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On coupling acceleration waves in a thermoviscoplastic medium
I. Symmetry and hyperbolicity conditions

K. WOLOSZYNSKA (WARSZAWA)

IN THIS PAPER inelastic and thermal properties of the material are described by internal state
variables. It is assumed that thermal disturbance can propagate with a finite wave speed. For
a three-dimensional medium the sufficient and necessary conditions for the existence of real
wave speeds are formulated. Thermal properties described lead to nonsymmetrycity of the waves.

W pracy wykorzystano teori¢ materialu z parametrami wewnetrznymi do opisu wiasnosci nie-
sprezystych i termicznych. Proces przewodzenia ciepla ma charakter falowy i zaburzenia cieplne
propaguja si¢ ze skoficzong predkoscig. Dla oérodka tréjwymiarowego wyprowadzono warunki
konieczne i dostateczne na istnienie rzeczywistych fal przyspieszenia. Otrzymana niesymetria
fali jest wynikiem wilasnoéci termicznych materiatu.

B pabore Hcmons3oBaHa TeOpHs MATEPHANA C BHYTPEHHHMH NapaMETPAMH [UIA OIHCAHMA
HEYTIPYTHX H TepmHueckux cBoiictB. Ilpolecc TEeMIONpOBOMHOCTH HMMeEST BOJHOBBIA Xa-
PaKTep M TEIUIOBBIE BO3MYILIEHHA DAaclPOCTPAaHAIOTCA C KOHEUHOH ckopocrteio. na Tpex-
MepHOl cpe/ibl BhIBEAEHBL! HeOOXOMMMbIe M JOCTATOUHBIE YCIOBHA CYLUECTBOBaHMA BellecT-
BEeHHBIX BOJIH ycKopeHHA. IlomyueHHass HECHMMCTPHA BOJHBI ABJIACTCA PE3YJIETATOM Tep-
MHYECKHX CBOHCTB MaTepHana.

1. Introduction

THe prOPERTIES of materials, their theoretical description and initial conditions de-
termine the possibilities of shock and acceleration waves propagation. In this paper
propagation of acceleration waves for a heat conducting, dissipative and deformable ma-
terial is analyzed. Internal dissipation is described by using internal state variables. It is
assumed that thermal disturbance can propagate with a finite wave speed which is in
contradiction to the behaviour of thermal disturbance governed by Fourier’s law. To
describe the internal dissipation two sets of internal state variables (internal parameters) are
introduced: mechanical and thermal. One set is responsible for viscoplastic deformation
and the other for finite velocity heat transport. To describe the viscous effect Perzyna’s
theory of viscoplasticity [15, 16, 17] is used. According to this theory the set of mechanical
internal parameters contains the inelastic deformation e, the strain hardening parameter
» and the viscosity parameter y.

There are two possibilities to obtain a finite speed of thermal disturbance. One is based
on the assumption that the thermal conductivity coefficient X is a nonlinear function of
temperature ¥. This leads in the one-dimensional case to the Burger’s parabolic differen-
tial equation for 9:

a0

od ik
(1.1) W-HW)E:K

ax2”

This kind of equation was used by Suvorov [19, 20] and MARTINSON [12].
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262 K. WoroszyNska

The other possibility modifies Fourier’s law and postulates a new constitutive equation
for the heat flux q, which leads to the second-order hyperbolic equation

o 1 3
For ¥z
with a speed A; of the thermal wave. When A — oo Eq. (1.2) becomes a heat conduction
equation of the parabolic type (describing diffusion).

First MAXwEeLL [13], then CATTANEO [2] VERNOTTE [21] used the modified Fourier’s
law of heat conduction
(1.3) 7q+q = KV9.

The thermal relaxation time 7 is the time required to obtain steady-state heat con-
duction after a temperature gradient is suddenly imposed. According to CHESTER [5],
the relaxation time is of the order 10~1° s, For v = 0 Eq. (1.3) represents exactly Fourier’s
law. An analogical modification of Fourier’s law was introduced by GUrTIN, PIpKIN [8],
CHEN [3, 4] for materials with memory, Bogy, NAGHDI [1], Fox [7] for rate type materials
and Kosivski [9], KukubpzaNov [11] and Suriciu [18] for materials with internal state
variables. Also MULLER in [14] obtained the hyperbolic equation for # by introducing
so-called coldness.

In this paper the sufficient and necessary conditions for the existence of real wave
speeds are formulated. The thermal properties described lead to nonsymmetricity of the
waves.

(1.2) = V3§

2. Constitutive equation

The thermomechanical state of a particle X at time ¢ of the deformable body & is
described by the value of the following function: G(X, ?) = {E(X, 1), #(X, ¢), Grad (X,
1), a(X, 1)} where E = Gradu— strain gradient (displacement u = X—x), ¢ > 0—
absolute temperature, Grad¥#(X, 1) = g(X, t) — material gradient of the temperature,
a — internal parameters.

The selection internal parameters and their physical interpretation depends on the
inelastic properties of a material. Additionally, internal parameters are described by the
initial-value problem for a differential equation. We postulate the following equations
fora:

2.1) a=A(E,d a,y,x)

for the thermal parameter 8:

(2.2) B =B,(E, 9, a,B,y, x)Gradd+B,(E, 8, a, y, %),
for y and »:

(2.3) yp=I(a,?) - a=I(a,?d):AE,? a,y,x),
2.4) =X (0,9 a=A(,?) AE, ¢, a,y,x).

Here we assume that the evolution equations for the internal parameters «, y and x do
not depend on g and .
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The equations for y and x are particular cases of evolution equations introduced by
PerzYNA [17]. The function A for a viscoplastic material contains:

II T
2.5 A=y L —-1|——+C for I > x,
(2.5) Y (x )I/HT T

where @ is a function of (% - l), T — stress, II; — the second invariant of T.

Response of the material is defined as a family of functions:

SX, 1) = {T(X, 1), p(X, 1), n(X, 1), (X, 1)}
for time ¢ and the particle X, where T is the first Piola-Kirchhoff stress tensor, v denotes
the free energy, n — the entropy and q — the heat flux. There is unique relation between
the functions G(X, t) and S(X, t) which is expressed by the constitutive relations # =
= {7 Y.N, Q}H)
p= W(Es ﬂ,a, p! Vs x);
T=J94E, ¥ a, p’ Y, %) = QanW:
n=AN(E,da,B,y,%)=—-0Y¥,
q=QE, % a,B,y,%) = —po9B, 3.
The relations (2.6) are compatible with the second law of thermodynamics:

2.7 —p—ni+ Ly
Qo

(2.6)

! q-Grad? >0, p,— mass density.
00 %

It was assumed that the heat flux q does not depend on an actual value of the Grad 4 but
only on the past history of Grad & till the actual time ¢. This influence is taken into con-
sideration by the parameter @ which depends on the history Grad # as the solution of
Eq. (2.2) with the initial condition B(X, #,) = Bo.

Now, the dissipation inequality under Eq. (2.6) takes the form
(2.8) ~¥Y ,A-¥Y,-B,-¥ , T-A-Y¥Y X-A>0.

Let us note that the Maxwell-Cattaneo equation (1.3) results from the linearization
of Egs. (2.2) and (2.6),:

(2.9) B A = B, b = const,
T T
(2.10) P == %) B,
Qo

where f is an arbitrary function of &,

Hence using Eq. (2.6),
2.11) q= —9bf(HB.

Differentiating q with respect to time and eliminating @ by using Eq. (2.11), we have
(2.12) 1§ = —9b*(9)Grad 9 —q— b (Bf(9)+ 9/, 4(0) B)9.

(*) Gurmin and PrpIkIN [8] introduced a similar dependence q on ¥ for a material with memory; also
Kosmiski [9] and Suriciu [18] for a material with internal parameters.

™
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The last term is responsible for the influence # on a change of q. For = = 0, Eq. (2.12)
established the nonlinear Fourier’s law:
(2.13) ’ q = —9b*f(#)Grad® = —K(#) Grad 9,
where K is the scalar function because f was assumed as a scalar function.

For subsequent considerations we introduce an equilibrium state G# = (E#, 9%, 0,
a#). From the definition of the state the evolution function at point G# is equal to zero,
in our case it means

2.19) A(E#, §¥ a#) = 0
and
(2.15) B, (E#, §#, a#) = 0.

State G# is an asymptotical state when the solution of
a(t) = A(E#, 9%, 0, a(t)),

(2.16) 2(0) = 2

has the following property:

G.1D \/ /\ lap—a#] < 8 = lima(r) = a¥.
>0 2 t—c0

For the asymptotical state #% = (E*, 9%, a¥) and from the dissipation inequality
(2.8) we have (cf. CoLeMaN and GURTIN [6])

Y(E*, 0%, a) > P(E#, 5%, a¥)
hence
(2.18) - Y (E# 9%, a#) = 0,
Form this property it results that the heat flux vanishes at the equilibrium state
q# = —p OB 9 PH# = 0.
Returning to the equation (2.12) we can see that under the assumptions

%P@, ) = ‘;—s

q = =bad¥#p.
Equation (2.12) is exactly the Maxwell-Cattaneo relation
74 = KGrad¥#—gq,

(2.19)

where K = bab,
Further nonconductors (q = 0) imply
(2.20) B, ¥ = 0.

This, together with Egs. (2.9) and (2.10), means that the conductivity coefficient K(#)
vanishes.
When q # 0, then from the dissipation inequality (2.8) we conclude:

@.21) f_g"_) B-B>0
hence f(#) > 0, then K(&) = #b*/(¥) is nonnegative.
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3. Coupling acceleration wave — hyperbolicity and symmetry conditions

The basic system of equations for the thermoviscoplastic body comprises: the law of
motion,
3.1 pov—DivT = 0,
where v = u is the velocity of displacement,
the geometrical compatibility conditions
(3.2) E—Gradv = 0,
the energy equation

(3.3) 6a,yé+aagf-ia+(ﬂa.w+a.¥f)-a+gLDivq =0,
0
and the evolution equations for B, a, y and x (cf. Eqs. (2.1), (2.2), (2.3) and (2.4)),
(3.4) B—B,Grad9—B, =0,
(3.5) a—-A=0,
(3.6) y-T-A=0,
(3.7 %—A A =0.

Instead of the stress T and the heat flux q, we can take the constitutive functions 7, and
Q, then we have a system of equations with four independent variables ¢t and X = (X;,
X,, X;) and twenty seven dependent variables.
Hence equivalently to Egs. (3.1)-(3.5), we have
0oV—0 T, GradE —0,7 ,Grad®—0,7 ,Grada = 0,
E—Gradv = 0,
000 N D —00,T,,Grad v+ 0B, (8354 + 8, 7) - Grad#+Divq+H = 0,

(3.8) B-B,Grad9-B, =0,
a—A=0,
y-T-A=0,
#—H-A=0,
where
H=HE,? a,B,y,x) = 0ol(00%N +3¥) By+ (BN +3,7) A
+ (38,4 +0,Y)T - A+ (80,4 +0,Y) A - Al.

The coefficients of the system (3.8) are called

a TIL 3 TUI a TIL a TIL
PO, N = c: o NG = pIK. = BILN. = CiL:
o @ ¢ 6E§ dﬂ ’ 3!'} P ’ adﬂr BII ] aﬁy CN
aT'L IL L
69 =Dk T =% BN+ )= WK T = R
M

00" _ 0 00" _ w008 _ o 00 _ oy 90" _ .«
aﬂ =1, E“';'__M“ M —é-EM—= M WﬁL, _ax_=L.
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Here /'™ are components of the elastic tensor, ¢ is the specific heat of the material
and P is called the temperature coefficient of stress. The small subscrpts and superscripts
are associated with the spatial coordinates and the capital with the material coordi-
nates.

We can rewrite Egs. (3.8) in the form of a system of quasi-linear differential equations

(3.10) U, +Q,W)U,+Q,(U)U,,+2,(U)U, ;+B(U) = 0,

where &,, i = 1, 2, 3 are the square matrices 27 x 27 containing the denotations (3.9),

0
0
H
—B 2
—A
-T-A
| % | _ —A.A
The system (3.17) is hyperbolic if the eigenvalues 4 of the matrix &, n* are real. It means
that

(3.12) det|Q2,n' +Q,n2+8Q;n—11| =0
possesses 27 real roots for each direction n normal to the characteristic surface 2': f(X, t) =
= 0 and A is the normal speed of propagation. A and n are defined as follows:
o Grad f B af [ot

" |Gradf|’ |Grad f|

The solution of the hyperbolic equations have discontinuities of the first derivatives

of U on the characteristic surface. Consequently Z'is called the acceleration wave:
(3.14) [Ul=0, [UJ#0, [U,]#0.

By the definition of an amplitude r: r = n*[U 4] and the standard compatibility rela-
tion,

(3.11) U=

XX R M-
-]
]

2=

(3.13)

(3.15) [U.]= —4n"[U ],
we obtain from the system (3.10)
(3.16) (Rkn*—2Dr = 0.

The solution r # 0 if and only if Eq. (3.12) holds. The jump form of Egs. (3.8) can
be written as (cf. (3.9))

s 1
T S L U o O e
(1] 0

L prpy -G =0,
Qo

. Qo
[EL]—[!1] = 0,
G17)  [B]—c 'OPF[v! ] +c - (WE+I9)[D, (] +c - REM [E}, ]+
+e MM [y, ]+ ¢ N M [Byg, ]+ ¢ LK [y, i+~ 15[,x] = 0,
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[Bx]—Bix[#,1] = 0,
3] =0, Bl=I[x=

B(U) are continuous functions of their argumenta. For. Eq. (3.17) we have sixteen
nonzero amplitudes &', b}, g, ¢x; a similar result was obtained by KosiXski, Szmit [10]
for a thermoelastic material

[0'] = b'ny,
[EL!] = byng,

(3.18) [9..] = qn.,
[Bk, L] = cxny,

hence sixteen equations of the form

M= L agmy —%Fx"xg—éclm”lc“ =9,

(3.19) —AbL—b'n, =0,
—Ag—c-1OPFngb' + ¢ (WX +IXYngg+c-*REMn bl +c~'N*™Mn ¢y = 0,
—Z.c‘ —B{'xﬂLg =0.

Equation (3.12) possesses 19 vanishing eigenvalues A. The remaining nonvanishing
solutions can be obtained whenever the following amplitude is defined:

(3.20) s' = n*n*[Ek .].
Using Eq. (3.20) it is possible to determine the amplitudes (3.18) by
bi. = s!nl.!

(3.21) Bl gl

1
Cg = —TB{'(nz,g for A#0.

Equations (3.18) reduce to five equations for s and g

1
(3.22) Q-0 1’I)s+ (p—7 A) g=0,
(A20p+iw) - s+ (UT-Z~c2?)g = 0,
where
(3.23) O = 4" neny (), py = Plng, A= CneBiune,

II= (WE+I®)ng, o, = Rnyny o, Z =n N"MBfyng.

(®) Q is the symmetric acoustic tensor.
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The nonvanishing values of s and g exist when

- 1 =
Qi—004? Q3 0} PI_TAl
1
2 A2 2 —_—A
(3.24) det 01 Q200 0F P2 792 |_ 0.
1
3 Q3 Qg"Qo A2 py-- '}“Aa
_AZ??PI + lwl zzﬁpz + zwz lzﬂpa + 2{{)3 m_z —CAZA

From this polynomial we have eight A4 speeds of acceleration waves and as roots of
Eq. (3.24) do not admit symmetric waves (4 and — A generally are not the roots of Eq.
(3.24)). Similarly, nonsymmetric waves were obtained in the papers of GURTIN and PIPKIN
[8], CueN [3] and [4], Bogy and NAGHDI [1], MULLER [14]. On the contrary, SuLic.u [18]
in his paper assumed symmetry of the waves and then obtained the restriction on constitutive
functions. For example, in our case we can obtain symmetry if we neglect certain coupling
between mechanical and thermal properties such that A, w and /7 vanish (Kosiiski,
Szmit [10]). We conclude that the nonsymmetry is caused mainly by thermal effects. To
show this let us take a rigid conductor for which the arguments of the constitutive equations
contain % and @ only. The same is for B, and B,. Here there is one amplitude g and Egs.
(3.22) reduce to

(3.25) cA2—A(W+I)n+Z = 0.
There are two acceleration waves; we assume that waves propagate alike in the direction
n and —n, such that
%QB,n)-n=Z <0.
The roots of Eq. (3.25) (cf. (3.9) where ¢ > 0) can be written in the form after GURTIN
and PipxiN [8]:

o T [(WHD) a2 (W+I)-
21=u0{l/1+[( 2:3: “] + 2:‘2 II}>0,
(3.26) ° <
w (W+I)- (W+D)- e
A = { ]/ { zuoc ] - 2[.{0{.‘ } < 0, Ug = l/—z‘f‘(..

Here the arrow means that these speeds are in the direction of n. The speeds (3.26)
are invariant under a change of the propagation vector from n to —n:

}‘_1 — _2_2:. > 0!
(3.27) s 3
12 = _111 < 0.
Thus
i e e e ] n
(3.28) Al =1Zl = 1 =7, =—(W+D-n = —.

It follows that if the inner product (W+1I)-n = 0, then acceleration waves in the direc-
tion m and —n are symmetrical to each other. For (W+1I)-n # 0 we can see that the angle
between the vector (W+I) and n involves the relations |4,] < jl_;l or |4;] > |4, If, in
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particular, dg#” = 0 and B, is a scalar function, then the vector (W+1) is proportional
to the heat flux q:
(3.29) W+l = OBy q.
B 1
Let (8,B,/B,) > 0, then we conclude that (cf. GURTIN, PIPKIN [8] and MULLER [14])
the speed of a wave propagating in the direction of q is greater than that of a wave prop-
agating in the direction of —q:

- e 1 d,B,
(3.30) A—4y = TTI(q n).

Next, let us assume that 1) the material ahead of the acceleration wave is at the ho-
mogeneous equilibrium (undisturbed) state, 2) the material has a centre of symmetry. This
means that 1 € G where G is the symmetry group of a body #:

N (B, B) = #(#, —B),
(3.31) (9, B) = ¥(9, —B),
Q®,B) = —Q&, —P).
Thus
G N (3,0) =0,
(3.32) % ¥(#,0) =0,
Q(#,0) =0.

By definition of the acceleration wave, the continuity of the equation coefficients
(3.25) follows and, additionally, from the assumption 1 they are constants equal to their
values at the point (¥, B#) = (9, 0). Now we may rewrite Eq. (3.25) by using the prop-
erties of w and 4" (2.18), (3.32),, >
(3.33) 0000y N #A2 — 0o D¥BH# 05 WH#(B¥#n) - n = 0.

The wave speed

B#0%, V#(B¥n) n
(3.34) 2= _1__9936}11 DRl

It results from the above discussion that for any adiabatic process in a thermovisco-
plastic material acceleration waves are symmetric. Indeed in such a process q = 0, hence
B, 0¥ = 0 (cf. (2.6),, and for det [B,] # 0 we have

(3‘35) 59'11 = 0.
Moreover, by Eqgs. (3.9) and (3.22)
(3.36) w=0, Z=0, A=0, I=0 (W+I=0)

and Eq. [3.24] takes the form

(B37)  03cz®—poz? {#p- P+ooctrQ}+ooz{#(p- ptrQ—p- Qp) —cllg}
—{#(Qp- Qp—p- pllo—p®p- QtrQ)+cdetQ} = 0,
where

Ilg = % (trQ*—(rQ)?), z= 22
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LemMa 1. For the positive definite acoustic tensor Q and the positive specific heat
c the necessary and sufficient conditions for the existence of real roots of the polynomial
(3.37) are
S=m?+n® <0,
where
263 C,C, C, _3C,C,-C3
m=-pme3tac "¢ MTT ac
C,, C,, C; and C, correspond to the coefficient of (3.37) written in the form
C323—C222+CIZ"C0 _— 0,
C3 = Qgc,
(3.38) Cs = 0o{Pp- p+ooctrQ},
Ci = go{H(p- ptrQ—p- Qp)—cllp},
Co = {#(Qp* Qp—p- pllg—p®p- QtrQ) +cdet Q}.
The proof is based on the theory of algebraic equations. From the assumption of
the Lemma we have: '
(3.39) C;>0, C,>0, C,>0, Co>0.
The inequality S < 0 is the necessary and sufficient condition for the existence cf real
roots of Egs. (3.38). Next from the inequalities (3.39) we find that they are positive.
Similarly, for a thermo-viscoelastic material in the state of equilibrium possessing
a center of symmetry, the waves at the initial time ¢ = ¢, are symmetric. For ¢ > ¢, only
the fastest wave of constant speed is symmetric; slower waves are propagated into the

disturbed region and cease to be symmetric.
Thus from Egs. (3.31) and (3.32)

YE, 4, a,B,y,x)=YE,>Pa —B,y,%),
(3.40) TJE,d,a,B,y,%) = T .E, d,a, —B,y, %),
QE,?,a,B,7,%) = —Q(E, ?,a, =B, 7, %),
then
GY(E,?, a,0,y,%) =0,
QE,?,a,0,y,%) =0.

Therefore if we take the coefficient of the polynomial (3.24) at (E#, ##, a#, 0, y#, x#),
then

(3.42) w=0, A=0, =0,
and the next
(3.43)  o3cHz*—po 2> {P¥pH - p¥ —ZH#of + 0o cHtr Q¥ } + 0o 2% {F¥#(p* - pHtr Q¥
—p¥ - Q¥Fp¥) — Z¥#gotr QF — c¥llgy } —z {$#(Qp* - Q¥ p¥ —p¥ - pillgy
—pH@p*- Q¥ tr Q#) + Z#g, Iy + cdet Q¥ } — Z#det Q% = 0.

(3.41)



ON COUPLING ACCELERATION WAVES IN THE THERMOVISCOPLASTIC MEDIUM. I. 271

The polynomial in Eq. (3.43) can be written in the short form
(344) W(Z) = doZ“—d;za'l'dzzz—dlZ‘{‘do,

where
dy = g3 c¥,
dy = o {HH#p# - P¥ —Z#pf+ o c¥trQ¥},
dy = o {#¥#(p¥ - pH#trQ¥ —p¥ - Q¥p#) — Z¥#g,tr Q¥ —c#1lgy },
d, = 9#(Q¥#p- Q¥p—p¥ - p¥llgy — p¥@p# - Q¥ trQ¥) + Z#go gy + cHdet Q¥,
do = Z#det Q¥.
LemMA 2. Let the tensor Q# be positive definite, c# > 0 and Z# = n- §4Q*% > 0,

then the necessary and sufficient condition of existence of real roots of the polynomial
(3.44) are

a) S=m+n* <0,
b) w(z,) <0, w(z;) >0, w(z)<0,

where z,, z,, z; are roots of the polynomial w'(z) = 4d,z%—3d, 22 +2d,z—d, such that
z, <z < z3 and

2 dyd, d,

M= gt R T ad,
__ 8d,d,—3d?
M= Tear

Proof. From the assumption we have: d; >0, d; >0, d, >0, d, >0, d, > 0.
From the theory of the third-order algebraic equation involves it follows that the roots
z,, Z,, Z3 are positive (cf. Lemma 1). The necessary condition is evident: if z, > 0, z, > 0,
zy > 0, then a) and b) are fulfilled (see Fig. 1).

do

1 m . /#
LR TV
FiG. 1.

Sufficient condition: from a), b) and the assumptions it results that the roots z,, z,, 23
are positive and the graph of w(z) looks like Fig. 1.

Generally it is not so simple to obtain such conditions for Eq. (3.24) of the existence
of real roots. It is opposed to thermoelasticity where the positive definition of Q# is the
necessary and sufficient condition of acceleration wave propagation.
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