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Plane strain elastoplastic consolidation of soil by finite elements
I. An elastoplastic consolidation theory

S. PIETRUSZCZAK (WARSZAWA)

THE SATURATED soil is treated as a multiphase material. The soil skeleton is assumed to be an
elastoplastic material with isotropic hardening. A double-hardening model is proposed for
which the effective stress-strain relationships are derived. The liquid phase is assumed to be
linearly compressible. In the paper a finite element approach to the consolidation problem is
presented and two extremes of soil behaviour, i.e. drained and undrained deformations, are
discussed. The analysis is restricted to the plane strain conditions.

W przedstawionej pracy grunt traktowany jest jako osrodek wielofazowy. Szkielet opisany jest
przez model sprezysto-plastyczny z lzolropowym wzmocnieniem, dla ktérego wyprowadzone sg
odpowiednie zwigzki konstytutywne. Zak!ada si¢ ponadto, Ze ciecz wypelniajaca pory jest liniowo
$cisliwa. W pracy analizowane sg dwa ekstremalne przypadki zachowan oérodka, tj. zachowanie
»»Z mozliwoscia odplywu” (ang. drained) oraz,,bez odplywu” (ang. undrained). Z kolei, szeroko
dyskutowane jest jedno ze sformutowan metody elementéw skorficzonych dotyczace zagaduienia
konsolidacji w warunkach plaskiego stanu odksztalcenia.

I'pynr paccmarpuBaercsa KaK mHorodasuas cpefia. CKeJleT ONHCLIBAETCS C IOMOIIBIO YIIPYTO-
TUTACTHYECKOH MOJIEIH € H30TPOMHBIM YIIPOUYHEHHEM, U KOTOPOro BBOAATCA COOTBETCTBYIO-
mpe OnpejeNsionne 3aBHCHMOCTH. [Ipeamonaraerca TaKke UTO MHHAKOCTh, SANOJHAIOLIAA
nopkl JHHEHHO cxuMaema. B paGore paccmaTpmBarOTCA ABa MpeAeNbHBIX CIY4ad DOBEICHHA
Cpe/ibl: CO CTOKOM JKHAKOCTH W Ge3 BoamoxHocTn croka. ITogpoBro obcy)aaerca omua us
(GopMYyIHPOBOK MeTO[Ja KOHEUHBIX 3JEMEHTOB NPHMEHHTENBHO K IJIOCKOMY Aedopmupo-
BaHHOMY COCTOSHMIO.

1. Introduction

SATURATED soil is in general a three-phase material consisting of a compressible solid
phase (the skeleton of soil particles), gas and liquid phase (the air-water mixture filling
the pores of the skeleton). In the special case when the pores are completely saturated
one may regard the soil as a two-phase material only. The basis of theoretical analysis
of such a three- (or two-) phase material is Therzaghi’s effective stress concept which
assumes that the total normal stress on any plane is the algebraic sum of the normal stress
in the soil skeleton (called the effective normal stress) and the pore (water) pressure.
Saturated soil may exhibit two different extreme behaviours depending on the loading
rate. When the load is applied very quickly, then the excess pore pressure cannot dissipate
and the soil is said to behave in an undrained manner. On the other hand, when the be-
haviour of soil under very slow loading or after a very long time period following load
application is considered, no excess pore pressure develops. In this case the soil is said
to behave in a so-called drained manner. Both drained and undrained conditions re-
present two extremes of soil behaviour. In general, when the soil is loaded, it responds
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first in an undrained manner and then the excess pore pressure begins to dissipate. The
last process is a time-dependent consolidation phenomenon. After a sufficiently long
time period, when all excess pore pressure has dissipated, the soil behaves in a drained
manner.

The aim of this paper is to present the mathematical relations of an elastoplastic
consolidation theory. In Sect. 2 the discretized equilibrium statement based on the virtual
work expression is derived. The obtained system of equations allows for both drained and
undrained finite element effective stress analysis. Then, a finite element formulation of the
consolidation problem is discussed. All the relations are derived in matrix notation which
is convenient for digital computer programming. In the last section an elastoplastic iso-
tropically hardening model of soil skeleton is proposed. The analysis presented below
is restricted to the small strain theory and to the plane strain conditions.

2. Discretized equilibrium statement. Drained and undrained analysis

With the aid of imaginary cuts the porous medium can be conceived as a composition
of elements. Let us denote by w; the pore stress at the nodal points of these elements.
Then the pore stress within a certain element can be represented in the following form:

2.1 wx,y)=Nw, i=1,..,n,

where w; is the pore stress at the nodal point i, n is the number of nodal points of the ele-
ment considered and N; is the so-called shape function.

Similarly, the displacement field é within a typical element can be expressed by the
nodal point displacements ¢;

(22) a(x,y) = Nid;.

In both formulas (2.1) and (2.2) x and y are the Cartesian coordinates in the plane of
deformation.

The shape function defines the mode of interpolation over an element. ZIENKIEWICZ [1]
and others have presented suitable shape functions for several kinds of elements. In this
paper only the simple triangular element with three nodal points, i.e. the corner points,
will be considered. For such an element the shape function is
(2.3) N; = (a;x+by+c)[D,
where

a; =Yy,—y3, by =x3—%;, ¢ =X2¥3—X3)2,
a, =y3—y,, by=x,—X3, € =X3)1—%Vs,
az =y, =y, bi=x-x,, c¢3=xXy2—%X2)1,
1 %, y
D = det|1 X2 Y2
1 %3 3
and x;, y; are the coordinates of the nodal point i.
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In order to obtain approximate solution for the stresses and strains in a continuum,
the so-called displacement method is applied. This method is based on the virtual work
equation

(2.4) [ {46} eav—{4P}78" = 0

holding for any stress distribution in equilibrium and any virtual displacement field sat-
isfying the boundary conditions. For an arbitrary element under consideration 8" denotes
the nodal point displacements vector and {P}” the transposed nodal forces vector. The
nodal forces are due to distributed or concentrated load, body forces based on the bulk
unit weight or due to initial strains or stresses.

The strain field ¢;; corresponding to the virtual displacement field is defined as

1
(2.5) fu= 5 (81.5+9,,0).
Now, regarding Egs. (2.2) and (2.3) for the plane strain conditions we can write
u,
£ la10a20030 Uz
(2_5'} € =1{&, 1= "D— 0 bl 0 bz 0 b; Y = [B]SN,
V2
Yxy b, a, b, a, by a,
Us
VU3

where u; and v; are the horizontal and vertical displacement components at the nodal
point i, respectively.

Thus we have
(2.6) de = [B)A8Y
and, according to Eq. (2.1),
Aw,
@.7) Aw = {N;,N;, N3} 4w,} = {N}"4w.
Aw,

The total stress increment can be written as
(2.8) Ao = Ao’ + Awl,
where Aa’ is the so-called effective stress increment and

Ao, 1
Ac=’da, , 1=t
0

Aoy,
Although, such a static decomposition is always permissible, we shall now make the
assumption that the effects of the two stress-phases can be superimposed. Under this
assumption the effective stress-strain constitutive relationship can be written in the form
(see [2]):
2.9 de’' = [D](de—14w/3K)),
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where K, is the average bulk modulus of the solid phase and LAw/3K, represents the strain
resulting from the compression of grains by pressure Aw, [D] is the tangent stiffness
matrix of the skeleton and is obtained from tests on the drained material.

Although in rock the strain resulting from compressibility of solid phase is significant,
in soil it may be considered neglegible. Therefore, for the latter material the relationship
(2.9) may be written in the simplified form

(2.10) de' = [D]4e.
Now, utilizing Eqgs. (2.5)-(2.8) and Eq. (2.10), the relation (2.4) can be expressed as
(2.11) {4P}8" = {SN}Tf [B)T[D] [BldA - 48"+ {8"}T[B]"I f {N}TdA- Aw",

A A

where A is the area of the element considered.
Consider now the two integrals in the formula (2.11). For the first we can write sim-
ply

2.12) Af [BI"[D][BldA = [BI[D][B]A = [K],

where [k] is the well-known stiffness matrix (6 x 6).
For the second, in view of Eq. (2.3) we obtain

2.13) f (NyTd4 =LD{(a,A,+b,A,+c1A); (@24, +by A, 4¢3 4);
A

(asA;+b3A,+c;4)} = [ﬁ}r’
where

A A
A, = J.XJA =—3—(x1+x2+x3); A, = f}'dA T _5“0"1 +y2+y3)
A A

Thus the expression (2.11) can be rewritten in the form
(2.19) {8"}T k148" + {6")T[BI'I{N}"Aw" — {8"}74P = 0

or accounting for the relation

(2.15) B =L 1% _ o

in the final form
(2.16) {8"}7([k]48" + @ {N}"4w" —4P) = 0.

The virtual work is zero for all values of u; and v; which satisfy the boundary conditions.
Then the virtual work equation (2.16) provides the system of equations of the type

2.17) [k] 48"+ {N}TAw™ = AP.



PLANE STRAIN ELASTOPLASTIC CONSOLIDATION OF SOIL BY FINITE ELEMENTS. I 219

Let us now discuss two extreme cases of soil behaviour, i.e. drained and undrained
deformation. In the latter case when the load is applied so quickly that the excess pore
pressure cannot dissipate, the pressure rise can be directly related to strain and eliminated
from Eq. (2.17). In general, the reduction of volume in an element of soil mass is due to
compressibility of fluid and compressibility of solid phase. Accounting for both effects
the balance equation takes the form

(2.18) Ae, = 1"de = ndw|K,+ (1 —n) Aw|K,+ (4o, + Aoy + Aa7) 3K,

where n is the porosity and K, is the compression modulus of the pore fluid (or air-water
mixture in the pores).
Neglecting the compressibility of solid phase, Eq. (2.18) simplifies to the form

(2.19) Ae, =~ ndwlK,, ie. Aw=x —?ITAG.
Substituting Eq. (2.19) into Eq. (2.17) we obtain
(2.20) ([k]+ f[B]Tl%-lT[B]dA) A8Y = AP
or, accounting for Eq. (2.12), ;
(2.21) (Af [BI'[D,)[B]dA) 48" = 4P,
where

K

[D] = [D]+1 T’ I".
Here the matrix [D,] represents the total stiffness of the material, [D] the stiffness of the
skeleton and 1 En’— I” the stiffness of the pore fluid.

Equation (2.21) applied directly to the whole continuum enables us to carry out the
undrained effective stress analysis. Once the nodal displacements have been determined
by solution of the overall “structural” type equations, the total stresses, the effective
stresses and the pore pressure distribution in each element can be found from the rela-
tions (2.19) and (2.8).

It should be noted that the pore fluid compressibility is low compared to the material
skeleton compressibility. Thus the completely saturated soil in undrained conditions
is a nearly incompressible material. On the other hand, it is known that the displacement
finite element method suffers the disadvantage that the accuracy of the stress prediction
decreases with the reduction of compressibility, Therefore, the undrained deformation
analysis of fully-saturated soil requires a special numerical treatment as it is discussed in
detail by D. J. NayLor in [3].

The second extreme case of soil behaviour is the drained deformation when load is
applied so solwly that no excess pore pressure develops. In this case the effective stresses
are equal to the total stresses and the analysis can be carried out by setting 4w" = 0
or K, = 0([D,] = [D]) in the formulas (2.17) or (2.21), respectively.

In both undrained and drained situations the pore pressure can be either directly related
to strain or simply eliminated from the equation (2.17). Thus, in these extremal cases
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the pore pressure does not have to be treated as a nodal variable. However, in a general
case the excess pore pressure can generate and, simultaneously, the flow of the pore fluid
in soil mass can occur, resulting from the rise of the pressure gradients. Then the balance
equation in the form (2.18) is not valid and the system (2.17) in not complete. When the
prescribed as well as non-prescribed quantities 48;(i.e. 4u;, Av;) and Aw; are regarded
as unknowns, the total number of unknowns in the whole discretized continuum is 3 xN
(N — number of nodal points). 2 xN equations are specified by the relations (2.17) and
the remaining N equations will be derived in the following.

3. Numerical analysis of consolidation

The theory of consolidation was first investigated by THeErzAGHI [4] for the case of
one-dimension only, and subsequently extended to three dimensions by Biot [5]. Unfortu-
nately, Biot’s theory is so complicated that even for highly idealized boundary conditions
analytical solutions are difficult to obtain. Up to now only several useful solutions have
been published (see JosseLIN DE JONG [6], MCNAMEE and GiBsoN [7]).

The first finite element formulation of the two-dimensional consolidation problem was
given by SANDHU and WiLsoN [8].

These authors used the Gurtin type of variational principle [9]; up to now many other
approaches have appeared in the literature (see Booker [10], SMALL et. al. [11], HWANG
et al. [13]). In this paper the formulation of the finite element method for the analysis of
two-dimensional consolidation problems will be presented following the analysis of
P. A. VErmEER [14). Instead of index notation (as preferred in [14]) the vector notation
will be used as more convenient for computer programming,

In order to have a complete mathematical description of the consolidation problem we
should consider: the equilibrium equations, the constitutive law and a generalized balance
equation.

Both the equilibrium equations and constitutive law were already taken into account
in the formula (2.17). Thus the proper balance equation, more general than the simplified
formula (2.18), is now required to obtain a complete finite element formulation. As it is
shown in Appendix I, assuming that the flow of fluid through the soil is governed by simpli-
fied Darcy’s law (x, y directions are said to be the principal directions of permeability),
we can write

n ow k., &*w k, d*w

0
@G0 3?(8’+£’)_K_,W+W o2 +,,——ay—z=0,

where 7 denotes the time, y,, is the specific weight of water and k,, k, are the coeﬂiuents
of permeablllty in the x and y directions, respectively.

In"Eq. (3.1) the grains compressibility and both the variation of permeability and the
variation of the degree of saturation during the deformation process are neglected.

In the majority of existing formulations it is additional}y assumed that the pores of
is disregarded with respect

soil are completely saturatcd w1t11 water and the term —— X %
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to other terms in Eq. (3.1), i.e. the water is considered as incompressible (see [11],
[13]). It often occurs, however, that the pores are not completely saturated and then the
air-water mixture in the pores can have a significant compressiblility. In this case K, can
be considered as the (tangential) compressibility modulus of such a mixture and the term
% —Zl:- may not be neglected.

Sometimes it is possible to assume that the soil is isotropic with respect to permeability,.
i.e. k. = k, = k. Then the balance equation (3.1) has a simplified form
n aw ow k (izlv azw)

K, ot y, \ox? ?
as discussed by P. A. VERMEER [14]. In the following however, we shall use the more
general equation (3.1).

As it follows from Eq. (3.1) the pore pressure w depends on the spatial coordinates
and the time f. An approximation to the time variation can be performed by the finite
difference technique. In [14] the simple one-step method was chosen which for an ordinary
differential equation of the type dy/dt = f (3, t) is defined as

(3.3) Ay = Atf(ye, to)+adtdAf; Af = f(yo+4Ay, to+ A1) —f(yo, to).

Here Ay denotes the increment of y over the time interval t, < t < to+At, whereas the
integration constant o (0 < o < 1) determines the type of interpolation used (o = 1/2
corresponds to the linear interpolation, & = 0 to the forward differences and « = 1 to
the backward differences). In general, the numerical procedure has to be “stable”, i.e. the
error due to the discretization over a certain time step must not systematically grow in the
course of the following time steps. As it was proved by BookEer and SMALL [12], for a linear-
elastic material a sufficient condition of numerical stability is « > 1/2. However, for an
elasto-plastic medium higher values of « are more profitable.

Now, applying the procedure defined by Eq. (3.3) we can transform the differential
equation (3.1) into the equation

k, 3*w° +£ﬁvﬂ) aAt( k. 8*(4w) +£6‘(Aw)
oxz Ty, 8y? Yw O0x? Yw Op?
where w° is the pore stress at the initial time and increments are denoted by 4.

In order to be specific let us assume that the soil occupies a region V. The stress and
strain boundary conditions are already satisfied by introducing the virtual work equation
(2.4). Assume now that at the instant ¢° the pore pressure disribution w° in the whole region
V is known. Moreover, on a certain part of the boundary (S,,) the pore stress w is pre-
scribed and on the remaining part of the boundary (S,) the outflow of the fluid is pre--
vented. Hence

d
(3.2) 73 (ex+8))—

— 0,_

(3.4) Ae,———-—A +Ar(

wl=f°% Aw=4f on S,,

(3.5) " g -
wlhin,=Adwn; =0 on S,

where n; is the outward normal upon the boundary at the point considered, while f is-

a function of coordinates. As it is proved in [14] Egs. (3.1) and (3.5) are satisfied when:

dF|3(Aw) = 0 where F is a functional defined as
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B n " k, f&ﬂ a(Aw) k, aw® a(4w)
(36 F= J{—A&,AW+ K, Aw +At(yw i oeE pa -

) £ o

Consider now the contribution of an arbitrary triangular element to the functional F.
In order to simplify our analysis let us write this functional in the form

1 1
(3.7 F* = Fi+ - F5+ - F3 +F3,

where

F§{= - fAe,AwdA,

F; = f-—szdA

y aAaw\* | k, (a(Aw) )2}
Fa_f A'[yw( e e

L fA‘ k., ow® d(dw) k, aw® 3(4w)

Yw 0 Ox Yw Oy 0y

Jas

and A is the area of the element considered.

In the plane strain conditions the volumetric strain of the porous medium can be written,
according to Egs. (2.5) and (2.14), as

(.3) As, m At As, = Tl)—{a,,bl,a,, b, as, bs} 48" = {p}T 4.

Now the sub-functional F¢, in view of Egs. (3.8) and (2.7), will have the form

(3.9 F; = - f {}T AV {N}T Aw"dA = — {p}T A8" f {N}TdAdw"
A A

or, according to Eq. (2.12),

(3.10) F§ = —{@)}TA8" {N}TAw".

For the second sub-functional F%, in view of Eq. (2.6), after some transformations we
obtain

(.11) Fy = 2 {4w) f N{N}7dA Aw".
’ A

Performing the multiplication of both vectors N, the integral in Eq. (3.11) can be expressed
as

(3.12) [N{NyTd4 = [3],
A
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where [S]is a symmetric matrix (3 x 3) defined as

1
Sy = D7 {a,a;A .+ (a,b;+ba)) A, +b,b;A,,+ (c,a;+a,c;) A,

+(bic;+ ;b)) A, +eic;AY, i,j=1,2,3
and

A A
Ay = f x%dA = 503 (x3+x3+x2)+ —1—2—(x1 +X3+X%3)3,
A
A,y = J yidA = —(y1+y2+ya)+ (}'1+}’z+}'3) A
A

A A
Aey = fxydA = ﬁ(xlyl +x2)’2+x3ya)+ﬁ(x1 +x24+%3) (¥ +y2+y3),
i

A, and A, are defined in Eq. (2.12).
Finally, the sub-functional F§ can be written in the form

(3.13) Fg = KL{Aw"}T[S]AwN.
P

For F%, according to Eq. (2.7), we have

G4 Fs= [ u:dt{dw”}’”[ ( I N )(3%-{N}T)-i-%(—(%N)(%{N}T)]Aw”dA

A

or, regarding Eq. (2.3),

(3.15) F§ = adt{Aw"}T[C]Aw"A,
where
¢ Fe ai, a,a,, a,ay " bi, byby, b;b,
(3.15a) [C]=5“i- —Xlaa,, aj, azaz|+—2|byb,, b3, bybs
i asa,, asa,, aj Yo byb,, b3b,, bf:'

In the particular case, when the soil is isotropic with respect to permeability (i.e. k, =
= k, = k), the matrix [C] will have the form

2 (a2 +b?) (a;a,+b,b,) (a,as+b,b;)
(3.15b) [C] = o (a3+b3)  (azas+b;by)|.
¥ | symmetry (a3 +b3)
Finally, for the last sub-functional F§ we obtain analogously to F3
(3.16) F§ = At{w°"}T[C]Aw"A.

Hence, according to Egs. (3.7), (3.10), (3.13), (3.15) and (3.16) we can write
(B.17)  Fe = —{@)TA8" {N)TAw" + —21;2— {AWN)T[S1Aw" + a At A{AWN}T[C] Aw®
P
+AtA{wWOVYT[C] Aw".
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The functional F should have a stationary value with respect to the pore pressure.
This means that for an arbitrary element the partial derivatives éF/ddw; (i = 1, 2, 3)
should be zero. Thus we finally obtain

(3.18) o {N}748" — (% [S]+acAr-A[C] AwY = At A[C]wON.

The equation (3.18) can be written in a more general form
(3.19) [X]48" + [Y]Aw" = WO,

where the matrices [X]and [Y] ((3 x6) and (3 x 3), respéctively) and vector W° are defined
according to Eq. (3.18). Now the generalization of the system (3.19) to the whole con-
tinuum will provide N additional equations (N — number of nodal points) which together
with the generalized equations (2.17) enable us to solve a time step in a consolidation
problem by a digital computer.

For an arbitrary element we finally have Eq. (2.17), i.e.
[k] 48" + [X]AwW" = AP

and the relation (3.19). The formulas (2.17) and (3.19) can be written in a combined
matrix form

(3.20) [k'] 48" = AP
that is
du, AP
Ao, APy
Au, AP
9, ) | |ars
T Au 3= AP; .
©6x3 Gx3) |4vs 4P3
Aw, wi
dw, w3
Aw, w3 |

Here P} and P} denote the nodal forces; the superscripts refer to the component (horizontal
or vertical, respectively) and subscripts stand for the number of the nodal points.

In the formulation presented above the stiffness matrix [k] is a (9 x9) matrix and its
symmetry depends only on the symmetry of the stress-strain relation. It is also worthy to
note that only the components of the matrix [¥] depend on the applied time increments.

The matrix [k] refers to mechanical properties of the soil skeleton. It is known that
the assumption of a purely elastic skeleton is not very realistic. Fortunately, the system
(3.20) remains valid for any incremental stress-strain law of the form (2.10). The consti-
tutive matrix does not have to be necessarily symmetric and may depend upon the current
stress state and the previous history of the body. In the next section we shall propose an
elastoplastic model for the soil skeleton.
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4. Elastoplastic model of soil skeleton behaviour

The idea presented below was originally derived by J. H. PrevosT and K. HOEG in
[15]. In what follows we shall restrict our considerations to the plane strain conditions
and adopt this concept after some substantial modifications.

Introducing the plane strain invariants of the effective stress and incremental plastic

strain tensors,
2 1/2
= R 0y —0y 2
1= 7 los—oyl| = = T +0%y ,

1
4.1) S= ———2—(05+a';) = —-%—(cr;+a;),

Aef = —(Aef+A4eh); Adef = Aef—Aef,
we assume that the yield surface in the s, t-plane is represented by two straight lines:
1 =s—N(e) =0,
fr=t—H(ef, &) = 0.

The surfacef; = 0 (Fig. 1) is the so-colled volumetric yield surface. The position of this
surface depends on the plastic volumetric strains, whereas the shape remains the same

|t

(4.2)

‘failure”line P
/]
i

Fd f=S-N(€§=0
P

fc,»t-Mc,s=()/-/

b/

i P
P H(S,,Eg)=0

2 o

o)

Fig. 1. Yield surface in the s, z-plane: a) volumetric yield surface, b) shear yield surface.

during the deformation process. The yield surface f, = 0 (called the shear yield surface)
may be considered as the surface of the Tresca type. Because the soil may undergo strain
hardening as well as strain softening, both expansion and contraction of this surface are
possible depending on the form of the function H (see [15]). In general the function H de-
pends on both the plastic volumetric strains and plastic shear distortions.

Besides the volumetric and shear yield surfaces the “failure” line

(43) for =t—-M,s = 0
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is introduced. Here M, denotes a material constant. Along this line a perfectly plastic
behaviour satisfying the normality rule is assumed. Moreover, the hardening functions
N(ef) and H(el, €f) are proposed in the form

N(&) = a(e),

(44 ¥ 74 e
H(enieg)_rer a+s§ _Mclu("::) é‘:
where

te =M t”"(‘ga];}'ﬂ

and a, «, § are the material constants. The function H in Eq. (4.4) describes the hardening
of the material.

Let us note that the presented approach differs from the formulations based on the
concept of the initial yield surface f© = 0. According to Eq. (4.4) the initial stress state at
any point of the soil mass is always located at the corner 4 (Fig. 1) and, accounting for
the previous history of the soil, the localization of this corner is known.

In the following we will derive the effective stress-strain relations for both the volu-
metric and shear yield surface and for the corner A (see Fig. 1). In general, the stress-
strain relation for the “failure” line may also be derived in a similar way to the one pre-
sented below.

The major assumption is that the associated flow rule in the form

of
=A==
aol'
is postulated in which A4 is a positive multiplier and &’ is the current effective stress vector.

Such a flow rule requires that the plastic strain rates be directed along the outward normal
to the surface f = 0.

(4.5) Ae?

4.1. Volumetric yleld surface

This surface is given by Eq. (4.2a) and the associated flow rule may be written in terms
of stress and strain invariants as

5f1

(4.6) Aef =4 af‘ =41, de& =4 =0.

Now, writing an increment of the effective stress vector in the form

#) 4o’ = [D7)de = [D(de~Ae") = (D] (4‘- or :3:,‘)

([D°] and [D**] denote the elastic and elastoplastic constitutive matrices, respectively),
and satisfying the consistency condition

(4.8) {af‘ }A ’ gf, Aef =0,




PLANE STRAIN ELASTOPLASTIC CONSOLIDATION OF SOIL BY FINITE ELEMENTS. I 227

we obtain after some transformations

{gfl } [D]de

AP
{E} D557 + ZeF

(4.9) A

Thus, denoting d6* = [D¢]4de we have finally

{ % lr.dcr“
(4.10) AeP = A gf} = 00 | -%

Such a form of the constitutive relation is aIready convenient for use in the “initial stress”
finite element approach. A similar expression relating 4 e” to Ae* will be derived below
for both the shear yield surface and the corner A4.

4.2. Shear yield surface

Here the associated flow rule may be written in terms of stress and strain invariants
as

der = a1 % o,
@.11) o
aef = 1L - 1.

Moreover, the consistency condition has the form

@12) (L o+ Ly ag L ag <o,
Thus, finally

{gf’} (D9 4e
(4.13) 41 = a a
and !

Ik
Ao*
afz { da’ } of

4.14 4¢f o = .
R M lafz }T[De] of, L oH 0o

o’ 20t oef

4.3. Corner behaviour

The total plastic deformations may be written as the sum of the contributions from
the two yield functions

1.9 oy
4.15 P = !
(4.15) Ae 66' +4y 2
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or in terms of stress and strain invariants:

Ael = af’ +Ay ?i?-= aa,

(4.16) 5 :
4=y my %2

q

= Ay.

Thus the consistency conditions will provide a system of two equations

{af'} o+ Tt et <0,

33"
(4.17) of of of
2 2 p 2
{3 } da’ + 63"A +50F Ae’ 0.

By solving this system we obtain the expressions for A4 and Ay. Hence the constitutive
relation may be written in the form

ol g - (”*aﬂ)laf‘}‘” "o

5 asf | |oa” i
(4.18) Aef = - ( o5 Pl =
az|a;:+ 3 p) (“u )(azz"'
afl * af2 *
(o ) o | o (““* il }"" LA
alz(au+ e ) ( a )(022+

aef Be’

where

o =T} 01, n={2:

i) {af’} w1,

I'ion s,

For both yield surfaces f; = 0 and f, = 0, given by Eq. (4.2), we have

-12 1/2(0%—0a)
af; af2 1
(4.19) == =1-1121; 22 =—1-1/2(c.—0)
% 0 ] 4 ( 20,

and a,, =K+1/3G, a,,=0, a =G.

where K and G are the elastic compressibility and shear modulus of soil skeleton, respec-
tively.

A more detailed analysis of the corner behaviour, including some remarks on the
validity of the above derived constitutive relation, is given in [16].
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5. Final remark

We have presented above the mathematical relations of a certain elastoplastic con-
solidation theory. In the second part of the present paper [17] this theory is applied to the
finite element analysis of an initial-boundary-value problem of application in engi-
neering.

Appendix I. Derivation of the balance equation

The simplified relation (2.18) is not always valid since in the general case the flow of
fluid through porous soil may occur. Accounting for this phenomena, the formula (2.18)
should be written in the form

Ae,—nAw|K,—(1—n)Aw|K,—(do .+ da,+ Aa})|3K; = AV,

where AV denotes the reduction of the fluid volume in the soil mass due to the flow of
fluid during a time interval. Considering an elementary volume ¥ within a mass of soil,

w

we have AV = A:: - where AV,, is directly the volume of fluid which dissipated (in a pos-

itive or negative sense) from this element.
In order to combine the value of AV with the pore pressure variations, let us assume
that the motion of the pore fluid is governed by the simplified Darcy’s law

vy = _k:‘ai’
ox oh
v, = —k,—.
oh 0z
v, = —k,—a—y—,

Here v,, v, and v, are the components of specific discharge (i.e. the discharge per unit of
cross-section area) vector; k., k, and k. are the coefficients of permeability and 4 is the
so-called groundfluid head. It is assumed that the x, y, z-directions are the principal
directions of permeability and k,, = k., = k,, = kyx = k. = k., = 0.

The groundfluid head at any point of the soil mass can be expressed as

h = h,+h,,

where A, is called the geometric or elevation head (Fig. 2) and 4, is the pressure head. The
last is defined as

w

dw
s |55

]

where y,, is the specific weight of the pore fluid and w is the pore pressure. In general
case p,, = y,(w), however, for slightly compressible fluids (such as water) we may simply
assume y,, = const and thus

h, = w[y,.

5 Arch. Mech. Stos. nr 2/81
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r ax : . L 8
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v 3 R
/
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Consider now an elementary volume within a mass of soil through which fluid flow
is taking place (Fig. 2). The discussion may be confined to the consideration of a flow of
water which is the fluid of most interest in soil engineering. In general, water may flow
into or out of the element as well as may be stored (positively or negatively) within
this element during a time interval.

Consider first the flow in the y-direction. The weight flux through the left face into the
element is (y,v,),4x 4z, whereas the weight flux through the right face out of the element
is (y,0y),4x4z. If it is now assumed that y,v, is a continuous, differentiable function of the
coordinates, we may use Taylor’s expansion in order to express (y,v,), into (y,9,); and
its derivatives. Taking only the first two terms of this expansion we obtain

(Pw?y)2 = (YW1 + a(ya—'f’)dﬁ
Thus the storage (or loss) of weight due to the flow in the y-direction in a time interval
is given by

[(42,)2 = (0,),1dx Az = ""(”Tf"} Axdys,

Similar expressions can be found when considering the flow in x and z-directions. Hence
the total rate of storage or loss of water in the element 9 /d¢f can be mathematically
expressed as

W 0(yuoy) P A(ywo,) 4 A(ywvs)
a — ox dy oz
where W is the weight of water stored in the element per unit volume of this element.
Now, substituting Darcy’s law into the above derived equation we have

w _ 0 , k) 9 kah)__a_(kﬁ)
af_ a‘yvvx‘a; _W(?wra_y oz waaz
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or with the assumption of constant coefficients of permeability and by expanding the
derivatives

ow a%h o%h 3%h oy, oh v, oh
- ‘(”*"*%}?“’""rwﬂ’"“v)‘ o "W i T
dy,, 0h
N i

The second group of terms of the right-hand side is very small compared with the first
group. This follows from the low compressibility of water which results in y,, & const
for the majority of soil mechanics problems. Hence the above equation can be written
as

W (P Ph
B T\PeS s Th g T

or, regarding the definition of the groundwater head A,

2w Pw 62w) 1, av

ow
o= “("* 7 g e = 2

where dV/dt denotes the rate of change of water volume in an elementary volume of the
soil mass.

Now the general balance equation, considered at the beginning of this Section, can
be completed by the relation derived above. It is worthy to note that the time cannot be
directly eliminated from our considerations. Dividing both sides of the balance equation
by A4t, we obtain

de, n ow aw 8 ,, ., .oV
ot K, ot a —“)i'Ks—air = "é;‘(ax+°'y+°'z)f'3Ka =Zr

and when the solid phase compressibility is negligible

Finally, accounting for the expression derived above for dV/dt, in the plane strain
conditions we obtain

Y e e B O e O Ky e
FTIA A AR T T ™ R VI v R

0

i.e. the relation (3.1) discussed further in Sect. 3.
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