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Bending of thin plates in the linear theory of elastic mi~es 

Notatkm 

CH. CONSTANDA (GLASGOW) 

AN APPROXIMATE theory of bending of thin plates of elastic mixtures in developed, based on 
simplifying assumptions of Kirchhoff's type. 

Przedstawiono przyblii:on~ teori~ zginania plyt cienkich wykonanych z mieszanin spr~zystych 
na podstawie zaloi:en . upraszczaj~cych typu Kirchhoffa. 

llpe~CT8BJieHa npll6JIH»<eHHaH TCOpWI H3m6a TOHJ<HX nJIHT, H3roTOBJieHHbiX H3 ynpyrHX 
cMece:H, onupaHcL ua ynpomaroiUHe npeMOJIO>I<eHWI THna Kupxro~a. 

O't:" nu partial stresses, 
n, diffusive force, 

eu, g"" hu characteristics of the deformation, 
w~, rJ• displacements, 

(X 2 , At, etc. elastic constants, 
(h, (!2 initial (constant) densities, 

<5"' Kronecker's delta, 
( ... },1 partial differentation with respect to x •. 

Other symbols are defined as they appear in the text. 

1. Introduction 

IN THE LAST few years many elasticity problems have been considered in the context of 
mixture theory. GREEN and NAGHDI [I] proposed a theory for a mixture of two interac
ting continua, GREEN and STEEL [2] and CROCHET and NAGHDI [3] then derived the 
constitutive equations for certain types of constituents, and STEEL [4] obtained the li
nearized equations for an isotropic mixture of two elastic solids. 

Starting from these equations and assuming a number of simplifying hypotheses of 
Kirchhoff's type, we attempt to develop an approximate bending theory for thin plates. 
This theory reduces upon specialization to the classical one. In order to obtain the equi
librium equations and the boundary conditions of the theory, we use Lagrange's varia
tional principle. 

2. Basic formulae 

Throughout the paper Greek suffixes take the values 1, 2, Latin suffixes take the val
ues 1, 2, 3 and the convention of summation over repeated indices is understood. 
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4 CH. CoNSTANDA 

Let B be a Cartesian three-dimensional domain occupied by a mixture of two homo
geneous elastic solids, and let S1 , S2 be two parts of its boundary S, such that S1 r.S1 = ~' 
S1 uS2 = S. The equations of the linear theory of the mixture are as follows [4]: 

1) equilibrium equations (in the absence of body forces): 

(2.1) 

2) constitutive equations: 

O'cto = - cx2 ~"'+Ate,, ~tt + 2pt ea;,- AJ g,, ~tt +2,UJKtr, 

ncto = cx2 ~tt+ .A2g,ll()",+2p2g,"+ .A4ep,~tt +2p3 ea;,, 

(2.2) 

3) kinematic relations: 

(2.3) 

4) boundary conditions [5]: 

w, =w,, 
(2.4) 

(<Ta;,+ntr)na; = q, w,-1], = u, on sl, 
where na; are the components of the unit outward normal to S. 

In Eqs. (2.1)-(2.4) {} = q1 +q2 , A:3 -A.1 = cx2 , and 4><to, <P[tdl are the symmetric and 
skew-symmetric parts of if>tt· The quantities w, ij1 and qi, u1 are prescribed on S1 and S2, 

respectively. We assume that all the functions involved in the subsequent calculations 
have the required degree of smoothness. 

We now consider the potential of the diffusive force 

cx2 
(2.5) n =- ({}lg1111 +e2e1111)+", (" = arbitrary constant), 

(} 

and observe that the diffusive force may be replaced in Eq. (2.1) by a system of supple
mentary stresses -n~~;i, nh~;1 . We define the generalized partial stresses tk, s11 by 

(2.6) 

the generalized surface tractions by 

(2.7) 

and the generalized internal energy per unit volume by 

(2.8) 

REMARK 2.1. The total generaliz~d stresses and the total stresses are equal: 

tt,+st, = <Ttr+n"" 
and Eqs. (2.1) and (2.2)4 remain unaltered by the choice of "· 

REMARK: 2.2. Taking into account the equilibrium equations and the physical meaning 
of the diffusive force [1], we may consider that both the total stresses and the :supplemen• 
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tary stresses generated by the diffusive force contribute to the stress state of each con
stituent. If we assume that in the initial state under no applied forces not only the mix
ture but also each constituent is in equilibrium, it will appear natural to suppose that 
the generalized stresses are zero. Hence from Eqs. (2.2), (2.5) and (2.6) we obtain " = - cx2• 

REMARK 2.3. Operating with the generalized partial stresses and the generalized ener
gy density, some theorems from classical elasticity can easily be extended to the lineari
zed mixture theory [6]. It is to be noted that in this case t"i' s"i are also infinitesimal quan
tities. 

Using Eqs. (2~5}-(2. 7}, we now re-write Eqs. (2.1 ), (2.2) and (2.4) as follows: 

(2.9) tt1," = 0, s"'·" = 0; 

t<An = ( i.1 - ~ a2)e,,d.,+2,u1 e.,+ ( i.3 - ~ a2) g,.d.1+2,u3g.,, 

(2.10) s,.,l = ( i.2 + ~ a2) g,,h.1+2J12g•1+ ( .l4 + ,~ a2)e,,d.,+ 2,u3 e • ., 

t(A:IJ = s£A:IJ = - 2A.5 h(A:IJ; 

(2.11) 
w, = w, 'YJ• = 1], on sl, 

t,+s, = q, w,-'Yj, = u, on s2. 
As a particular case of the variational theorem given in [6], Lagrange's variational 

principle states that for arbitrary small variations of the displaceme~ts the change in the 
generalized energy is equal to the work of the generalized surface forces, i.e. 

d J Edv = d J (t,w1+s1fJ1)da, 
B S 

or, which is the same, 

(2.12) d J Edv = ~ d J [(t1+s1)(w1+1]1)+(t1-s1)(w1-1]1)]da. 

3. Approximate theory 

Let us consider a thin plate as defined in [7], and let C be the middle section, c is 
boundary (closed) curve in the (x1 , x1)-plane and h the constant thickness of the plate. 
We assume that C is a regular domain (i.e. permitting the application of the divergence 
theorem), and that on the faces are prescribed the quantities 

(3.1) q, (x., ~) = 2p(x.)613 , q, (x., - ~) = 0. 

In order to construct a simplified bending theory, we make the following assumptions: 
(i) There is no deformation in the middle plane of the plate. 
(ii) Any linear element of the plate, initially normal to the middle plane, remains 

ormal to the middle 'urface after bending and its length is unaltered. · 
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6 CH. CoNSTANDA 

(iii) The generalized partial stresses t33 , s33 in the plate can be neglected with respect 
to the other components of the generalized stresses. 

(iv) The difference ro3 -1]3 can· be neglected on the faces with respect to ro11 - 'YJa· 
(v) There is no shearing effect in either constituent on the faces. 
REMARK 3.1. Assumptions (i) and (ii) are the same as in Kirchhoff's theory, and so 

is (iii) when considering independently the constituents of the mixture. 
REMARK 3.2. Assumption (iv) has been introduced on account of the thinness of the 

plate and will _permit us to get boundary conditions of a direct physical significance [5] 
and to determine the expressions of all the generalized stresses. Assumption (v) is based 
on mechanical considerations: from Eq. (3.1) we have 0'3cx+n3a = 0 at x 3 = ±h/2 and 
it would appear implausible to assume that a 311 = -n3 cx # 0 on the faces in all situations. 

REMARK 3.3. The theory constructed on the basis of (i)-(v) yields the same problems 
of mathematical rigour as Kirchhoff's, but as in the classical case it is simple and easily 
applicable. 

Using classical arguments, from (i) and (ii) we obtain 

(3.2) 

(3.3) 

Then from Eq. (2.3) and Eqs. (3.2), (3.3) 

(3.4) 
eiX/J = -X3 W,IJP, giX/J = -X3V,IX/J, e113 = gd = 0, 

h(a{J] = 0, h(aJ] = W,IX-fJ,IX. 

As in Kirchhoff's theory (see for instance [8], p. 166) we use (iii) to eliminate e33 , g33• 

Taking t33 = s33 = 0 in Eq. (2.10), we obtain 

(3.5) 

where 

(3.6) 

c0 = (A, +2p,- 11
: ct2 )( A2 + 2p2 + ~ a:2)- ( A3 + 2,u,- T 0:2 )( -<. + 2p, + 11

: "'2), 

c, = c~ [(-<.+ ~2 a:2)(A,+2,u,- ~ cr2)-(A,- ~ a:2)(-<2+2,u2+ ~ a:2)]. 

c2 = :. [(-<2+ ~ a:2)(A3 +2p3 - ~ a:2) -(A,-~ a:2)(l2+2,u2+ ~1 a:2}]. 

c, = L [ ( .<,- ~ a:2)( A. +2,u. + ~2 a:2)- (A.+ ~2 0:2 )(A, +2,u,- -~ 0:2)]. 

c. = :. [ (A,- ~ a:2)(A. +2,u, + ~ a:2)- (A>+ ~ «2 )(A, +2,u,- ~ "'2) l 

http://rcin.org.pl



BENDING OF DIIN PLATES IN THE LINEAl\ THEORY OF ELASTIC MIXnJRJII 

From Eqs. (2.10), (3.4), (3.5) it then follows 

(3.7) 

where 

t<a.tJ> = -x3 [L1(d1 w+d3 v)6a.6+2(/.t1 w+pJv),criJ], 

s<criJ> = -x3 [L1(d3 w+d2 v) 6a.8 + 2(p3 w+ ,u2 v),a,B], 

tracfll = sracfJJ = 0, 

t[«lJ = -SrcxJ) = -2A5(w-v),cx, L1( ... ) = ( ... ),114 , . 

d, = (l+c,)(A,- ~2 IXz)+c3(A3- ~ IXz), 

(3.8) d2 = (I +c4) ( A2 + ~ IXz) +c2 ( A4 + ~2 IXz), 

d3 = (I +c.)( A3- ~1 
1X2) + c2 ( A1 - ~2 IXz) 

7 

= (l+c1+•+ ~2 IXz) +c3 ( -'z+ ~· IXz) . 

If we take i = ' (X in Eq. (2.1), according to (iv), Eqs. (3.1)2 , (3.4) and (3.7), we obtain 

(3.9) 
4xi-h2 

s<czl> = 
8 

L1[(d3+2,uJ)w+(d2+2J'2)vLx+2).s(w-v),«. 

Finally, from Eqs. (2.8), (3.4) and (3. 7) we have 

+h/2 

(3.10) U = J Edv = J J (t<«P>ecxfJ+s<a.8>gcxfJ+2t£cx3lhL«ll)dx 3 da 
B C -h/2 

We next define 

(3.11) 

and observe that 

(3.12) 

~ ~ J { ~~ [d1(Liw)2 +2d3LILiv+dz(Liv)2 +21'1 w . .,.w . .,. 
c 

+lr/2 

M~>= J x 3 tcx/Jdx3 , 

-lt/2 

+lr/2 

M~>= J x 3 sa.8dx3 , 

-lt/2 

+lt/2 

Q~0 = J tcx3dX3, 
-lt/2 

+lt/2 

ru2> = f Se&JdXJ' 
-lt/2 
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8 CH. CoNSTANDA 

are the total bending and twisting moments and shearing stress resultants. 
Further, we put 

(3.13) 

where n" are the components of the unit outward normal to c and . eJ.fJ is the alternating 
symbol in the plane. Then ' 

(3.14) 

are the total moments and resultants acting on an elementary section of c. (The direction 
of the tangents to c is such that the system of axis (n, s) has the same orientation as (x1 , x2) ). 

From Eqs. (3. 7), (3. I I) and (3. I 3) we obtain 

(3.15) 

where r is the radius of curvature of c. 
On the lateral surface of the plate we denote 

(3.16) 

+11/2 

M~!> = J x 3 t«n11dx 3 , 

-lt/2 

+11/2 

.M~p = J x 3 ea/J t/Jn«dx3 , 

-11/2 

+lt/2 

Q~1> = J t3dx3, 
-11/2 

+lt/2 

M~~> = J x3 ea/Js1Jn11dx3, 
-11/2 

+1112 

Q~2> = J s3dx3, 
-lt/2 

where s" are the components of the unit tangent vector to c. Then 

(3.17) 

are the total moments and resultants acting on c. 
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BENDING OF THIN PLATES IN THE UNI!AR THEOR.Y OF ELAmC MIXTUR.ES 9 

The work of the forces acting on the lateral surface is 

1 J[ ,., a ("' a ... ) (3.18) T -MIIJITn (w+v)+ Q,.-Ts M,.. (w+v) · 
c 

- (M<1>-.M<2>_}_ (w-v)+ {Q"' <1>-Q"'<2>-~ M<1>+ _y_ .M<2>(w-v)} ds "" . . "" on " " os •• os Ill ' 

and, according to Eq. (3.1), (iv) and (v), the work of the surface forces acting on the faces is 

(3.19) J P(w+v)da. 
c 

Using Eqs. (2.12) and (3.14)-(3.19), integrating by parts and using the divergence 
theorem, we now obtain 

(3.20) J {[JL1(D1 w+D3 v)+4h.A5 J(w-v)-p]dw 
c 

+ [JL1(D3 w+ D2 v)-4hA5 L1(w-v)-p] oo }da 

+ ~ f {<-M .. +M .. )d! (w+v)+ [(Q.- :. M,.)-( Q.- :. M .. )] d(w+v) 
c 

+ ( - M<1> + M<2 > +:M< 1>- .M<2 >) d _}_(w -v) "" "" "" "" on 

+ [(Q<1> _ _}_ M(1>-Q<2>+ _}_ M<l>)- (Q"" <1> _ _}_ .M<t>-Q"' <2>+ _!__ M<l>1] d(w-v)ds " os •• " os •• " os •• • os •• , ' 
where Di are the partial rigidities 

(3.21) 

By standard arguments from Eq. (3.20) we can derive the equilibrium equations and 
boundary conditions of the theory. We will restrict our attention only to those of physical 
interest. Thus we obtain: 

(a) equilibrium equations: 

L1J(D1 w+D3 v)+4h.A5 J(w-v)-p = 0, 
(3.22) 

JJ(D3 w+D2 v)-4hA5 L1(w-·v)-p = 0, 

(b) boundary conditions: 

(3.23) W=W, 'V=V, 

in C; 

a ... a ... 
Q.-TsM,.. = Q .. -TsM ... , 

(3.24) 

w-v = ;,, _!__ (w-v) = i on 
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10 CH. CoNSTANDA 

REMARK 3.4. If instead of the mixture being initially isotropic as a whole each solid 
is initially isotropic, then As = 0 [9] and Eq. (3.22) reduces to 

LL1(D1 w+D3 v)-p = 0, 

Lt1(D3 w+D2v)-p = 0. 

This system yields uncoupled equations of Sophie Germain's type for wand v when the 
conditions given in [5] for the positive definiteness of U are satisfied. 

REMARK 3.5. If the two constituents coincide, we write fh = (!2 = f!, A.1 = .l2 = .l, 
/lt = /l2 = /J, .l3 = l4 = ls = ftJ = cx2 = 0, w = v and from Eqs. (2.7), (3.1), (3.6}-(3.8) 
and (3.21) we obtain 

D, = D2 = D = ~~ I ~112 , D, = 0, ij, (x., ~) = p(xJ~13 , 
/l(3.l+2/l) A. 

where E = A.+ll and G = l(A.+p) are Young's modulus and Poisson's ratio, 

respectively. Then Eq. (3.22) reduces to Sop hie Germain's equation: 

.1Ltw = p_ 
D 

aJld Eqs. (3.23) and (3.24) become the boundary conditions of Kirchhoff's theory [8]. 
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