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The origin of dynamic effects during the arrest of a propagating ~rack 

1. Introduction 

E. SMITH (MANCHESTER) 

DEPENDING on both the loading pattern and geometrical factors, the relatively sim
ple K,. procedure, which is based on static linear elastic fracture mechanics prin
ciples, can either overestimate or underestimate the arrest length of a propagating 
crack. It is sometimes argued that reflected waves returning to the crack tip are re
sponsible for this underestimation of the arrest length. However, ~is paper shows 
that the K,. procedure can underestimate the arrest length, even where it is clearly 
impossible for reflected waves to have any effect. 

IN SITU A noNs where the prevention of fracture initiation at a defect in a structure 
cannot be guaranteed, it is important to prevent a crack propagating a large distance and 
thereby limit the damage to a structure. The development of a crack arrest methodology 
for engineering structures has received impetus, particularly from considerations concern
ing the integrity of water-cooled reactor pressure vessels. The ASME Boiler and Pres
sure Vessel Code [1], which deals with flaw evaluation for emergency and faulted condi
tions in reactor pressure vessels, is based on the view that a crack arrests when the stress 
intensity, as determined by static linear elastic fracture mechanics procedures, falls below 
the crack arrest (K10) fracture toughness curve. In the author's opinion, the strict physical 
justification for this very simple (K10) approach stems from the behavior of a semi-infinite 
crack propagating in an unbounded solid due to the application of time-independent 
loads. In this case there are no wave reflection effects and the crack tip equation of motion 
for Mode I propagation is [2]. 

(l.l) 

where KfYN is the dynamic crack tip stress intensification factor, KID is the dynamic fracture 
toughneSS, Which is ~SSUmed tO be independent Of the crack tip Velocity a, KJT is the 
static crack tip stress intensification factor, and /,(a) is a known function of crack tip 
velocity. Since f 1(a)-+ l as a -+ 0, the crack arrests when KJT equals KID; this particular 
result provides some measure of physical justification for the K1a approach. 

However, when the crack has a finite size and/or the structure has finite dimesions, 
then, assuming that wave reflections do not reach the crack tip, Eq. (1.1) must be replaced 
by [2-5] 

(1.2) KVYN = fi(a)Ki =KID, 

where Kj = gKJT, withg being a function of crack length and the configurations' geometry, 
and may be regarded as a "correction" factor; Kj is sometimes referred to as the re
flectionless stress intensity factor. It is important to appreciate that the derivation of the 

http://rcin.org.pl



314 E. SMITH 

relation (1.2) is based on an exact dynamic analysis, even though x: is obtained by a purely 
static stress analysis. It has been argued [6, 7] that wave reflections can be ignored for 
the LOCA problem, and in this case the relation (1.2) is appropriate. Against this back
ground the propagation of an edge crack due to time-independent loads, which generate 
a tensile stress ahead of the initial crack, has been studied and it has been shown [4, 8] 
that the value of KfT at arrest exceeds the value of x: at arrest (i.e. KID from the relation 
(1.2)); thus in this case the simple K1, approach provides a conservative estimate of the 
arrested crack length. 

It has also been argued [9, 10, 11] that the K1, approach can also underestimate the 
crack length at arrest, due to reflected waves returning to the crack tip, thereby allowing 
the crack to propagate further than it would if there are no wave reflections. The purpose 
of this paper is to show that wave reflections need not necessarily be the sole cause of the 
K1, approach underpredicting the crack arrest length; underprediction can arise from an 
exact dynamic analysis in situations where wave reflections clearly play no role. More 
generally, the paper provides further support for the view that the simple K1, approach 
can be either conservative or nonconservative as regards prediction of the crack arrest 
length. Thus each particular problem should be considered on its own merits, even when 
wave reflections can be argued as having no effect; this procedure has been adopted for 
the LOCA problem [6, 7] Furthermore, in situations where sound physical arguments 
regarding the role of wave reflections cannot be developed, a full numerical dynamic aack 
propagation analysis using, for example, the Battelle procedures [11] is probably una
voidable. 

2. Theoretical 'analysis 

Consider the model in which the faces of the semi-infinite crack - oo <x < 0, y = 0, 
at time t = 0, are wedged apart a distance h over the interval - oo < x < - a0 (Fig. 1 ). 
The objective of the analysis is to show that the reflectionless stress intensity factor x: 
exceeds KF as the crack propagates and eventually arrests. This model has already been 

. y 

l 
h 

l = == :::a::.-----• X 

t 
-ao ·-

f f 
Crack tip position Crack tip position 

at t = 0 at time t 

FIG. 1. The propagation of a semi-infinite crack in an unbounded solid due to the application of a cotstant 
displacement to the crack faces over the interval - oo < x < - a0). 
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analyzed [8] in an earlier paper with the objective of showing that Kj ::1: Kfr, but this 
analysis is recast in the present paper with the fresh objectives and implications in mind. 
For the particular loading system under consideration, the stress p().) ahead of the crack 
tip, when it is in its original position, is given by the expression: 

(2.1) ().) _ Eh 

p - 4n(l -7
2)"J!t; + ,p r-( ~0 r ' 

where E is Young's modulus and vis the Poisson's ratio. The refiectionless stress intensity 
factor x: at time t, when the crack has extended a distance e, is given by the expression 

-. 
Kj = .. I}:_ f p().)d). ' 

Jl n o ye-). (2.2) 

where p(l) is the tensile stress ahead of the crack tip when it is in its orginal position at 
time t = 0. The relations (2.1) and (2.2) accordingly give 

(2.3) 
-. 

K*- Eh .. I 2 f 
I - 4n(l -72) V "0 J! £-A 1/ ( ~0 +A r- (a; r d). 

__ n/2 

Eh V 2 f 
= 211(1-=;2) nao 

0 

dO 

The static crack tip stress intensification JqT, again for a crack extension e, is given by 
the expression (2.1), as 

(2.4) ~T- Eh 
1 

- 2(1-v2) y2n(a0 + e) • 

Supposing, using the accepted terminology, that KQ is the static crack tip stress int~nsi
fication at the onset of crack propagation, i.e. 

(2.5) K 
_ Eh 

Q-
2(1-v2) y2na0 ' 

whereupon the relations (2.3) and (2.4) become, respectively, 

(2.6) 

and 

(2.7) ~T V 1 
KQ = 1+ _.!._ 

ao 
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Figure 2 shows plots of both (Kt/Ka) and (Kf'/Kq) as functions of the crack jump length 
(efa0 ); it is immediately seen that Kt exceeds .KfT for all crack extensions. If the dynamic 
fracture toughness is independent of crack tip velocity and has the value K10 , the crack 
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FIG. 2. The refiectionless stress intensity factor K'! and the static stress intensity factor KF plotted as func
tions of the crack extension e; the results are normalized with respect -to the initial static stress intensity 

factor KQ. Crack arrest occurs where K'! = K10• 

arrests when K; = KID (see the relation (1.2)). Thus the simple K11l procedure which pre
dicts arrest when X:T = KID underestimates the arrest crack length for a particular 
situation where wave reflection effects play no role. 

It should be emphasized that the result of this section is for a particular model in which 
a time-independent displacement is applied to the faces of the semi-infinite crack. If time
independent pressures are applied to the faces, K: = KF during crack propagation, 
and the K11l approach is exact as ·regards arrest crack length predictions [2, 8]. 

3. Discussion 

The main point arising from the analysis in the preceding section is the clear demon
stration that the simple K11l approach can underestimate the arrest crack length, even 
when wave reflection effects are clearly playing no role. The demonstration that a crack 
is able to propagate further than is predicted by the K11l procedure, without reflected waves 
necessarily reaching the crack tip, implies that in other situations, wave reflections may 
not be the sole cause of the K11l procedure ~derpredicting the crack arrest length. However, 
this should not be seen as an implication that the effects of wave reflections on crack 
propagation and arrest cannot be discounted. For example, wave reflections clearly play 
an important role in the rectangular double cantilever beam test since crack reinitiation 
has been observed after arrest, and this phenomenon is difficult to explain without involving 
the role of reflected waves returning to the crack tip [U]. Reflected waves apparently also 
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play an important role in the continuous propagation stage, as will now be demonstra
ted. 

Assuming there are no wave reflections, then, because x: = K)T at the onset of crack 
propagation, andf,(a)"' (1-afcR) [3], where eR is the Rayleigh wave velocity, Eq. (1.2) 
shows that the initial crack velocity for any situation should be v0 given by the relation 

(3.1) 

where KQ is the initial value of K)T. Now, if the rectangular double cantilever. beam test 
is simulated by the model in Fig. 3. where a semi-infinite crack in an infinite strip is wedged 
open, in the limit as the strip width tends to zero there will be no stress acting normal 
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h I I I I 

t 
FIG. 3. A simple representation of the rectangular double cantilever beam test. 

to the strip ahead of the c~ack, apart from the localized stress at the crack tip. Thus, assum
ing no wave reflection effects, x: should equal K0 throughout crack propagation and 
the crack ought to maintain a constant speed during the propagation process. This is 
indeed observed experimentillly, but the experimentally observed crack velocities [12] are 
substantially lower than predicted by the relation (3.1). It must be concluded, therefore, 
that wave reflections from surfaces parallel to the crack are responsible for this decrease 
of the · crack speed. 

Finally, although this paper has clearly shows that the static fracture mechanics K10 appro
ach understimates the crack arrest length for the particular displacement-controlled situation 
examined here, it should certainly not be seen as an implication that such an underestima
tion always occurs. Each situation must be considered on its merits and in this context 
as indicated in the Introduction: when an edge crack propagates in a semi-infinite solid 
as a result of loadings which generate a tensile stress field ahead of the initial crack, the 
static approach is conservative in that it overestimates the crack length at arrest [8]. 

4. Conclusions 

This paper clearly shows that the simple static fracture mechanics (K10) approach can 
underestimate the arrest crack length, even though wave reflections play no role in the 
propagation event. 

The demonstration is for a specific model in which a fixed displacement is applied to 
the crack's surface, and it must be emphasized that the question of conservatism, or 
otherwise, of the K111 approach should be considered for each particular problem. 
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