
Arch. Mech. , 33, 3. pp. 469-480, Warszawa 1981 

A generalization of Faxen's theorems to .include initial 
conditions 

I. PIENKOWSKA (WARSZAWA) 

IN THE PRESENT paper the time-dependent Faxen's theorems for a rigid sphere immersed in 
a viscous, incompressible fluid are derived. For this aim the Green's function, depending explic
itly on the time variable, is applied. The Faxen's relations are obtained for the force and the 
torque exerted on the sphere in a time-dependent· Stokes flow. The effect of the initial condition 
is taken into account. 

W pracy tej wyprowadzono prawa Faxena dla sztywnej kuli, umieszczonej w cieczy lepkiej, 
nie5cisliwej; w warunkach niestacjonamego przeplywu cieczy (przeplyw Stokesa) oraz niestacjo
namego ruchu kuli. Celem wyprowadzenia praw. Faxena zastosowano funkcjl( Greena, kt6ra 
·zale:iy w spos6b jawny od czasu. Prawa te dotye74 sily oraz momentu sily, dziatajllcych na kull( 
ze strony niestacjonamego przeplywu cieczy. Uwzgll(dniono wplyw, jaki wywiera na te wielkoSci 
pocZ!ltkowy rozklad prl(dkoSci w cieczy. 

B 3Toii pa6oTe BbiBe~eHbi 3aKOHbi cl>aKceHa wm meCTI<oro I.Uapa, noMe~eHHoro a BH3I<ou, 
HeC>KHMaeMoii >KH~OCTH, B yCJIOBHHX HeCTauHOHapHoro Te'lleHHH >KH~OCTH (Te'tleHHe CToi<ca), 
a Ta~<>~<e HeCTainfOHapHoro ~BIDI<eHJUI mapa. C neJII>JO BbiBo~a 3aKOHOB cl>aKceHa npHMeHeHa 
cp~H rpHHa, 3aBHCH~aH HBHbiM o6pa30M OT BpeMeHH. 3TH 31l1<0Hbl I<aCaJOTCH CHJibl 
H MOMeHTa CHJibl, ~eHCTByJOIIUIX Ha I.Uap CO CTOpOHbl HeCTanHoHapHOI'O Te'lleHHH >I<H}U<OCTH. 
Yq;reHo BJIHHHHe, I<ai<oe OI<83bmaeT Ha 3TH BeJIHt:IHHbi Hat:Ia.n&Hoe pacnpe~eJieHHe CI<opoCTH 
B >KH~OCTH. 

1. Introduction 

IN THE PAPER an unsteady motion of a single sphere immersed in an incompressible 
viscous fluid will be considered. In particular, in the case of time-dependent Stokes flows, 
the force and the torque exerted on the sphere will be calcul~ted, taking into account 
the effect of initial conditions. The force and torque will be expressed -in a closed fotm, 
riamely, in the form of Faxen's .relations. An understanding of these unsteady motions 
is much poorer than the understanding of such problems under steady conditions. A va
r-iety -of steady problems has been recently presented, in a review by LEAL [1]. 

Differences between steady and unsteady Stokes flows appear, for example, as a differ
ent asymptotic behaviour offundamental singular solutions, for finite time, in the. limit 
jr j ___. oo. In the case of steady problems the solutions are v(r) = O(lrl- 1

), p(r) = O(lrl- 2
), 

whereas for unsteady problems v(r, t) = O(jrj- 3), p(r,'t) = O(lrj- 2
), for t < oo. The 

other point is that Stokes flows, in which the influence oflocid acceleration can be omitted, 
possess the property of time reversibility; the velocity distribution for the backwards 
(time-reversed) flow is the reverse velocity distribution in the forward flow, whereas the 
p~essure gradient in the forward flow is the negative of that in the backwards flow [2]. 
On the other hand, the Stokes flows, in which the local acceleration effects beco~e de-
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470 I. PIENJC:OWSKA 

cisive, have a directional nature. Further differences between Stokes flows described by 
steady and unsteady equations of motion can be illustrated considering, for instance, 
the drag force on a rigid sphere. For a rigid sphere of radius a, moving slowly with the 
velocity U in a viscous fluid, being at rest at infinity, the steady Stokes drag is F = 
- 6na,uU. Under unsteady conditions the relation of the force to the sphere velocity is 
given by a linear operator called,_ after Boussinesq, the B operator: 

t 

(1.1 ) 

2 3 d J a dr d · 
B = -6na,u- - na e- -6na,u -=-=-

3 dt 
0 

y'nv yt-r dr ' 

F(t) = BU(t), 

v = ,u/e, ft being the viscosity, and e- the density of the fluid. 
The first term represents an instantaneous quasi-steady Stokes drag. -Two further 

contributions to the drag appear-: - ~ na3e :r U(t), the virtual mass contribution, and 

the so-called Basset force depending on the kernel (t- r)- 112 • Hencetheforceexertedonthe 
sphere is not proportional to its velocity, but it depends as well on its acceleration, 'and 
on the history of its motion. 

Studies on the unsteady Stokes equations have been recentl¥ undertaken by, for example, 
CHOW, HERMANS [3], MAZUR, BEDEAUX [4], LEICHT~ERG, WEINBAUM, PFEFFBR, GLUCKMAN 
[5], in spite of the fact that some questions concerning the range of validity of these equa
tions still remain unsolved [6, 7]. 

One of the questions discussed recently in terms of linear ·unsteady hydrodynamics 
was the generalization of the drag force exerted on a sphere, to include an arbitrary time
dependent fluid velocity. This question was considered- by MAZUR and BBDEAUX · [4]. 
They obtained the-so-called Faxen's relations expressing the force exerted on the sphere 
in terms of the unsteady velocity of the sphere, and the unsteady fluid velocity in the 
absence of the sphere. The novelty of their met~od consists in replacing the sphere in the 
flow by the so-called induced forces. To calculate F(t), they applied the Fourier transform 
with respect to time. The drag F( w) obtained by Mazur and Bedeaux, is equal to 

{l.Z) F{w) = -tmai' r (I +a a+ ! a2a2
) .U(w)-(1+ <Xa)Yg(w)-+ <t2a 2vg(w)], 

ex = ( -iw/v)112
, Re ex > 0, 

w being the frequency, and v0 (r, w)- the' fluid velocity in the absence of the sphere. The 
velocity v0 (r, w) appears in the form ofv0(w), i.e. after surface averaging, and in the f~rm 
of v8(w), i.e. after volume averaging: . · 

(1 .3) v0(w) = -
4 

1 
2 J v0 (r, w)dS, 

na . 
lrl=a 

v8(w) = 4:a3 -I Vo(r,w)dr. 
lr i ~a 

The dependence of the drag force on time can be described explicitly by the following 
relation: 

(1.4) 
- 2 d _ - . 4 d 

F(tl = B{U(t) -vo(t)} + 3 na3 (! dt (r8(t)-vo(t))+ T na 3 e dt vo(t). 
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A GENERALIZATION OF FAXtN'S THEOREMS TO INCLUDE INITIAL CONDITIONS 471 

The approach of Mazur and Bedeaux has been subsequently extended, for example, 
to the case of compressible fluids [8, 9], a torque exerted on the sphere [10], slip boundary 
conditions on the sphere surface [11, 12]. In all those papers the Fourier transform.method 
was used. The aim of the present paper is to discuss the influence of the initial condition 
on the viscous resistance of a sphere. It seems that the Green function which depends 
explicitly on the time variable and gives the solution in a closed form can be a most useful 
tool for general initial conditions. 

2. Governing equations 

The governing equations, describing the motion of the fluid in the presence of an immers
ed sphere, are taken in the following form: 

the equation of motion 

(2.1) 

the equation of continuity 

(2.2) 

with the initial condition 

(2.3) 

V· V= 0, 

v(r, 0) = ;(r). 

To obtain the torque exerted on the sphere, the equation describing the conservation 
of angular momentum will be used: 

0 1 . 
(2.4) ~ (r X v) = -r X - Vp+r xvav+r X rext+r X f. 

ut e 
The force f(r, t) per unit volume, appearing in the linear momentum and in the angular 
momentum equations, represents the presence of the sphere in the flow. It is assumed also 
that there is an external force reu(r, t) per unit volume acting on the fluid. Without loss 
of generality it can be assumed that f(r, t) acts inside and on the surface of the sphere, 
whereas rext(r' t) acts only in the fluid [4]. 

Using the Green's function T;i, Q1, the formal solution to these equations become [13] 
I 

vt(r, t) = v0 i(r, t)+ J dr J dr'T,ir-r', t-r)f1(r', r), 
0 E3 

(2.5) t 

p(r, t) = p0 (r, t)+ J dr J dr'Qir-r', t-r)jj(r',), 
0 £3 

where E3 denotes the three-dimensional space. 
From the angular momentum equation, the expression for r x v(r, t) can be derived 

(comp. [10]): 

2.6) 
t 

rxv(r, t ) = [rxv] 0 (r, t)+ J d-r: J dr'F(r-r', t-r)[- _!_r'x(Vp-Vp0)+rxf(r', r)]. 
0 El (! 

10* 
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472 I 0 PIENKOWSKA 

!he characteristic feature ofthese expressions is that the influence of the immersed sph~re 
on the fluid velocity and pressure is given explicitly (by terms containing the force f(r, t))o 
These ~xpressions have the usual form of the convolution integrals~ The fundamenta} 
singular· solutions ~sed above are expressed in terms of the F(r, t) function: 

0 

l 82 J F(r', t)dr' 
Ttir, t) = F(r, t)€5u+ -4 -0 a I 'I , :n X · X· r-r 

I J E, 

i,j=1,2~3, 

(2.7) 
1 a 1 

Q (r t) €5(t) lrl 2 = X
2
1 + x 2

2 + x 2
3 , 

j ' = - 4:n OX) 1fT' 

F(r, t) representing the fundamental solution of the heat equation, 

F(r, t) = (4:nvt)- 312 exp[ -lrl 2 /4vt]. 

These singular solutions satisfy 

ar,1 1 oQ1 1 
- -vtlTiJ+ - - = - €5iJ€5(t)l5(r), at e Qx, e 

(2.8) 3 

}; oT,1/oxt = 0. 
i=l -

The fluid velocity_ in the absence of the sphere v0_(r, t) consists of two terms: 

(2.9) 

vl(r, t)- generated by the externa( force rex'(r, t), 

t 

v11(r, t) = J dr J dr'T,_;(r-r', t-r)ft'(r', r), 
0 £3 

and v2 (r, t)- due to the initial distribution of velocity ;(r), 

v2{~, t) = J dr'F(r-r', t);(r'). 
£3 

· If the function .;(r) is continuous and bounded for each time interval 0 ~ t ~ T, then the 
estimate holds: 

Similarlv. the vector product [r xv] 0 can be split into two terms: 

[r x v]0 (r, t) = [r x.v] 1 (r, t)+ [r x v] 2(r, t), 

(2.1 0) f, f [ 1 . ] 
[r X v]l(r' t) = dr dr'F(r -r', t -T) -- r' X Vpo+ 'r X rut -2Yr~tvl " 

o ~ e 
and 

[r x vh(r, t) = J dr'F(r-r', t) (r-r') x ;(r'). 
El 
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A GENERALIZATION OF FAXEN'S THEOREMS TO INCLUDE INITIAL CONDITIONS 47,3; 

3. The force and torque exerted on the sphere 

Using the equation of motion, the force exerted ~n the sphere .can be expressed through1 

the velocity field and the force f(r, t) averaged over the sphere volume: 

(3. I) 

F(t) =-JP· ndS = e :t J v(r, t)dr-e J f(r, t)dr, 
s lrl ~a lrl ~a 

pij = pbij- lfl ( ZJ .. , 
I) 

where S- the sphere surface, P- the stress tensor, n- the unit normal vector directed_ 
outward of the sphere .. 

From the angular momentum equation an analogous relation can be obtained for the· 
torqu~ acting on the sphere: 

(3.2) f - d f " T(t) =- rxP· ndS = edt rxv(r, t)dr .-e · J rxf(r, t)dr. 
lrl ~ a lrl ~a 

TlJ_e flow of the fluid and the motion of the sphere are coupled by means of the boundary
conditions assumed on the surface of the sphere. Here the slip boundary conditions are 
considered: 

(3.3) v(r, t) · n = U(t) · n, lrl = a, 

(3.4) (1- nn) ( v{r, t) -2J, : n) ~ (I - nn) (U(t) + Q(t) x r), /rl ~ a. 

Here ·A is the slip coefficient, A E [0, oo ), and Q(t) is the angular velocity of the sphere. 
The surface of the sphere is given simply by lrl = a due to the fact that the set of coordinate 
axes is fixed at the centre of a sphere. This lack of a time dependence of the sphere position 
expresses the assumed linearization of the problem. 

Following MAZUR'S approach [11], one can average the boundary conditions over 
the sphere surface. Hence, averaging the expression (3.3) and using the Gauss theorem to 
change from the surface integral to the volume integral , one obtains 

(3.5) V0 
( {) = U ( () . 

From the second boundary conditions (3.4), it follows: 

(3.6) _ , A ( a_<) v5 (t) = V(t)+ - 21 r-a VS') , 
a+ 1\. r r=a 

for the translational motion and for the rotational motion: 

(3.7) - s 2 A ( -s ( a ·_· s(r) ) ) 
r X V (t) = Ta 2 .Q(t)+ a -2r X V + rTrr X V ~=a ' 

where yS(r) denoteS the Velocity field averaged OVer the SUrface Of the Sphere Of radiUS r 

(vs<r>(t) = ~- J v(R,t)ds) . 
4nr IR!=r 
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474 I. Pn!Nic.oWSJCA 

From the previous relations (see A pp. A, B), the force and torque exerted on the sphere 
is deduced in terms of v,(r, t), the perturbation of the fluid velocity due to the presence 
of the sphere: 

{3.8) v,(r, t) = v(r, t)-v0 (r, t), 

[r x v],(r, t) = [r x v](r, t)- [r x v]0 (r, t). 

The force and the torque are 

.i ) F( ) 4 3 dV" - B { -;-.s } 2 3 d - s 2 3 d - " '\ 3. 9 t - 3 na f! {fi - ., p + 3 na {! ({i V p- na f! dt V p, 

' 4 d - --s 4 d --p 

(3.10) T(t)- 3 na3e{fir.xv" = C{[rxv],}- 3 na3e([i [rxv],, 

where two terms, appearing on the left hand side, describe the effect of the inertia of the 
fluid displaced by the immersion of the rigid sphere. 

The C operator is of the following form: 

t ----

(3.11) C = -l2nal'-12nai'Jdr[ a_ 1 _ _!_exp v(t~r) erfc"~ jv(t~r)]!!_. 
0 

3 y nv V t- -r 3 a V a dr 

Hence the expression for the torque has a similar structure as in the case of the force. 
The C operator contains an instantaneous quasi-steady Stokes term and a term involving 

the history of the motion. This operator acting on ~ a2 Q( t) g~ves the torque exerted on the 

:sphere when the fluid is at rest at infinity, and on the surface of the sphere the stick bound· 
.ary conditions are assumed. . 

The above formulae do not have as yet a form of the Faxen's relations. To deduce 
that form the perturbed fluid velocity will be presented in terms of U(t), and v0 (r, t) 
(see A pp. A, B). The appropriate relations are as follows: 

(3.12) -s U - s ). [ F ( o ~<r>) a2 d (U 3- ")] 
v, = -Vo+ a+2A -6nl'a + 'ar 0 r=a + 9;{[i - Vo ' 

and 

(3.13) 
--s, 2 ---s ). [ -s T 
[rxv], = -

3 
a 2S2-[rxv]0 +- -2[rxv]0 +-

4
-

a nl'a 

( a -s(r)) a2 d -.,] + r 7fr [r x v]0 r•a- 3vdi [rx V]0 • 

It can be seen that in the case of no-tangential slip boundary conditions the last term 
in both of these expressions vanish. 

Finally, the expression for the force F(t) assumes the following fo~: 

(3.14) 
I 

a). J dr dF 2 3 d _ 4 d ._ 
F(t)+ ~- = --na e- [U-v0]+-na3e-v~+ 

(a+3).)ynv j/t-r d-r 3 dt 3 dt 
0 

- 6nl'a [a+ 
2

;. - (U- vJ) + _;._ (r _!__ rt>) ] + 
-a + 3). a + 3). or r =a 
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A GENERALIZATION OF FAXEN's THEOREMS TO INCLUDE INITIAL CONDITIONS 415 

6 2 ;-J' d-r d [a+ 2). (U -,) ;. [ a2 d (U 3-") -a I np,e ~-- -- -vo +-- -- - Vo 
Jft--r d-r a+3). a+3). 9P d-r 

0 

It consists of two known unsteady terms, the generalized instantaneous quasi-Stokes term 
and the Basset terms involving the history of the motion both of the sphere and the flu id 
in the absence of the sphere. In the case of the torque, the appropriate formula has a sim
ilar structure: 

t 

(3.15) 
3 ). f d 4 3 d ·---u 

TU)+ -- d-rK(t --r)- T = - na e- [r X V]o 
a+3A ~ 3 ~ 

-0 

12np,a [ 2 3 -, ( a -s(r)) ] 
- a+3). Ta n-(a+2A)[rxv]o+A 'Tr[rxv]o I'=Q 

r 

l2p,na r d [ 2 3 --, --- d-rK(t--r)- -a .Q-(a+2A)[rx v]0 a+3A . d-r 3 
0 

( 
a -s(r)) ).a

2 d -v] 
+). r -- [r x v]0 - - - - [r x v]0 , or ,. .. 0 3P d-r 

where 

a I I P(t- -r) vp(t --r) 
K(t- -r) = ---~--=--- exp --2- erfc --2-. 

3 v'j(,)l Jft--r 3 a a 

The influence of the initial velocity field is hidden in v0 (r, t) and respectively [r x v)0 (r, t) 
(see the formulae (2.9) and (2.10)). 

An asymptotic behaviour in the limit t-+ oo of the quantities (3.14) and (3.15) is 
interesting if one considers the approach to the steady case. In the fluid at rest at infinity, 
for the no-slip boundary conditions, the classical result is recovered [14]: 

(3.16) 

F(t) 1_. 00 --+ -6na,uU ll + la + ... ] , 
1 nPt 

T(t) 1~ -8na3p,.Q [1 + a
3 

+ ... ] . 
-+CO 6 y' n(Pf ) 312 

Hence the force and the torque have a different asymptotic behaviour. 

4. Conclusions 

It is thus shown that the Green's function (depending explicitly on the time variable) 
method is convenient to derive the force and the torque acting on a sphere. These quanti
ties were deduced also without solving the full hydrodynamic problem; this means, without 
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- - --------- - ------ -----··--- -- - - ---·-- ------ - -- - - -

finding explicitly the fluid velocity and the pressure field. The effect due to the initial ve
locity field -is accounted for. 

The initial velocity field influences the virtual mass contribution, the instantaneous 
quasi-Stokes term, as well as the Basset force, depending on the history of the motion. 
Its effect on the force and the torque exerted on the sphere depends on the relation be~ 
tween the velocity field v1 {r, t) generated by the external force and the velocity v2 (r, t)
generated only by the initial distribution of fluid velocity. In the formulae (3.14) and 
(3.15), giving the force and the torque, both velocity fields enter in a similar way. 

Appendix A 

The velocity field in the presence of the sphere is 

(A. I) v,(r, t) = V 01(r, t) 

+ j dT J dr' {F(r'-r', 1-T)~IJ+ ax~;x1 [mJrl-r'/ o(y:.;~~)]}t.(r', T), 
0 jr' j ~a . 

where 

Averaging this quantity over the surface and the volume of the sphere, one obtains 

and, respectively, 

t 

(A.3) Vf(l} = ~1(1)+ 4,.~12 J d.: J dr' {[ :, 0(,.1}+ :, 0(,.2) 
0 jr'j~a 

- _J_ (e-"1-e-"~)] 611+ _a_
2

- [-
1 (8(H2) ~ 8(Hl)\: 

2(Xa3r' . ox,oxj r' . . ·'! 

r _,~ _,2 .. -.. , . · 
I 1 1 

1 

) · 11 ' + { 4cx_3a3r'- 2ctar' + 4cta:s (~ t-e 2) fir' T), 
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where the following notation is used: 

r' = lr'l, rx = I IV 4v(t- r}, 

"1 = a:(a-r'), "2 = a:(a+r'). 

Next, taking into account the facts that the B operator contains the time derivative of the 
velocity of the sphere, and that the relation (3.5) holds, the time derivatives of Eqs. (A.2) 
and (A.3) were calculated. They are equal to 

-xl[ a:J a:s(a+r')2 ]j i]2 [ a: -x2 _"2 ]) · ' +e 2 - - - ·- ~u+ ---· --- (e 1 -e 2) jj(r r) 
2ar' ar' ox1 ox1 4ar' ' , 

and, respectively, 

(A.5) dd vi(t) = dd v~i(l)+ -
2 

I 3 Jdr'j,(r', t) 
t t na · 

r'<a 

+ ' ~ a: [- 4
3 

3 (O(>el)+ O(;e2))+ -8-
3 

3 I (e -:- xf -e-"~>])!ir', T). 
uX1ux1 a a:a r 

The induced force averaged over the volume of the sphere· can be eliminated between 
Eqs. (A.2) and (A.5) to give 

I 

e Jdrf(r,t)=2na 3edd "V;+6na,uv;+6a 2 yn,uef dr dd v; . 
t -. l t-T T 

l r l ~a 0 f 

(A.6) 

- The need for s~ch an expression for J drf(r, t) was again stimulated by the form of the B 
operator. The force acting on the sphere, according to Eq. (3.1), is equal to 

(A.7) 

In the formula above it was taken into account that 

(A.8) U(t) = V"(t), 

which follows from the boundary condition (3.3). 
To present the force F(t) in the form of the Faxen relation, the following formula (re

sultjng from the boundary conditions (3.4), and derived in [11]) is applied: 

(A.9) ;. (· a ) vs(t) = U(t)+ -
2

, r ~ ys<r>(t) . . 
a+ ,. ur r=a 
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478 l. PIENKOWSK A 

In view of Eq. (A.5) one obtains 

(A.IO) ( a -se,.>) _ F a
2 

d (V 3-v 
rT Vp - -6- +-9 -d- - Yo), 

ur ,.=a n#a v t 

and hence the expression (A.9) can be rewritten in the form 

(A.ll) - s U -s }, [ F a2 d U 3-v ( a -s<'>) l Vp= -vo+-2, -6--+-9 -d (- Yo)+ r---;;-v . 
a+ A n#a 'JI t ur r=a 

Substituting v; to Eq. (A. 7), one obtains Eq. (3.14). 

Appendix B 

Using the momentum and the angular ~omentum equations one obtains 

(B.l) r x v(r, t) = [r x v]0 (r, t) 

I 

+ J dr J dr 1F(r-r1
, t-r)[- ~ x(Vp-Vp0)+rxf(r', r)]. 

o £3 e 
As previously, to calculate the torque exerted on the sphere, the following quantities wil 
be applied: 

(8.2) fXV5
(t) = [r X V]~(t) 

1 I'd j~' d 1 l
1 l-xt ( rt 1 ) _,/ ( IX . I )] f( , ) + 4n3f2 r r lf'T ? - 21Xar'2 - +e 2 7 + 21Xarl2 x r' r ' 

0 £3 

and respectively 

As it was discussed by HILLS [10], the pressure gradient does not contribute to the above 
expressions. 

·For the subsequent calculations we will also need 

(B.4) 

I 

d -s _ d - s V J J 1 r' J -xi [ 5 (a -r
1

)

2 

dt r x v ~ dt [r x v]0 + n 312 
0 

dr £
3 

dr Tr'f le IX --,~-

ar
1
-a

2
-·r

12 
IX ] 2[ (a+r')

2 
ar

1
-l-a

2
+r'

2 
Cl. ]) + 3 + -x2 5 + 3 -- + --- x f(r1 r) ex 2 12 --4 12 e ex --,- IX --2- , 4 '2 , ' ar ar r ar ar 
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and further 

(B.5) 
d - v d - v 3 I - r x v = -d [r x v]0 + -

4 3 drr x f(r, t) 
dt t na 

lrl..;a 

t 

v j' I I r
1 

{ -)(2[ 3 3 a-r
1 

3a-9r
1 

1 9 ] 
+ n3/ 2 0 dr E3 - dr Tr'T e 1 . - T ex ---a;:' + ex 4a2rl2 +ex 8a3rl2 

-x2 [ 3 3 a+r
1 

3H+9r
1 

I. 9 ]} I 

+e 2 - -2 -ex -~- -ex-4 2 12 -- -8 3 12 x f(r' r). ar a r (f. a r 

In view of the definition (3.2) and using Eq. (B.5), the torque exerted on the sphere can 
be pres ented in the following form: 

(B.6) 4 d - v ft I' j' f
1 ~ 2 2 ( 6aex T(t) = - na 3e- [r x v]o+ ---- dr dr 1 

-
1 

(e-x• +e-"2) - -
1
-

3 dt 2 1/ n _. lr I r 
0 lrl..; a 

4a
3

(J.
3 

) ( x2 x2) ( 3 2a
2

ex 4 2 3)} f( 1 ) - - -,- + e- • - e- 2 -- + -- + a rt x r , r . 
r r 12 ex r 12 

. 

Hence, taking into account Eqs. (B.2) and (B.4), it can be shown that 

(8.7) 

t - --

-12naft I dr [ a I - _!_ exp v(t ~ r) erfc-. jv(t ~ r)] !!_ [r x v];· 
0 

3VnvJ!t-r 3 a Jl a dr 

The stlt'ucture of the above formula is similar to that for the torque acting on the sphere 
in the fluid at rest at infinity [15]. The next step was to calculate [r x v] ;, applying the bound 
ary cotnditions (3.4). One obtains 

(B.8) - s 2 A( - s ( a- s(r))) 
r X V. = 3 a 2

,Q+ a -2r X V + r ar r X V r=a · 

The de:rivative (r aa r X VS(r)) can be written down in the following form: 
r r=a 

( 
a ---s<r>) ( a --s<r>) T --s a

2 
d ---v (B.9) r -a r x v = r -a [r x v]0 _ + -

4
- + 2[r x v]p- -

3 
-d [r ~ v]o. 

r r=a r f =a nfta V t 

Combiming Eqs. (B.8) and (B.~), one gets 

(B.IO) [r x v]; = ~ a20 ~ (I + 2 ~ ) [r x v]~ 

).. [( a - s<r>) T a
2 

d - v·J +- r~ [rx v]0 + -
4
-- -

3 
-d [rx v]o 

a ur r=a np,a V t 

The ab.ove expression is substituted to Eq. (B. 7) to calculate Eq. (3.15). 
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