation for a damped and forced

plane wave:

(4.15) &, xx—

1.
z

obtained from Egs. (4.5), ;... Here the following condition was used:

a
(4°16) U xx— U — 1 Qov.r"'_'g' ﬂ.x: =0
x a;

(417) tux = 2 0%,
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which results from the linear evolution equation (4.4) for a. The nonhomogeneous term
in Eq. (4.16), :—:2— # x, will be treated as a known function being the solution of Eq.
1

(4.15).

At the beginning it is natural to look for the solution of Eq. (4.15) in the whole region
between line X = 0 and X = A;¢ (Fig. 1).

A. Straight lines X = + A;f+const are characteristic lines of Eq. (4.15). Due to the
fact that the temperature ¢ is a continuous function at X = 4,7, this fact transforms our
problem of solving Eq. (4.15) to Picard’s problem with the initially boundary conditions

#0,1) = 0,
(4.18) -y
NX, 1)|xasy = HPe 2 +O%,

Here #(X, )/x-,. means #7(¢), which is a known function (cf. Eq. (4.12);). We
will look for a closed-form of the solution by using Riemann’s method. First we change
the variables (X, ?) to (z, w) through

[ i 1
o X a0, w

(4.19) z= (X 4R

T 4ti;
and introduce the new unknown functions u(z, w),

(4.20) Nz, w) = u(z, w)e* *,
1

where ii(z, w) = u(2(X, 1), w(X, 1)) ‘and (X, 1) = u(X,1)e * Then Eq. (4.15) simpli-
fies to '
(4.21) u,,+u =0.

This equation has the characteristic lines z = const and w = const. Let us notice
that X = 0 and X = A, transform under Eq. (4.19) to the lines w = —2z and z = 0.

The solution of Eq. (4.21) which we will construct for any point A, belongs to the

region 9 (Fig. 2) where the coefficients are (z, w). Now (z, w) are parameters and (, )
indicate the coefficients of the coordinates. The points B and D are points of intersection

¥
A(zw)  p=w
G, TP
N |
'\$‘ ';-z
I
[ |
B
c 3

Fig. 2.
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of the characteristic line 4 = — & withline w = —u and w = g with £ = 0. The Riemann
function v* for Eq. (4.21) is the solution of the following characteristic problem:

v, +o* =0,
4.22) o*(§, W=z = 1,
v*(€, Wlp=w = 1.

The solution consists of Bessel’s function

(4.23) o*(C, w3z, W) = Jo 2V (E-2)(u—w).
Then we conclude from Egs. (4.22) and (4.21) that » and v* must satisfy
(4.29) (v*u,),:— U, v%),. = 0.

Finally, by integrating Eq. (4.24) over the region 4, BCD we can see that the known
value of # at lines BC and DC determine u at the arbitrarily choosen point A,

(4.25) u(4,) = le u(B)+ —;—E(D}+% f (% +o%)—v*(u . +u ,)dé
BC

1 o
+5 J‘(v‘u.‘, —uv})du.
CcD
Returning to the coordinate (X, t) we arrive at line BC,

Ue=2t(u,+Aru x) = 277:3— u(irt, t),
(4.26) '

E'y = 2'[(2.1-!!'! """J)
and deduce that
1
u(or l) - &08‘2_;' ’

@27 e .
U(X, Olxary = 9P+ OFE .

Now the solution of Eq. (4.15) takes the form
1
R,

0

1 ! 1

W L e L —z:.‘fz"z)e T f{ﬂei;

(428) t?(X,!)-?ﬁoe +‘510(m;|/x 71°|Uoe 2 T€ 1 0
A

01 S X
" (mr YA =i “’2) 2ehs YX— 22 (@ —0)"

O, (g 7"
£, (MT y X:-ag(w_;)z)ezr =, w)} dw

1
| __!_‘IIZ(H- er) 5 1 | y
+5— Be ¥ f e J, (—n/(irw—nz—:a%(w—o’)dw-'
2T H j--r

2T
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where (0 w) is found from Eq. (4.28) as

1 i, ' | J’o( l/ A o- ‘))
9 111 . 27ir
(4.29) W((),:) ol z(ﬂ#e +0°)+e 0, : V=D
126 _lQJ ( |/A,t(2m—l))
___e '”f °\274,
ViiQo-1)

B When we have temperature in the whole region D we can start solving Eq. (4.16)
for..\'eloclty rewritten in the most useful form:

{4-30) U‘xx - ‘-lT 0'“--’(0.,4-3'(1", l') = 0

A%
Where k = %:— 0o > 0 and g* is a known function of (X, ¢) andg*(X, 1) = %1 Px(X, ).
1

Our procedure is divided into two steps: the first step corresponds to the solving of
the Cauchy problem in the region D, and the second to the Picard problem in the region
D, (Fig. 1). The straight lines X = + A,#+ const are characteristics of Eq. (4.30). For the
Gauchy problem we know the value of v and its derivative at the line X = Ayt, which is
not a characteristic of Eq. (4.30):

1
lr-"—a; 1‘

O Dlresgs = 01(0) = =2 07 % o,

@.31)

ov '!4 1
78 X Dlxazye = 92t = (::‘l";;’), e (EJ' %lr)

Ala !

Ty

g 09 Ae (¥ e

+ A% 2 3Xfx-z,.+ B2 ( T#—sy|, s=signT.

The formula for ¢,(f) implies from Eq. (4.12),, for ¢,(f) from Egs. (4.5);.,.5 and from
the following equality

+4
(4.32) (z,., ( i a")lx_

The derivative of temperature in Eq. (4.31), is calculated from Eq. (4.8)

od 1 1 -t
(4.33) X (X, Olxes = e [ﬁ (0% —9°)1 - 0"]3 =

Now the same procedure will be used for solvinﬁ Eq. (4.30) with the conditions (4.31).
Introducing the new variables by

(4.34) = 7 Kin(X = dut), W = *f;‘ kAu(X +Aut)

10 Arch. Mech. Stos. nr 3/81
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and the new unknown function which is given in the form

_ _ L2
v(z,w) =u(z,w)e™ or oX,t) =u(X,t)e?
we obtain the nonhomogeneous equation (cf. Eq. (4.21))
(4.35) U, +u+f(z,w)=0

where
1 a = T o
=t w-z _ E; = e
(Z W) kz 2 g (Z W)e 4 Am al (0,ww 19'")2

Riemann’s function ¢* is the same as that given by Eq. (4.23) and fulfills the similar
conditions at the characteristic £ = z and u = w lines 4, B and A,C, (Fig. 3).

7y &

r C
’ \
i§=z k*ﬁ?‘"
D
M e
B_¥vM
5
FiG. 3.

Integrating the equation
(4.36) (v*u,y),. — @o7),, +fo* = 0

over the region 2 of the triangle 4, BC (Fig. 3)(*), we determine the value of the function 73
at the arbitrary point A,

(437) (A) = 2B+ “Q+“f{{%-ff?”ﬂ
BC T m

—v* (ﬁ,e—;"ti" u )] dE+ f f fordédu.

Returning to the variable (X, ) and using the relations

1k 2
(X, Dlxars = @i(1)e2 ™
(4.38)

du 1 Yz
_aT(X’ O)|x=tpe = (%(t)+ 5 kaz @ (f))e3 ,

(%) 2 and Q are regions related by

= {(z, wiz= -}-kﬂ,(X— Aut), W = fi-kl_(X-#l,.t), X, r).Q} 3
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we have
1, 2 X—dmt "' i
| X =it ‘n, w7 o X+ ALt JTH-
(4.39) v?X, 1) —5%(17__1 e’ +5 (Ar+3n)e
1 ——kay 3 LIPE Jé(‘;‘ KAy V(lrw;mzt-jf‘—(w—;)z
+—khne * fe’ Am@ (@ Y o 1
4 5 e V(Gro=X)* = 22(w—1)? (s

+ i o Kt G 072207 (2 @4 2 gy @)+ P g0 fao

__! 2 > R T
+;:—1..8 z*luth Jo(%-kﬂ..lf(a-x)z_'ii(m"‘)z)ﬂ,meikwda’dw_
1
Qo

This solution is valid for (X, ¢) € 2, (Fig. 1). For (X, t) € 9, we construct the so-
lution of Eq. (4.30) in a similar way as the temperature at point 4, with the condition at
he characteristic X = A, and line X = 0:

kﬂam -.hl:w
u o=0 (!J 92 )d- (% Po—s}’),
(4.40)

1
k2o SkiZo a?,m
Uig=tma = vlﬂ-lnwez "= E)E(w)ez == 9""’”21(‘”) ’

where
. | ;
v5 = const = ——— [ T, [(0).
? = cons i [T2](0)

These equalities were obtained from the boundary conditions (4.2), the constitutive
function (3.5), and Eq. {4.5), at point (0, ¢); let us note that E, (0,1) = y/xp,—sy =
zx (0, 1)

Then, generally for any point (X, t) the solution is

@441) (X, :)_% (o r—-j:l;X)e En gl H%JO(%H,.;/P—A;:)
P Lkl | 1
kiko X
(zr2+ﬂ§(0))+-i,,, [ e ( kA, 0(0, m).n,( 7R ) (w—r)=)--- T
f—-z—.-x

1
2

+J,,( K Y X2 = 22(0 —1) )(—po ))daH- f (j—wn;(w)
0

t+ 3%}

1,22
-z—kl.f

1 a2 _
+5 “3-”3'(0)) 2™ Jo (‘;* Ko Y (Ao —X)? = 22(0 — t)z)dw + %— g_z Ame
1

1.2
x f f s (% kdmV (0 —X)? = 22(w _7)3) B 02 Mt dodw} .
z .
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Putting into Eq. (4.41) X = 0, we calculate

1]
1. .q 1,2
(442 ©0,1) = e_i“'f{.fo(% ki —,1;:‘) (@3 +05(0)+ 1 | 2™

1
=1

2
i duvt
xJo (;ukz.. Y =1y )(—j’; Po—s)’)dw+2 ( (z';—z(""
5 0

1
2

1
+2.0 [ 0.0 L ea VP -TEo=D)er™ dodns|.
a, z 2

The solution obtained in this section is valid only if the stress fulfills the inequality,
IT| > .
This implies some restrictions on the boundary conditions (4.2)

I z - ———
+ kA:o;(m))ei*“'“J.,(% ki 22120 ~t )) do

Aja,
T
|T5(0) = |TP+ T#| > x.
Generally, it is well known that there are several plastic and elastic zones at the phase
space dependent on the boundary and initial conditions. But it is essential that the pro-
cedure of solving this problem should be the same thanks to generalization of the classical

Fourier heat-conduction equation.

Ty O)] = > x,

(4.43)
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