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Bending of thin plates in the linear theory of elastic mixtures

CH. CONSTANDA (GLASGOW)

AN APPROXIMATE theory of bending of thin plates of elastic mixtures in developed, based on
simplifying assumptions of Kirchhoff’s type.

Przedstawiono przyblizona teorie zginania plyt cienkich wykonanych z mieszanin sprgzystych
na podstawie zalozefi upraszczajacych typu Kirchhoffa.

IlpencraBnena nmpuONMyXeHHAA TEOPHA M3rHba TOHKMX IUIMT, M3TOTOBJIEHHBLIX M3 YNPYTHX
cMecell, ONHPAsACH Ha ynpollaoline npeanonoykennsa Tuna Kupxroda.

Notation

O, g partial stresses,
n, diffusive force,
€1, Ex1, My characteristics of the deformation,
wy, 1 displacements,
oz, Ay, etc. elastic constants,
01, @2 initial (constant) densities,
S Kronecker’s delta,
(...)» partial differentation with respect to x,.
Other symbols are defined as they appear in the text.

1. Introduction

IN THE LAST few years many elasticity problems have been considered in the context of
mixture theory. GREEN and NAGHDI [1] proposed a theory for a mixture of two interac-
ting continua, GREEN and STeeL [2] and CrocHET and NAGHDI [3] then derived the
constitutive equations for certain types of constituents, and STEEL [4] obtained the li-
nearized equations for an isotropic mixture of two elastic solids.

Starting from these equations and assuming a number of simplifying hypotheses of
Kirchhoff’s type, we attempt to develop an approximate bending theory for thin plates.
This theory reduces upon specialization to the classical one. In order to obtain the equi-
librium equations and the boundary conditions of the theory, we use Lagrange’s varia-
tional principle.

2. Basic formulae

Throughout the paper Greek suffixes take the values 1, 2, Latin suffixes take the val-
ues 1, 2, 3 and the convention of summation over repeated indices is understood.
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Let B be a Cartesian three-dimensional domain occupied by a mixture of two homo-
geneous elastic solids, and let S, , S, be two parts of its boundary S, such that S,nS; = ¢,
S,US,; = S. The equations of the linear theory of the mixture are as follows [4]:

1) equilibrium equations (in the absence of body forces):

@n Oupe—mm =0, my+m =0;

2) constitutive equations:

Ouny = — 02O+ Ay €, 04y +2u, ey — 385y Ot + 283811
Ty = o Qe+ A2 8pp Onu+ 202 8ii+ As€pp Oy +2p3 €44,

2.2) Oy = — kg = "'y-sh[tl].

o
Ty = ?2 (01800 +02850),15
3) kinematic relations:

23) e = 0w 8 = Nk M = Mt @

4) boundary conditions [5]:

.4 W, =&;, mn =7 ons,
(Ou+ma)ne = qy, w;—n, =14 onS,,
where n; are the components of the unit outward normal to S.

In Egs. (2.1)-(24) ¢ = o +02, A3—4; = a;, and Py, iy are the symmetric and
skew-symmetric parts of ¢;;. The quantities w;, %, and §;, %, are prescribed on S, and S,,
respectively. We assume that all the functions involved in the subsequent calculations
have the required degree of smoothness.

We now consider the potential of the diffusive force

(2.5) = _Gtg_z (018pp+02€,)+%, (x = arbitrary constant),

and observe that the diffusive force may be replaced in Eq. (2.1) by a system of supple-
mentary stresses —mdy;, 7dy;. We define the generalized partial stresses #;;, sx; by

(2.6) ta = Ou—n0y, S = T+ ndy,
the generalized surface tractions by
(VX)) b= tuly, 5§ = Sy,

and the generalized internal energy per unit volume by

1
(2.8) E = 7(‘(1!)*&:"‘ Sceny 8kt + teis ey -

REMARK 2.1. The total generalized stresses and the total stresses are equal:
it Sy = Ot my,

and Egs. (2.1) and (2.2), remain unaltered by the choice of x.
ReMARK 2.2. Taking into account the equilibrium equations and the physical meaning
of the diffusive force [1], we may consider that both the total stresses and the supplemen-
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tary stresses generated by the diffusive force contribute to the stress state of each con-
stituent. If we assume that in the initial state under no applied forces not only the mix-
ture but also each constituent is in equilibrium, it will appear natural to suppose that
the generalized stresses are zero. Hence from Egs. (2.2), (2.5) and (2.6) we obtain ¥ = —u,.

REMARK 2.3. Operating with the generalized partial stresses and the generalized ener-
gy density, some theorems from classical elasticity can easily be extended to the lineari-
zed mixture theory [6]. It is to be noted that in this case #;, 5;; are also infinitesimal quan-
tities.

Using Egs. (2.5-(2.7), we now re-write Egs. (2.1), (2.2) and (2.4) as follows:

2.9) ux =0, 8= 0;

tap = (21 = % “2)%; O +2p, €44+ (13 = 9—; “z) 8op Oni+ 203815

(2.10) Sy = (Az‘i‘ 9—; 0‘2) 8op Oni+ 2028+ (;-4'1' % az)e,,d,,+2p3 €xis

Tnin = Spuy = —24shp;
W = 0y, =9 on S,
@.11) i X i M=m ) 1
L+s=q, w=n=1i onS,.

As a particular case of the variational theorem given in [6], Lagrange’s variational
principle states that for arbitrary small variations of the displacements the change in the
generalized energy is equal to the work of the generalized surface forces, i.e.

8 [ Edv= ¢ [ (tay+sm)da,
B 5
or, which is the same,

@12) [ Edo = -4 [ 16+5) @t )+ (=) (@i n)lda.

3. Approximate theory

Let us consider a thin plate as defined in [7)], and let C be the middle section, ¢ is
boundary (closed) curve in the (x,, x;)-plane and 4 the constant thickness of the plate.
We assume that C is a regular domain (i.e. permitting the application of the divergence
theorem), and that on the faces are prescribed the quantities

@.1) @ (x%) = 2p(x)dis, @ (xa, __’21) = 0.

In order to construct a simplified bending theory, we make the following assumptions:

(i) There is no deformation in the middle plane of the plate.

(ii) Any linear element of the plate, initially normal to the middle plane, remains
ormal to the middle surface after bending and its length is unaltered.
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(iti) The generalized partial strésses f,3, 533 in the plate can be neglected with respect
to the other components of the generalized stresses.

(iv) The difference w;—n; can be neglected on the faces with respect to wy,—17,.

(v) There is no shearing effect in either constituent on the faces.

REMARK 3.1. Assumptions (i) and (ii) are the same as in Kirchhoff’s theory, and so
is (iii) when considering independently the constituents of the mixture.

REMARK 3.2. Assumption (iv) has been introduced on account of the thinness of the
plate and will permit us to get boundary conditions of a direct physical significance [5]
and to determine the expressions of all the generalized stresses. Assumption (v) is based
on mechanical considerations: from Eq. (3.1) we have a3, +7;, = 0 at x; = +A4/2 and
it would appear implausible to assume that ¢;, = —m3, # 0 on the faces in all situations.

RemArk 3.3. The theory constructed on the basis of (i)-(v) yields the same problems
of mathematical rigour as Kirchhoff’s, but as in the classical case it is simple and easily
applicable.

Using classical arguments, from (i) and (ii) we obtain

(3.2) w3(x;) = w(xy), N3(x) = v(xy),
(33) wa(xl) = —X3Waq, nu(xl) = —X3VU,4.

Then from Eq. (2.3) and Egs. (3.2), (3.3)

€ap = —X3W o, = —X3Vap, €3 =gu=0,
(.4) ap 3Wass  Bap 3V.ap 3 = Bas
h[“ﬂ] = 0, h[c.!] = W‘,—!?_a.
As in Kirchhoff’s theory (see for instance [8)], p. 166) we use (iii) to eliminate ey, g33.
Taking t3; = §33 = 0 in Eq. (2.10), we obtain
(3.5 €33 = Cre,+C8,,, 833 = C3€,+Ca8y,
where

(3.6)

Co = (2.14-2,uJl - %‘- a,) (1,,+2,u,+ %‘ a,) - (.1,+2p,-— %‘- a,) (14+2;,t3+ %i mz),

L 02 )( 01 ) ( €2 )( (1] )
¢, =— A+ -2, 1l A 4+28——at, | — A, — =« Ar4+2u,+ = a5,
1 o ( 4 ) 2 3T &l P 2 1 0 2 2T &4z 0 2_

| 2 )( 441 ) ( 45 )( 0 )
2= —|22+ ;)| A+ 2m3— - ay) —[A3— =) { A2+ 20+ —— 22|,
2 Co ( 2 P 2 3T 4k 0 2 3 0 2 2T &fhs ) 2 :

1 24 )( /5] ) ( (253 )( 02 )
3= —|{A—== o) [ A4+ 2+ = ay) — (A + == | A1 + 20, — —— a5} |»
3 ‘o -(1 0 2 4T ofd3 0 2 4 0 2 1 Tl 0 z-

Cs = I (13-9—9‘&2) (A&‘i‘zﬂs'l"%az)—(lz*"%‘“z) (A;+2p1-%¢;) ¢
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From Egs. (2.10), (3.4), (3.5) it then follows
tapy = —x3[4(d,w+d,v) 6«3"'2_(!‘1 w4 §39) a5l
(3 7) s«m = “xald(dal‘\"i'dgﬂ)a@'i'zo‘;W+ﬂ2v)'”],

tapy = Sapy = 0,
fas) = =Sy = —24s(w—=0),, 4(..) = (...)>
where

d, = (l+cl)(21_£3‘a2) +‘33(;-3"' &y t'»‘z)-
e e
(38) d,= (l+c‘)(ﬂ.,+ % az) it (a¢+—‘;i az),
dy = (1+C4)(;-3——9;' “z)'i' ) (11— "i—z “z)

= (1+¢y) (14"" _Qgi l'»"rz) +C3 (Az"‘ %l" ‘7‘:) .
If we take i = o in Eq. (2.1), according to (iv), Egs. (3.1);, (3.4) and (3.7), we obtain

2_j2
tasy = 4x,8 : Al(d, +2p,)w+ (d3+2p3)v] o = 225(W—0) 4,

(3.9)
4x2—h? _ 1
5(:3) - 8 A [(d.‘! +2ﬂ3)W+(d2 +2#3)U].,+2 ’(W—U).,.

Finally, from Egs. (2.8), (3.4) and (3.7) we have
+h/2

(G.10) U= f Edv= f f (tey 003+ Scapr Bap + Lganyhraadada
B

C -hj2

3
= ——2!— f {% [dl(AW)z +2d3AAU +'d2(AU)z+2|ul W.ww’w
c

FA4U3W 45V 05+ 2420 55U o] —4hAs (w;v)_,(w —w),c} da.

We next define

+h2 +h[2
M = f X3lpdxy, QL = f ta3dxy,
311 —hi2 —hf2
@11 +h]2 +h12
MP = f X3Sedxy, QP = f Sa3dX3,
-hj2 —h[2

and observe that
(3.12) My = MP+MP, Q. = QL +QP
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are the total bending and twisting moments and shearing stress resultants.
Further, we put

(3.13) M® = M@n,ng, MDD = gzMPnen;, QY = Q¥n,,

where n, are the components of the unit outward normal to ¢ and gy is the alternating
symbol in the plane. Then

(.19 My = MP+MQ, Mu=MP+MPD, 0, = 0+0P

are the total moments and resultants acting on an elementary section of c. (The direction
of the tangent 5 to c is such that the system of axis (, s) has the same orientation as (x,, x,)).
From Eqs. (3.7), (3.11) and (3.13) we obtain

M::>=T5{ A1, +2p.)w+(d3+2na)e:1+2( 1 a,)cu.wme)}

h? 1 8 52
R[(1 @ 0%
0 T L) o G i
G.15) Mz 6 (r s asan)(*"‘“'“‘"’)'
. B[l 8
M2 ==& \7 o ~asam | Powtr)
B o
QW = — T —— A(d,+2p,)w+ (ds+2u3)v] - 4h2,—-—(w v),
2) = — ko — A[(ds+2 d,+2 4hA
' ] = 12 a [( 3+ pa)w'{-( 2+ #Z)U]+ 5"_"_“ (w t';I)

where r is the radius of curvature of c.
On the lateral surface of the plate we denote

+hJ2 +h[2
MP = [ xstndxs, M@= [ x;smedxs,
—hj2 —h2
+Aj2 +h[2
(3‘l6) M==)= J. xzewfﬂn‘dxg, M=§)= J. x;EwSﬁﬂudx;;,
-h/2 —-hf2
+hJ2 +h2
0= [ tydx, 0P = [ sydxs,
-hj2 —-hf2

where s, are the components of the unit tangent vector to ¢. Then
G.17) My = MP+MP,  M=MP+MP, 0, = 0O +0P

are the total moments and resultants acting on c.
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The work of the forces acting on the lateral surface is

1 ~ - =
(3]8) “j‘f['-M“%(W'i'U)'i' (Qn__éa;Mu) (W+1’J)

- -~ a -~ -~ 3 gt a L/
—AMO_g»_ Y (- W _p@_ Y pra @) —
(M.. MY 5 (000 (Q. O — —— MWD+ — MD(w v)] ds,
and, according to Eq. (3.1), (iv) and (v), the work of the surface forces acting on the faces is

(3.19) [ P(w+v)da.
C

Using Egs. (2.12) and (3.14)-(3.19), integrating by parts and using the divergence
theorem, we now obtain

(3.20) [ {144(D, w+ D0)+4has A(w—v)—plow
C
+[44(D3w+ D, v)—4hAs A(w—v)—pl dv}da

+1 [ - Mat 1108 2 orore (002 Mu) - (8- 2 1) 6040
H(=MP+ MR + M~ HR) - (w—0)

0 4 - d =~ ~ d -
(e MDD MDD - (1) _ (1) _ 02) 2) e
+ [( n as M“‘ Qu + as Mll ) (Qll as Mal Ql + as M.N )] a(w v)ds!

where D; are the partial rigidities
ha
(3.21) D, = 571 (di+2u,).

By standard arguments from Eq. (3.20) we can derive the equilibrium equations and
boundary conditions of the theory. We will restrict our attention only to those of physical
interest. Thus we obtain:

(a) equilibrium equations:
AA(D;w+D30)+4hAsA(w—v)—p = 0,

(3.22) .
AA(D3w+D,v)—4hisA(w—v)—p =0, in C;
(b) boundary conditions:

S o g ow - v )
(3.23) w=w, 0=0, ﬁ"'ﬁ' = on ¢,;

< i 0

My, = M,, Qu"“gMu= n HMM’
(3.29)
W—v =¥ i( -9)=% onc
=¥, an w G x 2

where ¢,, ¢, are parts of ¢ such that ¢c,nc, = ¢, c;uc, = c.
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ReMARK 3.4. If instead of the mixture being initially isotropic as a whole each solid
is initially isotropic, then A5 = 0 [9] and Eq. (3.22) reduces to

AA(Dyw+D3v)—p = 0,
AA(Dsw+D,v)—p = 0.

This system yields uncoupled equations of Sophie Germain’s type for w and v when the
conditions given in [5] for the positive definiteness of U are satisfied.

ReMARK 3.5. If the two constituents coincide, we write o, =0, =p, 4, = 1, = 4,
By =y = P, A3 = A4 = A5 = p3 = o, = 0, w = v and from Egs. (2.7), (3.1), (3.6)-(3.8)
and (3.21) we obtain

h®* E - h
D, =D,= D=ﬁT:o*,—f, Dy =0, Q:(xm-z—)=P(x¢)‘ju,

_ #(34+2p) A
where E = —ﬂ_—P—— and ¢ = S+ 1+p)

respectively. Then Eq. (3.22) reduces to Sophie Germain’s equation:

are Young’s modulus and Poisson's ratio,

- P
AAW_D

and Egs. (3.23) and (3.24) become the boundary conditions of Kirchhoff’s theory [8].
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