
Arch. Mech., 33, 2, pp. 215-232. Warszawa 1981 

Plane strain elastoplastic consolidation of soil by finite elements 
I. An elastoplastic consolidation theory 

S. PIETRUSZCZAK (WARSZAWA) 

THE SATURATED soil is treated as a multiphase material. The soil skeleton is assumed to be an 
elastoplastic inaterial with isotropic hardening. A double-hardening model is proposed for 
which the effective stress-strain relationships are derived. The liquid phase is assumed to be 
linearly compressible. In the paper a finite element approach to the consolidation problem is 
presented and two extremes of soil behaviour, i.e. drained and undrained deformations, are 
discussed. The analysis is restricted to the plane strain conditions. 

W przedstawionej pracy grunt traktowany jest jako psrodek wielofazowy. Szkielet opisany jest 
przez model spr~zysto-plastyczny z izotropowym wzmocnieniem, dla kt6rego wyprowadzone ~ 
odpowiednie zwi~i konstytutywne. Zaklada si~ ponadto, ie ciecz wypelniaj(\ca pory jest liniowo 
8cisliwa. W pracy analizowane ~ dwa ekstremalne przypadki zachowan osrodka, tj. zachowanie 
,z mozliwo8ciCl odplywu" (ang. drained) oraz ,bez odplywu" (ang. undrained). Z kolei, szeroko 
dyskutowane jest jedno ze sformulowan metody element6w skonczonych dotycZ(\ce zagadnienia 
konsolidacji w warunkach plaskiego stanu odksztalcenia. 

rpYHT paCCM8TpHB8eTCH K8K MHOro4>83HaR cpeAa. CKeJieT OUHCbiB8eTCH C UOMOI.I.U>lO ynpyro­

nJI8CTHlleCKOH MOAeJIH C H30TpOIIHbiM ynpol!HeHHeM, AJ1R KOTOporo BBOMTCH COOTBeTCTBYJO­

IIUfe OUpeAeiDIIOIIUfe 38BHCHMOCTH. llpeAfiOJiar&eTCH T810f(e llTO >KHJn(OCTL, 38IIOJIH.Rl0~8R 
nopbl JIHHeiiHo C>KHM&eMa. B pa6oTe paCCM8TpHB810TCH AB8 npeAe.JILHbiX CJiyllaR DOBe,AeHHR 

CpeAhi: CO CTOKOM >KHJn(OCTH H 6e3 B03MO>KHOCTH CTOK8. ilOApo6HO ~&eTCH O,AH8 H3 

<l>oPMYJIHpOBOK MeTO,Aa KOHe'lHbiX 3JieMeHTOB npHMeHHTCJILHO K nJIOCKOMY A$pMHpO­
B8HHOMY cocromnuo. 

1. Introduction 

SATURATED soil is in general a three-phase material consisting of a compressible solid 
phase (the skeleton of soil particles), gas and liquid phase (the air-water mixture filling 
the pores of the skeleton). In the special case when the pores are completely saturated 
one may regard the soil as a two-phase material only. The basis of theoretical analysis 
of such a three- (or two-) phase material is Therzaghi's effective stress concept which 
assumes that the total normal stress on any plane is the algebraic sum of the normal stress 
in the soil skelet~n (called the effective normal stress) and the pore (water) pressure. 

Saturated soil may exhibit two different extreme behaviours depending on the loading 
rate. When the load is applied very quickly, then the excess pore pressure cannot dissipate 
and the soil is said to behave in an undrained manner. On the other hand, when the be­
haviour of soil under very slow loading or after a very long time period following load 
application is considered, no excess pore· pressure develops. In this case the soil is said 
to behave in a so-called drained manner. Both drained and undrained conditions re­
present two extremes of soil behaviour. In general, when the soil is loaded, it responds 
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216 S. PIETRUSZCZAK 

first in an undrained manner and then the excess pore pressure begins to dissipate. The 
last process is a time-dependent consolidation phenomenon. After a sufficiently long 
time period, when all excess pore pressure has dissipated, the soil behaves in a drained 
manner. 

The aim of this paper is to present the mathematical relations of an elastoplastic 
consolidation theory. In Sect. 2 the discretized equilibrium statement based on the virtual 
work expression is derived. The obtained system of equations allows for both drained and 
undrained finite element effective stress analysis. Then, a finite element formulation of the 
consolidation problem is discussed. All the relations are derived in matrix notation which 
is convenient for digital computer programming. In the last section an elastoplastic iso­
tropically hardening model of soil skeleton is proposed. The analysis presented below 
is restricted to the small strain theory and to the plane strain conditions. 

2. Discretized equilibrium statement. Drained and undrained analysis 

, With the aid of imaginary cuts the porous medium can be conceived as a composition 
of elements. Let us denote by wi the pore stress at the nodal points of these elements. 
Then the pore stress within a certain element can be represented in the following form: 

(2.1) . w( x, y) = N 1 w 1 i = 1 , ... , n, 

where wi is the pore stress at the nodal point i, n is the number of nodal points of the ele­
ment considered and Ni is the so-called shape function. 

Similarly, the displacement field ~ within a typical element can be expressed by the 
nodal point displacement'S ~i 

(2.2) ~(x, y) = N1 ~ 1 • 

In both formulas (2.1) and (2.2) x and y are the Cartesian coordinates in the plane of 
deformation. 

The shape function defines the mode of interpolation over an element. ZIENKIEWICZ [1] 
and others have presented suitable shape functions for several kinds of elements. In this 
paper only the simple triangular element with three nodal points, i.e. the corner points, 
will be considered. For such an element the shape function is 

(2.3) N, = (a 1x+b1y+c1)/D, 

where 

at = Y2 -y3, b1 = X3 -x2, C1 = X2YJ -xJyz, 

a2 = y3-y1, b2 = X1 -x3, c2 = X3Y1 -XtYJ, 

a3 = Yt -y2, b3 = X2 -xl, C3 = X1Y2 -XzYt, 

X1 Yt 

D = det 1 x2 Y2 

1 x3 . YJ 

and xh Yi are the coordinates of the nodal point i. 
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PLANE STRAIN ELASTOPLASTIC CONSOLIDATION OF SOIL BY FINITE ELEMENTS. I 217 

In order to obtain approximate solution for the stresses and strains in a continuum, 
the so-called displacement method is applied. This method is based on the virtual work 

equation 

(2.4) j {Ja}TEdV- {JPy&N = 0 
V 

holding for any stress distribution in equilibrium and any virtual displacement field sat­
isfying the boundary conditions. For an arbitrary element under consideration &N denotes 
the nodal point displacements vector and {P V the transposed nodal forces vector. The 
nodal forces are due to distributed or concentrated load, body forces based on the bulk 
unit weight or due to initial strains or stresses. 

The strain field eii corresponding to the virtual displacement field is defined as 

1 
(2.5) eii = T (<5t,J+ <51,,). 

Now, regarding Eqs. (2.2) and (2.3) for the plane strain conditions we can write 

r} raj 
0 a2 0 a3 0] !:: 

(2.5') E = e1 = ~ 0 bl 0 b2 0 b3 ~v~ = [B]&N, r, f'xy b1 at b2 a2 b3 a3 
U3 
v3 

where u; and v; are the horizontal and vertical displacement components at the nodal 
point i, respectively. 

Thus we have 

(2.6) 

The total stress increment can be written as 

(2.8) L1a = L1a' +L1wl, 

where L1a' is the so-called effective stress increment and 

Although, such a static decomposition is always permissible, we shall now make the 
assumption th.at the effects of the two stress-phases can be .superimposed. Under this 
assumption the effective stress-strain constitutive relationship. can be written in the form 
(see [2]): 

(2.9) L1a' = [D](L1E -IL1wf3K,); 
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218 S. PllrrRUSZCZAK 

where K11 is the average·bulk modulus of the solid phase· and L:1wf3Ks represents the strain 
resulting from the compression of grains by pressure L1 w. [D] is the tangent stiffness 
matrix of the skeleton and is obtained from tests on the drained material. 

Although in rock the strain resulting from compressibility of solid phase is significant, 
in soil it may be considered neglegible. Therefore, for the latter material the relationship 
(2.9) may be written in the simplified form 

(2.10) L1a' = [D].dE. 

Now, utilizing Eqs. (2.5)-(2.8) and Eq. (2.10), the relation (2.4) can be expressed as 

(2.11) {L1P}T5N = {5N}T f [B]T[D][B]dA · .d5N + {5N}T(B]TJ f {N}TdA · .dwN, 
A A 

where A is the area of the element considered. 
Consider now the two integrals in the formula (2.11). For the first we can write sim­

ply 

(2.12) f [B]T[D][B]dA = [B]T[D][B]A = [k], 
A . 

where [k] is the well-known stiffness matrix (6 x 6). 
For the second, in view of Eq. (2.3) we obtain 

(2.13) f {N}rdA = ~ {(a1 A.x+b1 A,+c1 A); (a2A.x+b2A,+c2A); 
A 

where 

Ax = J xdA = : (x1 +x2+x3); 
A 

-

A,= f ydA = : (yt +Y2+Y3). 
A 

Thus the expression (2.11) can be rewritten in the form 

(2.14) 

or accounting for the relation 

(2.15) 

in the final form 

(2.16) 

The virtual work is zero for all values of u1 and v1 which satisfy the boundary conditions. 
Then the virtual work equation (2.16) provides the system of equations of the type 

(2.17) 
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Let us now discuss two extreme cases of soil behaviour, i.e. drained and undrained 
deformation. In the latter case when the load is applied so quickly that the excess pore 
pressure cannot dissipate, the pressure rise can be directly related to strain and eliminated 
from Eq. (2.17). In general, the reduction of volume in an element of soil mass is due to 
compressibility of fluid and compressibility of solid phase. Accounting for both effects 
the balance equation takes the form 

(2.18) L1 Ev = F Lfe = nL1wfK_,+ (1 -n)L1w/Ks+ (A er~ +L1u;+L1u~)/3Ks, 

where n is the porosity and KP is the compression modulus of the pore fluid (or air-water 
mixture in the pores). 

Neglecting the compressibility of solid phase, Eq. (2.18) simplifies to the form 

(2.19) L1 Ev ~ nL1wfK_,, i.e. 

Substituting Eq. (2.19) into Eq. (2.17) we obtain 

(2.20) ( [k]+ I [BYI ~.., JT[B]dA) J&N = L1P 
A 

or, accounting for Eq. (2.12), 

(2.21) ( J [Bf[D,][B]dA) Lf&N = L1P, 
A 

where 

[Dt] = [D]+I K_, JT. 
n 

Here the matrix [Dtl represents the total stiffness of the material, [D] the stiffness of the 

skeleton and I KP JT the stiffness of the pore fluid. 
n 

Equation (2.21) applied directly to the whole continuum enables QS to carry out the 
undrained effective stress analysis. Once the nodal displacements have been determined 
by solution of the overall "structural" type equations, the total stresses, the effective 
stresses and the pore pressure distribution in each element can be found from the rela­
tions (2.19) and (2.8). 

It should be noted that the pore fluid compressibility is low compared to the material 
skeleton compressibility. Thus the completely saturated soil in undrained conditions 
is a nearly incompressible material. On the other hand, it is known that the displacement 
finite element method suffers the disadvantage that the accuracy of the stress prediction 
decreases with the reduction of compressibility. Therefore, the undrained deformation 
analysis of fully-saturated soil requires a special numerical treatment as it is discussed in 
detail by D. J. NAYLOR in (3]. 

The second extreme case of soil behaviour is the drained deformation when load is 
applied so solwly that no excess pore pressure develops. In this case the effective stresses 
are equal to the total stresses and the analysis can be carried out by setting JwN = 0 
or KP = 0 ([Dtl = [D]) in the formulas (2.17) or (2.21), respectively. 

In both undrained and drained situations the pore pressure can be either directly related 
to strain or simply eliminated from the equation (2; 17). Thus, in these extremal cases 

http://rcin.org.pl



220 S. PIETRUSZCZAK 

the pore pressure does not have to be treated as a nodal variable. However, in a general 
case the excess pore pressure can generate and, simultaneously, the flow of the pore fluid 
in soil mass can occur, resulting from the rise of the pressure gradients. Then the balance 
equation in the form (2.18) is not valid and the system (2.17) in not complete. When the 
prescribed as well as non-prescribed qua11tities L1<S1(i.e. L1u, Llvi) and L1w1 are regarded 
as unknowns, the total number of unknowns in the whole discretized continuum is 3 x N 
(N- number of nodal points). 2 x N equations are specified by the relations (2.17) and 
the remaining N equations will be derived in the following. 

3. Numerical analysis of consolidation 

The theory of consolidation was first investigated by THERZAGHI [4] for the case of 
one-dimension only, and subsequently extended to three dimensions by BIOT [5]. Unfortu­
nately, Biot's theory is so complicated that even for highly idealized boundary conditions 
analytical solutions are difficult to obtain. Up to now only several useful solutions have 
been published (see ]OSSELIN' DE JONG [6], McNAMEE and GIBSON [7]). 

The first finite element formulation of the two-dimensional consolidation problem was 
given by SANDHU and WILSON [8]. 

These authors used the Gurtin type of variational principle [9]; up to now many other 
approaches have appeared in the literature (see BooKER [10], SMALL et. al. [11], HwANG 
et al. [13]). In this paper the formUlation : of the finite element method for the analysis of 
two-dimensional consolidation prob.lems will be presented following the analysis of 
P. A. VERMEER [14]. Instead of index notation (as preferred in [14D the vector notation 
will be used as more convenient for computer programming. 

In order to have a ~omplete mathematical description of the consolidation probleJl1 we 
should consider: the equilibrium equations, the constitutive law and a generalized bala~ce 
equa~ion. · 

Both the equilibrium equations and constitutive law were already taken into · account 
in the formula (2.17). Thus the proper balance equation, more general than the simplified 
formula (2.18), is now required to obtain a complete finite element formulation; As it is 
shown in Appendix I, assuming that the flow of fluid through the soi I is 'governed by simpli­
~ed 'Darcy's law (x, y directions are said to be the principal directions of permeability), 
we can write 

a n iJw k~ iJ 2w ky o2w 
(3.1) !l(e~+e7)--K ~+-!i""l+-~ = 0, 

ut , ut Yw uX Yw uy 

where t denotes the time, Yw is the specific weight of water and k~, k, are the' coefficients 
of penneability in the X and y directions, respectively. . 

In'·Eq. (3.1) the grains compressibility and both the variation of permeability and the 
variation of the degree of Saturation during the deformation process are neglected. 

In the majority of existing formulations it is additionally assumed that the pores of 

soil are completely saturated with water and.the term ; . ~~-· is disregarded with respect 
p 
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to other terms in Eq. (3.1), i.e. the water is considered as incompressible (see [11],. 
[13]). It often occurs, however, that the pores are not completely saturated and then th~ 
air-water mixture in the pores can have a significant compressiblility. In this case KP can 
be considered as the (tangential) compressibility modulus of such a mixture and the term. 
n aw 

- -
0
- may not be neglected. 

Kp t 
Sometimes it is possible to assume that the soil is isotropic with respect to permeability, 

i.e. kx = ky = k. Then the balance equation (3.1) has a simplified form 

a n ow k ( a
2
w a

2
w) 

(3.2) at (ex+ Ey)- Kp Tt + Yw ax2 + ay2 

as discussed by P. A. VERMEER [14]. In the following however, we shall use the more· 
general equation (3.1 ). 

As it follows from Eq.- (3.1) the pore pressure w depends on the spatial coordinateS; 
and the time t. An approximation to the time variation can be performed by the finite· 
difference technique. In [14] the simple one-step method was chosen which for an ordinary· 
differential equation of the type dyfdt = f (y, t) is defined as 

(3.3) L1y = iJtf(yo, to)+aiJtiJf; L1f =f(yo+i1y , to+ i1 t)-f{yo, to). 

Here .iJy denotes the increment of y over the time interval t0 < t < t0 +.iJt, whereas the· 
integration constant ex (0 < ex < 1) determines the type of interpolation used (ex = 1/2· 
corresponds to the linear interpolation, ex = 0 to the forward differences and ex = 1 to · 
the backward differences). In general, the numerical procedure has to be "stable", i.e. the · 
error due to the discretization over a certain time step must not systematically grow in the · 
course of the following time steps. As it was proved by BooKER and SMALL [12], for a linear · 
elastic material a sufficient condition of numerical stability is ex > 1/2. However~ for an 
elasto-plastic medium higher values of ex are more profitable. 

Now, applying the procedure defined by Eq. (3.3) we can transform the ditferentiat 
equation (3.1) into the equation 

n ( kx a2w0 ky a2w0
) ( kx a2(iJw) ky a

2
(iJw)) -

(3.4) .iJev-yi1w+iJt --a 2 +--a 2 +aL1t __ a_2_ +--o-2- - 0, . 
p 'Yw X 'Yw Y 'Yw X 'Yw Y 

where w0 is the pore stress at the initial time and increments are denoted by L1. 
In order to be specific let us assume that the soil occupies a region V. The stress and~ 

strain boundary conditions are already satisfied by introducing the virtual work equation 
(2.4). Assume now that at the instant t 0 the pore pressure disribution w0 in the whole region 
V is known. Moreover, on a certain part of the boundary (Sw) the pore stress w is pre-­
scribed and on the remaining part of the boundary (S0 ) the outflow of the fluid is pre­
vented. Hence 

(3.5) 
w0 = f 0

, L1w = iJj on Sw, 

w?in, = iJw,1n, = 0 on So, 

where ni is the outward normal upon the boundary at the point considered, while f is.. 
a function of coordinates. As it is ·proved in [14] Eqs. (3.1) and (3.5) are satisfied when. 
aFja(.iJw) = 0 where F is a functional defined as 
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222 S. PnrrRuszcZAK 

F = f J -L1e L1w+ _n_L1w2+L1t(~ owo o(L1w) + ~ owo o(L1w)) 
) " 2K, Yw ox ox Yw oy oy 

y 

(3.6) 

H ~I [ :: (a~~:) r + :: (a~~:) rl}av. 
Consider now the contribution of an arbitrary triangular element to the functional F. 
In order to simplify our analysis let us write this functional in the form 

(3.7) 

where 

F~ = - J L1e"L1wdA, 
A 

f . n 2 F~ = yL1w dA, 
A 11 

F~ = J cxL1t r~ ( o(L1w) )2 + ~ ( o(L1w) )2] dA, 
Yw ox Yw oy 

A 

F~ = J L1t(~ ow
0 

o(L1w) + ~ ow
0 

o(L1w)) dA 
Yw ox ox Yw oy oy 

A 

and A is the area of the element considered. 
In the plane strain conditions the volumetric strain of the porous mediu~ can be written, 

according to Eqs. (2.5) and (2.14), as 

(3.8) 
1 

L1e., = L1ex+L1ey = D{a1 ,b1 ,a 2 ,b2 ,a3 ,b3 }L1~N = {cpYL1~N. 

Now the sub-functional Ff, in view of Eqs. (3.8) and (2. 7), will have the form 

(3.9) F1 =- f {cpYL1~N{N}TL1wNdA= -{qJYL1~N f {NYdAL1wN 
A A 

or, according to Eq. (2.12), 

(3.10) 

For the second sub-functional F~, in view of Eq. (2.6), after some transformations we 
obtain 

(3.11) F~ = ; {L1wNY f N{NYdAL1wN. 
11 A 

Performing the multiplication of both vectors N, the integral in Eq. (3.11) can be expressed 
as 

(3.12) jN{NYdA = [S], 
A 
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where [S] is a symmetric matrix (3 x 3) defined as 

1 
StJ = D 2 {a 1a1A.u: (a 1b1+b1a1)Axy+b1b1Ayy+ (c1a1+a1c1)Ax 

223 

+(b1c1+c1b1)Ay+c1c1A}, i,j = 1, 2, 3 

and 

Ax and A, are defined in Eq. (2.12). 
Finally, the sub-functional FI can be written in the form 

(3.13) 

For FN, according to Eq. (2.7), we have 

(3.14) F~ = f aLft{LiwHY [ :: ( :x N)( :X {NY) + ~: uy N) (:y {N}')] LfwNdA 
A . 

or, regarding Eq. (2.3), 

(3.15) 

where 

(3.15a) 

(3.15b) 

Finally, for the last sub-functional F4. we obtain analogously to Fj 

(3.16) Fl = L1t{w0N}t:[C)JwNA. 

Hence, according to Eqs. (3.7), (3.10), (3.13), (3.15) and (3.16) we can write 

(3.17) 
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The functional F should have a stationary value with respect to the pore pressure. 
This means that for an arbitrary element the partial derivatives oFfoLJw1 (i = I, 2, 3) 
should be zero. Thus we finally obtain 

(3.18) <p{i'oi}TA6N- ( ;. (SJ+«LI~.r~) AwN= AtA[CJw"N. 

The equation (3.18) can be written in a more general form 

(3.19) 

where the matrices [X] and [Y] ({3 x 6) and (3 x 3), respectively) and vector W0 are defined 
according to Eq. (3.18). Now the generalization of the system (3.19) to the whole con­
tinuum will provide N additional equations (N-:- numb~r of nodal points) which together 
with the generalized equations (2.17) enable us to solve a time step in a consolidation 
problem by a digital computer. 

For an arbitrary element we finally have Eq. (2.17), i.e. 

(k]L1&N + (X]L1wN = L1P 

and the relation (3.19). The formulas (2.17) and (3.19) can be written in a combined 
matrix form 

(3.20) 

that is 

[ 

[k] [X] l (6x6) (3x6) 

[X]T (Y] 
(6x3) (Jx 3) 

L1ut 
L1v1 
L1u2 
L1v2 
L1u3 = 
L2v3 
L1w1 
LJ~2 
L1w3 

LJP~ 

L1Pi 
L1~ 
L1~ 
L1P: . 
L1P; 
w~ 
wg 
wg , 

Here Pr and Pf denote the nodal forces; the superscripts refer to the component (horizontal 
or vertical, respectively) and subscripts stand for the number of the nodal points. 

In the formulation presented above the stiffness matrix [k1 is a (9 x 9) matrix and its 
symmetry depends only on the symmetry of the stress-s~in relation. It is also worthy . tp 
note that only the components of the matrix [Y] depend on the applied time increments. 

The matrix [k] refers to mechanical properties of the soil skeleton. It is known that 
the assumption of a purely elastic skeleton is not very realistic. Fortunately, the systqm 
(3.20) remains valid for any incremental ·stress-strain law of the form (2.10). The consti­
tutive matrix does not have to be necessarily symmetric and may depend upon the ~UITent 
stress state and the previous history of the body. In the next section we shall propose an 
etastoplastic model for the soil skeleton. 
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4. Elastoplastic model of soil skeleton behaviour 

The idea presented below was originally derived by J. H. PREVOST and K. Hooo in 
[15]. In what follows we shall restrict our considerations to the plane strain conditions 
and adopt this concept after some substantial modifications. 

Introducing the plane strain invariants of the effective stress and incremental plastic 
strain tensors, 

t = I- I - (]X-(], 2 1 
[( 

I I )2 ]1/2 
2la3 atl - 2 +axy , 

(4.1) 

Ae~ = -(Aer+Ae~); Ae: = A~-Aer, 
we assume that the yield surface in the s, t-plane is represented by two straight lines: 

ft = s-N(e~) = 0, 
(4.2) 

!2 = t-H(e~, G)= 0. 

The surface/1 = 0 (Fig. 1) is the so-coiled volumetric yield surface. The position of this 
surface depends on the plastic volumetric strains, whereas the shape remains the same 

·failure· line 
/ 

/ 

s 

FIG. I. Yield surface in the s, t-plane: a) volumetric yield surface, b) shear yield surface. 

during the deformation process. The yield surface / 2 = 0 (called the shear yield surface) 
may be considered as the surface of the Tresca type. Because the soil may undergo strain 
hardening as well as strain softening, both expansion and contraction of this surface are 
possible depending on the form of the function H (see [15]). In general the function H de­
pends on both the plastic volumetric strains and plastic shear distortions. 

Besides the volumetric and shear yield surfaces the "failure" line 

(4.3) 
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is introduced. Here Mea denotes a material constant. Along this line a perfectly plastic 
behaviour satisfying the normality rule is assumed. Moreover, the hardening functions 
N(en and H(e:, e:) are proposed in the form 

N(e:) = cx(e:)P, 

(4.4) 

where 

and a, ex, {3 are the material constants. The function H in Eq. (4.4) describes the hardening 
of the material. 

Let us note that the presented approach differs from the formulations based on the 
concept of the initial yield surface/0 = 0. According to Eq. (4.4) the initial stress state at 
any point of the soil mass is always located at the corner A (Fig. 1) and, accounting for 
the previous history of the soil, the localization of this corner is known. 

In the following we will derive the effective stress-strain relations for both the volu­
metric and shear yield surface and for the corner A (see Fig. 1). In general, the stress­
strain relation for the "failure" line may also be derived in a similar way to the one pre­
sented below. 

The major assumption is that the associated flow rule in the form 

(4.5) 

is postulated in which L1;, is a positive multiplier and a' is the current effective stress vector. 
Such a flow rule requires that the plastic strain rates be directed along the outward normal 
to the surface f = 0. 

4.1. Volumetric yield surface 

This surface is given by Eq. (4.2a) and the associated flow rule may be written in terms 
of stress and strain invariants as 

(4.6) 

Now, writing an increment of the effective stress vector in the form 

(4.7) .1cr' = [1>''].1e = [1>'](.1e-.1e') = [D') (.1e-.1A :~~ ). 

([De] and [DeP] denote the elastic and elastoplastic constitutive matrices, respectively), 
and satisfying the consistency condition 

(4.8) { 
0!1 }TA 1 oft A p 
00' LJO + oe: LJEII = 0, 
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we obtain after some transformations 

(4.9) 
{ Z'· r [D']Lio 

Thus, denoting L1a* = [De]Lf£ we have finally 

{
oft \r L1a* 

LfeP = L1.?. a;t, = { )/a' f - -- ~'. 
a of1 [De] oft + oN 

oa' oa' OE~ 

(4.10) 

Such a form of the constitutive relation is already convenient for use in the "initial stress" 
finite element approach. A similar expression relating LJ £P to Lla* will be derived below 
for both the shear yield surface and the corner A. 

4.2. Shear yield surface 

Here the associated flow rule may be written in terms of stress and strain invariants 
as 

(4.11) 

Moreover, the consistency condition has the form 

(4.12) { 
of Jr ..... , of2 ..... p of2 ..... p _ 
oa' LJa + 0£~ LlEu.+ OE: LJEq - O. 

Thus, finally 

(4.13) L1.?. = 

and 

(4.14) 

4.3. Corner behaviour 

The total plastic deformations may be written as the sum of the contributions from 
the two yield functions 

(4.15) 

http://rcin.org.pl



228 

-or in terms of stress and strain invariants: 

(4.16) 

A p _ A , Oft ' A 0f2 _ A 1 
LJe - LJII.- +LJy-- LJ/1. 

V OS OS ' 

Thus the consistency conditions will provide a system of two equations 

(4.17) 

S. PlETRUSZCZAIC 

By solving this system we obtain the expressions for L1 A. and Lty. Hence the constitutive 
relation may be written in the form 

(4.18) 

where · 

+ 
(a,2~H~r1a•-(au+~H~rAa* a12 

a12 (a, 2+ :~)- (au + ;;,)(a22+ :~) 

For both yield surfaces/1 = 0 and/2 = 0, given by Eq. (4.2), we have 

(4.19) 

l
-1/2 J oft = -1/2 . 

oa' ' . 0 

and a 11 = K+ 1/3G, a12 = 0, a22 = G. 

where K and G are the elastic compressibility and shear modulus of soil skeleton, respec­
tively. 

A more detailed analysis of the corner behaviour, including some remarks on the 
validity of the above derived constitutive relation, is given in [16]. 
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5. Final remark 

We have presented above the mathematical relations of a certain elastoplastic con­
solidation theory. In the second part of the present paper [17] this theory is applied to the 
finite element analysis of an initial-boundary-value problem of application in engi­
neering. 

Appendix I. Derivation of the balance equation 

The simplified relation (2.18) is not always valid since in the general case the flow of 
fluid through porous soil may occur. Accounting for this phenomena, the formula (2.18) 
should be written in the form 

L1 Ev -nL1wjKP- (I-n)L1w/Ks -(L1u~ +L1u; + L1u;)/3Ks = L1 V, 

where L1 V denotes the reduction of the fluid volume in the soil mass due to the flow of 
fluid during a time interval. Considering an elementary volume V within a mass of soil, 

we have L1 V= L1 ~w- where L1 Vw is directly the volume of fluid which dissipated (in a pos­

itive or negative sense) from this element. 
In order to combine the value of L1 V with the pore pressure variations, let us assume 

that the motion of the pore fluid is governed by the simplified Darcy's law 

-k~ 
z iJz oh 

v,. = -k,.Ty, 

Here vx, vy and Vz are the components of specific discharge (i.e. the discharge per unit of 
cross-section area) vector; kx, k., and kz are the coefficients of permeability and his the 
so-called groundfluid head. It is assumed that the x, y, z-directions are the principal 
directions of permeability and kxy = kxz = kyz = kyx = kzx ~ kzy = 0. 

The groundfluid head at any point of the soil mass can be expressed as 

h = he+hp, 

where he is called the geometric or elevation head (Fig. 2) and h, is the pressure head. The 
last is defined as 

h - fw dw 
p- ' 

Yw 
0 

where Yw is the specific weight of the pore fluid and w is the pore pressure. In general 
case Yw = Yw(w), however, for slightly compressible fluids (such as water) we may simply 
assume Yw = const and thus 

5 Arch. Mech. Stos. nr 2/81 
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FIG. 2. 

S. PIETRUSZCZAK 

Consider now an elementary volume within a mass of soil through which fluid flow 
is taking place (Fig. 2). The discussion may be confined to the consideration of a flow of 
water which is the fluid of most interest in soil engineering. In gen.eral, water may flow 
into or out of the e~ement as well as may be stored (po.sitively or negatively) within 
this element during a time interval. 

Consider first the flow in the y-direction. The weight flux through the left face into the 
element is 6'wv1) 1L1xL1z, whereas the weight flux through the right face out of the element 
is (ywv,hL1xL1z. If it is now assumed that YwVy is a continuous, differentiable function of the 
coordinates, we may use raylor's expansion in order to express (ywvy)2 into (ywvy)l and 
its derivatives. Taking only the first two terms of this expansion we obtain 

( ) ( ) 
O(YwV,) A 

YwV, 2 = YwV, 1 + ay LJY + .... 
Thus the storage (or loss) of weight due to the flow in they-direction in a time interval 
is given by 

[(ywv,h -(ywv,)l]L1xL1z = o(yayv,) L1xL1yL1z. 

Similar expressions can be found when considering the flow in x and z-directions. Hence 
the total rate of storage or loss of water in the element aw ;at can be mathematically 
expressed as 

aw o(ywvx) o(ywv,) o(ywv:) 
--at = ox + oy + az ' 

where Wis the weight of water stored in the elemen~ per unit volume of this element. 
Now, substituting Darcy's law into the above derived equation we have 
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or with the assumption of constant coe.fficients of permeability and by expanding the 
derivatives 

oW ( o2h o2h o2h ) ( oyw oh oyw oh 
--at~ - 'Ywkx ox2 +rwky oy2 +rwkz oz2 - k"axTx +k,----aya--y 

' k O'Yw ~) 
+ % oz oz . 

The second group of terms of the right-hand side is very small compated with the first 
group. This follows from the low· compressibility of water which results in 'Yw ~ const 
for the majority of soil mechanics problems. Hence the ·above equation can be written 
as 

aw ( . o2h o2h cJ2h ). 
---at :::::; - 'Ywkx ox2 +rwky oy2 +rwkz (jz2 

or, regarding the definition of the groundwater head h, 

oW ( o2w iPw o2w) I oV 
-at= - k~ ox2 +k, oy2 +kz oz2 . = 'Y~ at' 

where oV/ot denotes the rate of change of water volume in an elementary volume of the 
soil mass. 

Now the general balance equat.ion, considered at t~e beginning of this Section, can 
be completed by the relation derived above. It is worthy to note that the·time cannot be 
directly eliminated from our considerations. Dividing both sides of the balance equation 
by LJt, we obtain 

a Ev n ow ( 1 ) I ow a I I I - a V 
~- -K ~~ -n Ks--:;-- ~(ax+a,+az)/3Ks = . ~ ut , ut - ut ut ut 

and when the solid phase compressibility is negligible 

Oev n OW av 
at - K, at = at. 

Finally, accounting for the expression derived above for oV/ot, in the plane strain 
conditions we obtain 

a n ow kx o2w k, o2w 
Tt(ex+ e,)- K, at+ Yw ox2 + Yw oy2 = O 

i.e. the relation (3.1) discussed further in Sect. 3. 
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