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On coupling acceleration and shock waves 
in a thermoviscoplastic medium 
11. One-dimensional waves 

K. WOLOSZYNSKA (WARSZAWA) 

THE PAPER contains an analysis of one-dimensionalshack waves in a thermoviscoplastic medium~ 
Jn the linear theory, nonlinear ordinary differential equations were obtained for the thermal 

· and mechanical amplitude. The governing equ~tions, for plane waves, in the form of quasi-linear 
hyperbolic partial differential equations were solved by using Riemann's method. 

Praca poswi~ona jest jednowymiarowym falom silnych nieci'lglosci w osrodku termolepko­
plastycznym. Dla liniowych zwi'lzk6w konstytutywnych otrzymano nieliniowe r6wnania r6inicz­
kowe zwyczajne opisuj<tce zmian~ w czasie amplitudy termicznej i mechanicznej. Dla plaskich 
fa! rozwillzano hiperboliczny uklad r6wnan r6i:niczkowych cz'lstkowych za pomoc(l metody 
Riemanna. 

Pa6ota nocmnneHa o,ll.HOMepHblM BonHaM cHnbHoro pa3pbiBa B TepMoBR3I<onnaCTHllecKoli 
cpe,ll.e. .llnR nHHeHHblX onpe,ll.enRIOI.UHX COOTHOllieHHH nonyqeHbl HenHHeHHbie o6bU<HOBeH­
Hble .D.HcP<ilepeHUHanbHbie ypaBHeHHR, OnHCblBaroi.QHe H3MeHeHHe BO BpeMeHH TepMHlleCI<OH 
H MeXaHHlleCI<OH aMnnHTY,ll.bl. JlJm nnOCI<HX BOnH pemeHa rnnep6oniNeci<aJI CHCTeMa ,lJ.HcP­
cPepeHUHanbHbiX ypaBHeHHii B tiacTHhiX npoH3BO.ll.HhiX c noMollJ,.bro Mero.D.a PHMaHa. 

1. Introduction 

IN PART I of the paper [8) the constitutive equations of thermoviscopJasticity with the 
MaxweJJ....:cattaneo relation for the heat flux are formulat~d. The objective of this paper is 
to discuss the propagation of one-dimensional waves as well as the acceleration and the 
shock waves. In the problem of the plane shock waves propagating in a thin rod described: 
by the system of linear equations, the closed form of the solution is obtained. 

2. Acceleration waves 

The one-dimensional motion is described by a scalar function x(X, t) = x, which 
determines the location x at the time t of the material point X, the displacement u(X, t) = 
= x(X, t)-X, the strain E(X, t) = axu(X, t) and the temperature gradient g(X; t) = 

= ox{)(X, t). The thermomechanical state G (cf. Part I) contains the functions. 
{E, {),ox{), a} where there are four internal parameters a= {et, {1, y, x} introduced in 
the Part I of this paper. Parameter q.. is the inelastic deformation, {1- the thermal parame­
ter, "-the strain hardening parameter, y- the viscosity parameter. The material res-, 
ponse is described by a set of the four functions: T, 1p, 'YJ, q, where T is the stress, 1p -· 

the free energy, 'YJ- the entropy and q- the heat flux. 
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4S2 K. WOLOSZYNSICA 

In that case the basic system of equations for the thermoviscoplastic body (cf. Eqs. (3.8) 
in Part I) reduces to seven equations with respect to v, E, {), ex, {3, i', ", v is the velocity: 

(2.1) 

E- Oxfl = 0, 

D+G1 oxv+ G2 oxE +GJ oxD+G4ox«+Gs oxfJ+ G6 Oxi'+ G, ox"+ Gs = 0, 

!i-A = 0, 

P-B, Ox6-B2 = 0, 

y--FA = 0, 

ie-.:K A = 0, 

where G,, i = 1 , •.. , 8 are the following scalar functions of the arguments E, {), a, {J, ", i' 
(cf. the denotation (3.9) in Part 1): 

(2.2) 

c is the specific heat of the material and P, R, W, I, M, N, L, L, Hare material functions 
defined by 

e01Jo~%= c, o~ = P, eoB1(1JotJ%+oll'P) = W, o_eQ = R, 

a.Q = 1, o«Q = M, otJQ = N, a,Q = L, o,Q = L, 

H = eo[(t?op .tY+otJtJI)Bz+ (Do~.tY+o«fi>A+(IJo, %+o,'l')FA+ (Do,Y+o"'P)f A, 

ff, 'P, .¥, Q are constitutive functions for stress, free energy, entropy and heat ftux. 
From now on we assume that .the constitUtive function for the free energy V' (et Eq. 

(2.6)1 in Part I) has the simpler ·form 

{2.3) . 'I'= lJI1 (E, {}, cz)+f':z(/J)+'PJ(«, y, "). 

Additionally, the domain of the function BJ. is restricted to 

(2.4) 

From Eqs. (2.3) and (2.4) it follows that 

(2.5) Op5" = 0, a,~ = 0, OH~ = 0, . Gz = 0, GJ = 0 

and (cf. Eq. (2.6). in -Part I) 

(2.6) q = -~08B1 a, 'I'. 
The ~baracteristic Eq. (3.12) given in Part I for the direction n = (l, 0, 0) has seven 

roots A: 

(2.7) l 3 JA"+A1 (Bz.G5--
1 os~+-1 .G1 iJ•~)-:--1 B1 Gso,5"\= 0. 

\ l!o l!o . eo f 
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ON COUPLING ACCELERATION AND SHOCK WAVES IN A THERMOVISCOPLASTIC MEDIUM. 11 

The roots are real provided that 

(2.8) 

( 
I l )

2 
I B1 G5 -- oE:Y + -- G1 ol)~ +4- B1 G5 o£~ > 0, 

eo Qo (!o 

- (Bt Gs- _I~ o£~ +_I_ G1 ol)~) > 0, 
eo (!o 

1 
-- B1 G5 oE~ > 0. 

eo 

These inequalities are satisfied under the following assumption: 

(2.9) 

Additionally, the inequality (2.9) implies 

(2.1 0) 

Let us consider two simplifications of Eq. (2.7). 

453 

1. There is no thermomechanical coupling, ol).r = 0 (G1 = 0). There are two kinds 
of symmetric waves, the thermal one and the mechanical one with the speed ± Ar and ± Am: 

(2.II) 

J.j. = - B 1 G s , 

;.; = _I_ a£ff. 
eo 

The first derivative of temperature is discontinuous while v, BxE are continuous 
([D] =1= 0, [v] = 0) at the thermal wave. On the contrary, [D] = 0 and [v] =F 0 at the 
mechanical wave. 

2. In the case of a nonconductor (Q(D, a, {J, y, ") = 0, G5 = 0) two symmetric 
waves propagate into the material with the adiabatic speed 

(2.12) 

Here [v] =F 0 and [D] =F 0. 
We can see that the speeds A.f, A.i which are roots of Eq. (2. 7) together with A.}, A.! and 

;.; satisfy the inequalities 

(2:1 3) 
J.f > A.} > ).~. 

A.f > ;.; > A.! > A.i. 

3. Propagation of shock waves, linear case 

Let us assume that the strain gradient E and temperature {} are discontinuous across 

I where 

(3.1) I= {(X, t):X = Y(t), fe [0, oo)} 

9 Arm Yeeh. Stos. nr 3/81 
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This means that 

[E)(t) = E-(t)-E+(t) ::F 0, [l?](t) = 8-(t)-l}+(t) ::F 0, 

(3.2) E-(t) = lim E(X, t), b-(t) = lim IJ(X, t), 
X-+Y(t)- X-+Y(t)-

E+(t) = Urn E(X, t), f+(t) = lim· {)(X, t). 
X-+Y(t)+ X-+Y(t)+ 

The derivative; Y(t) = V(t) is called the intrinsic velocity of the wave. Furthennore, 

let us assume that the free energy 'I' has the biquadratic form 

1 [a1 2 (3.3) 'l'(E,{),a.,{J,y,;e) =e;; T(E-«) +a2(E~a.)({)-f#) 

+~({}-f*)l+ a, /Jl+ ·a, (y-y#)l+ ao (;e-;e#~]· 
2 2 2 . 2 - " 

where a1 = const, i = 1, ... , 6, (a4 = aT). 
For {J we postq)ate (cf. Eqs. (2.9) and (2J8) in Part I) 

(3.4) iJ = .!!__ iJx8- _!_ {J. 
T T 

Under. the constitutive equation (3.3) for 'P we obtain the constitutive equation&! for 
·T! n ~nd q (cf. Eqs. (2.~) in Part I) 

T = a1 (E -tx)+t12(f-t?*), 

(l.:s) n = - al (E-tt)-·"3(8-t?#)', 
eo eo 

q = -bD~fJ. 

Assuming that the coefficients of the system (2.1) G 1 = i = 1 , · ... , 7 are c:Onstant and 
equal to their values at the equilibrium state, the aystem reduces to 

(3.6) 

where 

{3.1) 

v- -1 
a 1 iJxE- _!_a 2ox8+ -

1 
al ox tx = 0, 

eo eo eo 
E- oxfJ = 0, 

~+gtoxv+g,oxfl+Ga = 0, 

li -A= 0, 

. b 1 
{J- -ox{}+- fJ = o, 

T T 

y-FA = 0, 

x-:L'A=O, 
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-----------------------------------------------------
and 

(3.8) a2 ( {} a2 • G8(E, {J, ex, y, ") = - - A E, , ex, y, ") = - -ex. 
a3 a3 

In that case A. as the solutions of Eq. (2. 7) are constant. The system (3.9) can be re-
written in the form 

o,u+oxF(a)+B{u) = 0, 

u = (v, E, {},ex, {J, y, x), oxF(u) = Aoxu, 

0 
I I I 

0 --a. --a2 -a1 0 0 0 
(!o (!o (!o 0 

-I 0 0 0 0 0 0 G, 
Kt 0 0 0 g5 0 0 

-A 
(3.9) A= 0 0 0 0 0 0 . 0 ' B= 

J...p 
0 0 

(1 

0 0 0 0 T 
T 

-FA 
0 0 0 0 0 0 0 

-Jf"A 
0 0 0 0 0 0 0 -

From the continuity of B with respect to u we have for Eq. (3.9) the Rankine-Hugoniot 
condition 

(3.10) A.[u] = [F], 

which for the system (2.1) takes the form 

(3.11) 

eoA.[f1] = -a1[E]-a2[t?], 

A.[E) = -[v], 

.A[t?] =Kt [v]+ Ks(P], 

A.[«] = 0, 

A.[{J] = -bl[t?], 

A.[y] = A.[x] = 0, 

The last equality implies the continuity of ex, y and " across E. For the known magni­
tu de of a jump of one function we can determine another: 

(3.12) 

9• 

gl_A2 
[t?] = - ,P+btKs [E], 

[,8] = b1g1 A. [E] 
A.l+blg5 ' 

[v] = -A.[EJ, 

[,8] = - bl (8]' 

[T] = e0 ,P(E]. 
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The speeds A. ::f: 0 of shock waves are roots of the polynomial obtained from the system 
(3.6) provided the condition (3.1 0) and assumption [ u] ::f: 0 are fulfilled: 

(3. J 3) ),4+A.2(·b.gs-~at+-l gtal)--1 b.gsa4 = 0. 
Qo eo eo 

After AcHENBACH [I] we can write Eq. (3.13) in the dimensionless form: 

(3.14) 

(Lf -c:r (d'+, H')+d' = o. 

1 
--g.a2 

~ = ---~­).;. 
The constant c5 depends on the coupling of mechanical and thermal effects. For non­

conductors we have d = 0 ( Ar = 0), the product ba = 0 and then the conductivity coefficient 
K = 0 (K = b2a). In the case qf materials for which the Fourier law is valid we have 
d-+ oo(r = 0) (cf. Sect. 2 in Part 1). 

Now we derive the differential equation for the magnitude of the strain gradient jump 
using the compatibility conditions (3.11), the Maxwell's theorem of an arbitrary dis­
continuous function f: 

(3.15) :t [!] = [orf]+A.[oxf] 

and the jump form of Eqs. (3.6): 

(3.16) 

[v] = -
1 

a. [oxE]+-
1 

al[oxD]--
1 

a.[oxa], 
eo . eo eo 

[E] = [oxv], 
[D] = -g.[oxv]-gs[oxfl]-[Ga], 

[ci] = [A], 

• 1 
[11] = b.[oxt?]+- [{J], 

T 

[y] = [FA], [x] = [.t'" A]. 

After substituting f for E in Eq. (3.15) and eliminating E and oxE, we conclude that 

(3.17) 

where C 1 and C 2 are constants: 

(3.18) c, = _!_(_!f I~(:J 1 1-(~f 
> 0. _A.4 > 0, cl=-- _A.4 2 Am 

1- _A.l _A.l 
2T 1-- -----

T m A.} A.! 
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Qt-; COUPLING ACCELERATION AND SHOCK WAVES IN A THERMOVISCOPLASTIC MEDIUM. li 457 

Equation (3.17) describes the change in time of the amplitude [ E] for two shock waves. 
Equation (3.17) corresponds to three particular cases. 

In the case of an elastic/viscoplastic material we have 

d 1 
dt [E] = -2 [A]. 

Here viscosity leads to the damping of [£], what means that lim [ E](t) = 0. 
t-.oo 

For a thermoplastic material (A = 0), Eq. (3.17) is linear (cf. ACHENBACH [1]) and the 
amplitude decreases in time: 

(3.19) [E](t) = ze-czt, 1 = const. 

We can see that Cj > Ci(l) for d 2 > I+~ and for d 2 < I+~ there is stronger damp­
ing at the slow wave. Moreover, for d2 < I (J.} < J.!) the slow wave is damped more 
quickly than the fast one, independently of the quantity ~. However for an elastic material 
the amplitude is constant along the shock wave, [E](t) = const and is equal to the 
initial condition for jump [ £] (t0 ). 

The initial conditions needed for solving Eq. (3.17) can be obtained from the boundary 
conditions of Eqs. (3.6) in the following way. Suppose that the pressure p(t) and tempera­
ture O(t) are suddenly applied to the boundary X= 0 

(3.20) T(O, t) = p(t), 19-(0, t) = O(t) for t ~ 0 

with 

p(O) = Po =f. 0, 0(0) = 00 =f. 0. 

There are two wave fronts at time t = 0, this means that the initial stress and tempe­
rature jumps is divided over the two cases and propagate with the speeds .'. 1 and ).2 (cf. 
ACHENBACH [1]), 

(3.21) 
[T](O) = [T]l(O)+ [T]2(0) = TP, 

[D](O) = [0]2(0)+ [t?]2(0) E OP, 

TP =Po-T#, 

f)P = Oo-0#. 

The indices "1" and "2" in Eq. (3.21) correspond to the first and the second wave, 
respectively. The jumps [0] and [T] are related as follows: 

(3.22) 

This relation leads to 

[T]t(O) = "'1:b~~s [eo J.~+btgs 'i?P+ TP]' 
1- 2 g1 

(3.23) 

[T]2(0) = - ;.~:~~~s [eo lf+btgs 'i?P+ TP], 
1 2 Kt _ 

[t?-]1(0) =- -----~_!_ --;;T [eo?·~+b2gS f)P+TP], Qo(Al - ).2) g 1 

[19-]2(0) = -~~----2- [eo~J+blgs 'l?P+ TP] . 
Qo(Al- ),2) gl 

( 
1

) Cl means the value of C2 at the first wave and C~ at the second one. 
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The initial condition for [E) (t) is described by Eq. (3.12) such that 

[E]t(O) = eo!.flTl(O) 

and 

[E]2(0) = eo J.HT]2(0). 

The initial disturbances can be realized in several ways. One of them is to apply exter­
nally discontinuities in the stress only, [1?] (0) = 0 but [T] (0) = TP =F 0. These dis-
turbances are divided over the two waves for temperature · 

[0]1(0) = -~-2 TP = ----~--- TP, 
eo(l.t- .A.2) ( .A.~ .A.i) 

a2 12-12 
m m 

(~.24) 

with 

and for stress 

(3.25) 

From Eq. (2.13) we can conclude that sign [T],(O) = sign. TP (I= I, 2), JP< 0 
(compression) is compatible with [1?]1 (0). < 0 and with [1?]2(0) > 0, on the other hand, 
TP > 0 extension is compatible with [1?]1 (0) > 0 and [1?]2(0) < 0. 

Also we have the foJiowing relation for both waves: 

(3.26) 
I[T}t(O)I > I[T]2(0)1 <=> d2 < 1 + <5, 

I[T]t(O)I ~ I[T]2(0)1 <=> d 2 ~ I+ <5. 

The second possibility is to apply only heating without compression or extension then 
[D](O) = 0' =F 0. Similarly as in the previous case, there are ~wo parts of discontim1ties: 

[ T1 (O) = (.A.t+btgs)(.A.i+btgs) OP . 
Jll eo Kt (.A.~- .A.i) , 

(3.27) [T] (0) = _ (.A.t+btgs)(.A.i+btgs) 0' 
2 eo Kt(.A.t-.A.n ' 

I[T]t(O)I = I[T)l(O)I 
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and 

(3.28) 

We can see that: sign [0]1(0) = sign f'(/ = l, 2), sign [T] 1(0) = -sign _f', 

(3.29) 
I[Dr(O)I > 1[0]2(0)1 ~ d2 > 1 + c5, 

' 
and independently of d 2 and c5 

(3.30) 

the equality in Eq. (3.30) appears under the condition that /.~ = !.i. 

4. One-dimensional plane waves 

One of the possible applications of the theory introduced is one-dimensional state of 
stress in a semi-infinite (X~ 0) rod. Then the material constants in the constitutive equations 
(3.5) can be expressed as 

(4.1) 

where J is the Young's modulus,,- the Poisson's constant, ex,- the coefficient of ther­
mal -expansion, c - the specific heat of the material. The coefficients of stress, strain, 
velocity and inelastic deformation are as follows: 

T= T11 (T,K = 0 for i I: 1, K I: 1), E = £ 11 , 

E22-IX22 = £33-IX33 = -P(E11 -1X11)+(1+v)cx,(t?-O#), v = v 1 , IX= IX 1 • 

Let the temperature 00 and pressure p 0 be suddenly imposed upon the boundary of 
the rod 

(4.2) T(O, t) = p0 h(t), 0(0, t) = 00 h(t), 

where h(t) is the Heaviside step function and the material is at the equilibrium state at 
t = 0, 

(4.3) 

T(X, 0) = T# = const, 

D(X, 0) = 0# = const, 

v(X, 0) = v# = const, 

cx(X, 0) = ft# = 0, 

E(X, 0) = £# = const, 

{J(X, 0) = fJ# = const. 

We have assumed that the material is elasticjviscoplastic·without hardening (K = const) 
the viscosity parameter y = const, the function A is linear, 

(4.4) 
·'V {r(I!l-t)_!_, 

A(E, D, ex, y, K) = A(T, y, K) = " ITI 
0 ' 

ITI ~ K, 

ITI < K, 
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and, additionally, the field of the temperature does not depend on the mechanical prop­
erty, therefore we rilay neglect the coefficient of(IX,,-v,x) in Eq. (3.6h(2). These assump-
tions involve the system · 

(4.5) 

. I 1 ~ 1 ~ {} v--a 1 8xE+-a 1 oxrt.--a2 ux = 0, 
(!o (!o (!o 

E- OxV = 0, 

0+ g5 Ox/3 = 0, 

cl-A = 0, 

. 1 
{3 -:-b1 Ox{}+- {3 = 0 

T 

and Eq. (3.13) simplifies to 

(4.6) 

The nonzero roots ofEq. (4.6) correspond to the thermal wave speed ).f = ).} = -b,gs 

and the mechanical longitudinal wave in the rod ).i = ).~ = -
1
- a 1 • 

The characteristic lines for the system (4.5) are 

X = ± A,.t+const, 
(4.7) X = ± ATt+const, 

X= 0. 

eo 

In our case the characteristic lines X = ).T t and X = lmt are shock waves atd the 
jump conditions can be written as 

(4.8) 

~ [D] = ().2_).~)[£], 
(!o 

[{3] = .!:_ [D], 
gs 

[ v] = - ). [ E] , 

[T] = (!oA2[E], 

where ). should be replaced by ).T or l,.. It is essential that for ,p = l! the jump [ tS] = 0 
and [{3] = 0, but the functions E, v, Tare discontinuous, while the functions E, ,, T, {) 
and {3 are discontinuous at the thermal wave, ).2 = ).}. For both ":aves [1X] 1 , 2 =0). 

The boundary conditions (4.2) determine the initial stress and temperature jumps 
(cf. Eqs. (3.21), (3.23)) assigned here by the indices "1" and "2", 

[D]t (0) = DP' [D]2(0) = 0, 
(4.9) 

{
2

) Several thermomechanical problems with temperature governed by the Fourier law ha-c bteen 
solved in NowAcrt'l book [6]. 
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The who!e initial temperature propagates with the thermal speed A.T but the stress jump 
appears as a result of {)P, independently of pressure p0 (TP). The pressure p0 influences the 
stress jump only at the wave X = A.,.t. This is the reason why t~ese waves are called thermal 
and mechanical, respectively. 

For the magnitude of the propagating temperature and stress we have the following 
ordinary differentia] equations: 

(4.10) 
d 1 

- [{}]1 = -- [D]t 
dt 2T 

with the initial condition (4.9) 1 and 

(4.1 I) 

with the condition (4.9)4 • 

The straight lines X = A.Tt and X = A."'t divide the phase plane (X > 0, t > 0) into 
three subregions !ll0 , !ll1 and !ll2 (Fig. 1). Region !1}0 is the undisturbed region where 

tA 

X 

FIG. 1. 

(T, v, E, {},et, {J) = (T#, v*, E*, {}#, 0, 0). Here we have assumed that the thermal wave 
was faster than the mechanical one, A.~ > A.!, which is reasonable only at the beginning 
of the wave propagation processes(l). In fact, the thermal disturbances propagate with 
varying speed and decrease in time such that after some time the mechanical signal is 
faster and propagates into the undisturbed matrial. This effect cannot be described in the 
linear theory where· A.T and Am are constants. For different material constants LoRD and 
SHULMAN [4], KtJKun.tANOV [2] have assumed that ,i~ > A.! but LoRD, LoPEZ [3], NoR­
woon, WARREN [5], that A; > A.~. In this paper the mechanical wave is slower than the 
thermal one and propagates into the disturbed region !ll1 • The solution of Eq. (4.10) 

together with Eqs. (4.8) provides all unknown solu~ons for X= A.Tt, 

(3) This consequence in the case of a conductor satisfying Fourier's law was obtained by RAN IECK.I 

in [7] 
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-- - --- -~ ---~--

(4.12) 

I 
--t 

D1(t) = D'e 2~" +D*, 

1 
-at 1 

).Za _ _!_, 
r,- (t) = _r_z_ {)P 2r + T# 

1 ).# _ ).! e , 

E-(t) = _e_o __ _ a,e-2T, + l':'fr (t) 
1 ).# _ ).! v n-rr, tJ! = 

).T _ _!_, 
/31(1) = -·- {)Pe 2~" , tx!(t) = 0 . . 

gs 

K. WOI.OSZ\'Nsu 

These functions decrease in time and fort~ oo reach the equilibrium state, for example 
lim D!(t) = 1}#. To determine Ti(t) at X= ).,.t from Eq. (4.11) the stress T(X, t) in the 
f-+00 

region ~ 1 is needed : 

(4.13) 

where 

Tl(t) = lim T(X, t). 
X-+A.t+ 

Similarly, to obtain Vi(t) and E;(t) from Eq. (4.2), the velocit) and strain in region !»1 

are required 

(4.14) 

1 - _!_.!a,t 
Vi(t) = --1- [T]z(O)e 2 x +v!(t), 

(!o 11.,. 

l - .!_x_,Jtl 
Ei(t) = _, [T]z(O)e 2 x +Et(t). 

at -

For the remainder of this section we note that the temperature{} and the parameters oc 
and P arc continuous at X= A,.t, Di(t) = D!(t), (Xi(t) = oci(t), Pi(t) = Pi(t). 

Now we change the system of Eqs. (4.5) to two differential equations of the second 
order. After differentiating Eq. (4.5h with respect to t and Eq. (4.5)5 with respect to X 
and eliminating the parameter {J, we obtain a hyperbolic equation for {} describing a damp­
ed plane wave: 

(4.15) 
- 1 l 

D,xx-- ).j. f,tt- T).# D,, = 0. 

But the velocity v fulfills the so.called telegraph equation for a damped and fotced 
plane wave: 

(4.16) 

obtained from Eqs. (4.5)1 , 2 , 4 • Here the following condition was used: 

(4. I 7) 
, . 

a tz = - (!o'U" . " . 
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which results from the linear evolution equation (4.4) for a. The nonhomogeneous term 

in Eq. (4.16), ;~ {),x 1 will be treated as a known function being the solution of Eq. 

(4.15). 
At the beginning it is natural to look for the solution of Eq. (4.15) in the whole region 

between line X = 0 and X = ATt (Fig. 1 ). 

A. Straight lines X= ± ATt+const are characteristic lines of Eq. (4.15). Due to the 
fact that the temperature {) is a continuous function at X = .A,.t, this fact transforms our 
problem of solving Eq. (4.15) to Picard's problem with the initially boundary conditions 

(4.18) 

0(0, t) = 00 , 

l 
--I 

{)(X, t)lx=ATt = {)Pe lT +{)#. 

Here {)(X, t)ix=Art means {)1(1), which is a known function (cf. Eq. (4.12)1 ). We 
will look for a closed-form of the solution by using Riemann's method. First we change 
the variables (X, t) to (z, w) through 

(4.19) 

and introduce the new unknown functions u(z, w), 

(4.20) D(z, w) = u(z, w)ez w 

1 
- --I 

where u(z, w) = u (z(X, t), w(X, t)) :and {}(X, t) = u(X, t)e lT rhen Eq. (4.15) simpli-
fies to 

(4.21) U,zw+li = 0. 

This equation has the characteristic lines z = const and w = const. Let us notice 
that X= 0 and X= ATt transform under Eq. (4.19) to the lines w = -z and z = 0. 

The solution of Eq. (4.21) which we will construct for any point A1 belongs to the 
region fiJ (Fig. 2) where the coefficients are (z, w). Now (z, w) are parameters atyJ (C, p.) 
indicate the coefficients of the coordinates. The points B and D are points of intersection 

A1 (z,w) fJ•W 
r-------- D 
I 
I 

t~·z 
I 

c 
FIG. 2. 
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of the characteristic line p. = - ~ with line w = - ft and w = p. with e = 0. The Riemann 
function t'* for Eq. (4.21) is the solution of the following characteristic problem: 

(4.22) 

V~w+v* = 0, 

v*(~, p.)l;=z = I, 

v*(~,ft)lp=w =I. 

The solution consists of Bessel's function 

(4.23) v*(C, p.; z, w) = 10 (2 y(f-z){ft =-w)). 
Then we conclude from Eqs. (4.22) and (4.21) that u and v* must satisfy· 

{4.24) 

Finally, by integrating Eq. (4.24) over the region A1BCD we can see that the known 
value of ii at lines BC and DC determine u at the arbitrarily choosen point A1 

(4.25) ii(A 1) = ~- ii(B)+ ~ u(D)+ + f [ii(v~+v~,)-v*(u ;+il,p))d~ 
BC 

Returning to the coordinate (X, t) we arrive at line BC, 

(4.26) 

and deduce that 

(4.27) 

u,; = 2-r(u,,+ATu,x) = 2r :, u(ATt, t), 

1 
-t 

u(O, t) = 00 e2-r , 

I . 
-t 

u(X, t)lx ... ~t = fJ'+IJ#el-r . 

Now the solution of Eq. (4.15) takes the form 

+ + J (v*ii.p -uv!)dp. 
CD 
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where ~! (0, m) is found from Eq. (4.28) as 

{ 

t J' ( 1· ./ 12( )2) _ _!_ t _ _!_, ~ 0 -- ... -~~..,. (t) -t . 
(4.29) iJ{) (0, t) = _!_ __!_ (f#e •~ +00 )+e 2

T .00 J· i~ 2Tlr _ · ·. ·· dtb 
oX 2T l.,. 

0 
Jf-lHw-t) 2 · 

_ _!_, 1121 _ _!_,.J~(_;_vl~t(2w-t>' ) ~-
__ !_ e 2~ 8* J e 2T 2T ~~or wdw . 

T 0 y l~t(2w -t) 
B. When we have temperature in . the whoie region D we can start solving Eq. (4.16) 

fQr~yelocity rewritten in the most useful form: 

(4.30) 

~-here k = i_ eo .>· 0 and g* js a known function of (X, t) andg*(X, t) = a2 1,-x,(XJ t). 
H . a1 

Our procedure is divided jnto two · s~eps: the first step corresponds to the solving of 
the Cauchy problem in the _region D1 and the second to the Picard problem in the· !egion 
D2 (Fig. 1). The straight lines-,= ··± .+,.t+const' are characteristics of Eq. (4.~) . . For the 
Cauclty problem we know· the· value of v and its derivative at the line X = l~t, which is. 
not a characteristic of Eq. (4.30): 

1 
Ar-a2 _ _!_, 

(X )j . ( ) (!o {)P 2~ +b#, 
!1 "-., · x-Ar' ~ Cf'l t = - l~-l! 

(4.31) 

OfJ . _ l.,.~·a2 !, ( 1 y } 
--;-(X, t)lx-.a,.t = 9't(t) = - (l2-.A,2)2 6'e2"~ -+-lr vi' 1'" . • . T(!o " 

12 1 
~~..,.a2- 0..a 12 ( ) .eo v ~~.,. Y 'NI- T. + 12 12 0 · + 12 .A.l - .1. 'TT"- sy , s a sign" .. 

.,.- • X/x-A:.r' r- • " 

The formula for 9't.(t) implies from Eq. (4.12)4 , for 912(t) from Bqs. (4.5)1, 2 , 3 and from 
the following equality 

(4.32) -A-t t = - · -dv ( oo + l.,.. iJfJ) 
dt < r ' > at ox 1x-..,., 

The ~erivativ~ of temperature in Eq. (4.31)2 is calculated from Eq. (4.8) 

(4.33) o(} 1 [ 1 ] _!, oX (X, t)lx-.t,.t = 2Tlr 8T (IJ#-IJl')t-IJl' e lT • 

Now the same procedure will be used for solving Eq. (4:30) with the conditions (4.31). 
Introducing the new variables by 

(4.34) 
1 - . 

z = 4 kA.,(X ~A.t), 
I 

.w = 4 ·kl.(X+ l.. t) 

10 Arch. Mec:h. Stos. nr:·3/81 
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and the new unknown function which is given in the form 

_! kAi,t 
v(z, w) = u(z, w)ez-w or v(X, t) = u(X, t)e2 , 

we obtain the nonhomogeneous equation (cf. Eq. (4.21)) 

(4.35) u,:w+u+f(z, w) = 0, 

where 

ji( ) _ 4 -*( ) W-% _ 1 1 Q2 (-{) -{) ) w-z z, w - [i).2"g z, we --4 Am a ,ww- ,:z e . 
. m 1 

Rie~ann's function v* is the same as that given by Eq. (4.23) and fulfills the similar 
conditions at the characteristic ~ = z and p, = w lines A 1 B and A 1 C, (Fig. 3). 

A1(z,w) jJ=W 
r-----------------
I ':\c 
I~=Z "':1;"\1 
I ('f..~" 

t 
I 
I 

FIG. 3. 

Integrating the equation 

(4.36) (v*u.w),z -(uv:),w+ jv* = 0 

over the region li of the triangl~ A 1BC (Fig. 3)(4
), we determine the value of the function u 

at the arbitrary point A 1 _ 

(4.37) -(A ) 1 -(B) 1 _(C) 1 f [-( * Ar+ ).m *) u 1 = 2 u +2 u +2 u v.~-~v,IJ 
BC T m 

-v•(u.~- ~:~~= u .• )] d~+ ~J fv*d~df'. 
Returning to the variable (X, t) and using the relations 

(4.38) 

(4) ii and !J are regions related by 

- { . 1 1 } D = (z, w): z = 4 k).111(X-A.mt), w = 4k).,.(X+Amt), (X, t)D . 
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we have 

+ ;;, l.e +>!• £I J0 (~ kl. Y{(T-X)2 -l~(w-t) 2 )n .• )•>!w d<1dw. 

This solution is valid for (X, t) E !iA2 (Fig. 1). For (X, t) E p)2 we construct the so­
lution of Eq. (4.30) in a similar way as the temperature at point A 1 , with the condition at 
he characteristic X = Ami and line X = 0: 

(4.40) 

where 
. . 1 

v~ = const = --~- [T2](0). 
(!OILm 

These equalities were obtained from the boundary conditions (4.2), the constitutive 
function (3.5) 1 and Eq. (4.5) 1 at point (0, t); let us note that E,r (0, t) = y/up0 -sy = 
V,x (0, t). 

Then, generally for any point (X, t) the solution is 

1 ( I ) _.!u...x _ _!k~t{ 1 ( 1 .. / ) (4.41) v(X, t) = T v 0, t- im X e 2 +e 1 TJ 0 lkAmyX2 -}.!t 

) 1 Jo ~kA!w( 1 ( 1 . ~~----~- -- -··) X x(vi+vi(O) +2Am e -
2 

k).mv(O,w)J~ -
2

·k).mrX2 -A,!(w-t)2 -7::.:::-~ ,=---===-=-
1 }/ X 2

- ).!(w- t)2 

t-A,s X . · 

_!_(t+ _!_x) 

+Jo (+ k).,. YX2:._ A;(w-t)2
}( >·-•r) )dw+ 

2 t (:., vf(ru) 

1 ) .! kA!w ( 1 ) 1 a - .!. kA,!t 
+2k).!vi(O) e 2 J 0 lkAmY(Amw-X)2 -A!(w-t)2 dw+2a:Ame 2 

x £I Jo U kl. Y (a-X)2 -1:0(~ -1)2 )n._.~.,~w d<Jdw}. 
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Putting into Eq. ( 4.41) X = 0, we calculate 

_!.u!' J ( 1 --) Jo ..!kA 2a~ (4.42) v(O, t) = e 2 \J0 2 kA"',I -A!t ((v~+v!(O))+A,.. e2 "' 

I 

I 

2' + 

xJ0 (~ kl. 1/ -A,!(W~ij')(~ p0 -sy)dw+2 J (~; (w) 

- 0 

+ ~ k).~vi( w) ~~...,:. J •H kA. V .l.~i(2w --ij) dw 

+ :: l. £! t?,.,..J0 ( ~ kl,. V a' ~l,!(w-+~.,~ dadw}. 

The solution obtained in this section is valid only if the stress fulfills the inequality,, 

ITI ~ "· 
This implies some restrictions on the boundary conditions ( 4.2) 

(4.43) 
_ ( ) -I Aia 2 # I I Tl 0 I - ;.:. - ;.; f}l' + T > "' 

ITi(O)I =IT"+ T#l > "· 
Generally, it is well kn.own that there are several plastic and elastic zones at the phase 

space dependent on the boundary and initial conditions. But it is essential that the pro­
cedure of solving this problem should be tl\e same thanks to generalization of the cJassicaf 
Fourier heat-conduction equation. 
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