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Source flow betweene two non-parallel rotating disks (*)
P.A. JANSSON (GOTEBORG)

LaMINAR source flow of an incompressible viscous fluid between two non-parallel disks has
been analyzed. The disks are rotating with arbitrary angular velocities about axes perpendic-
ular to the disks. The equations of motion are solved by a perturbation expansion about the
creeping-flow solution for source flow between parallel rotating disks. A solution which is valid
in an annular region is obtained. The combination of inclination and rotation is found to in-
fluence the pressure distribution and the flow pattern remarkably in some cases. The corres-
ponding effects on the disks are discussed.

Rozwazono laminarny przeplyw Zrédlowy migdzy dwiema meréwno!egiynm tarczami wiru-
jacymi. Tarcze wiruja z dowolnymi predkosciami katowymi wokol osi prostopadlych do ich
plaszczyzn. Rownania ruchu rozwigzano metoda rozwinig¢ perturbacyjnych wzgledem rozwq
zania dla przeplywu pelzajacego dla wirujacych tarcz réwnoleglych. Otrzymano rozwigzanie
zachowujace swa wainoé¢ w obszarze pierScieniowym, Stwierdzono, ze w pewnych przypad-
kach kombinacja wzajemnego nachylenia tarcz i ich predkosci obrotowych wplywa w istotny
sposob na rozklad ciéniefi i charakter przepltywu. Przedyskutowano takze wplyw tych czynnikéw
na tarcze.

PaccmaTpuBaeTcs JAMHHAPHOE HCTOUYHMKOBOS TEUCHHE MEXKAY ABYMA BpAIUAIOLMMHCH He-
napaieNbHBIMK OHCKaMH. JIMCKM BpAI@iOTCA ¢ NMPOHSBOJNBHEIMH YIJIOBBIMH CHKOPOCTAME
BOKPYT OCel mepneuKyNAPHEIX K HX IUIOCKOCTAM. YPaBHEHHA JBHXKEHHA PellIeHLI METONOM
nepTypOalMOHHBIX PasnodXeHuit 0 OTHOIIEHHIO K PelleHHIO JUIA MOJI3AIONMIEro TeYeHHs IA
BpaILAIOLIHXCA Napa/UekHeIX muckoB. Ilonydero pellieHne coxpaHfiollce CBOIO NPaBHIIb-
HOCTh B KombleBoM obnmactr. KoncTaTHpoBamo, YTO B HEKOTOPBIX Cydasax KomOummamus
B3aHMHOIO HAKJIOHA [JMCKOB M HX BPAIIaTENBHBIX CKOPOCTEH BJIMAET CYyIIeCTBCHHBIM o6pa-
S0M Ha pacnpefielieHHe NaBieHHH M Xapakrep TedenmA. OGCY)KIEHO TRIOKe BIMAHHE ITHX
daxTopoB Ha auCKH.

Nomenclature

d distance between the disks at the centre,
Fy, F, radial force components,
F, functions defined by Eq. (2.9),
G. functions defined by Eq. (2.8),
H, functions defined by Eq. (2.7),
k ratio of inlet and outlet radii,
M,, M, bending couple components,
functions defined by Eq. (2.10),
pressure,
volumetric flow through an arbitrary surface r = constant,
dimensionless volumetric flow rate (Q/drdw),
distance defined by Fig. 1, -
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(*) This paper was presented at the Euromech Colloquium on Low Reynolds Number Flow, Poland,
Jablonna, September 1978.
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Rs R+rcosf,
Re Reynolds number (d?w/v),
radial coordinate,
ro radius of the disks,
s ratio of angular velocities,
u, v, w velocity components in axial, circumferential and radial directions, respec-
tively,
X, Y, Z coordinates defined by Fig. 1,
x,y coordinates defined by Fig. 8,
axial coordinate defined by Fig. 1,
angle between the disks,
circumferential coordinate,
kinematic viscosity,
/aq,
density,
angular velocity of the disk at « = 0,

-
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1. Introduction

LAMINAR source flow between two closely spaced parallel disks, stationary or rotating,
is a problem of great interest because of its fundamental character and because of its
applications in a number of practical cases, e.g. centrifugal pumps, face seals, air bearings,
radial diffusers and rotating heat exchangers.

During the last twenty years several workers have investigated this problem theoret-
ically and experimentally. In the case of stationary disks the works of MoLLER [1], PEUBE
[2] and SAvVAGE [3] may be mentioned. Flow between disks rotating with the same velo-
city has been studied by BreireR and POHLHAUSEN [4] and by PeuBe and KREiTH [5),
while KreiTH and VivianD [6] treated the case of disks rotating with different speeds.
PeLecH and SHAPIRO [7] obtained a solution of the flow in the narrow gap between
a flexible disk and a rigid wall while examining the mechanics of the disk. PECHEUX[8]
discussed source flow between a fixed porous disk and a rotating impermeable one. More
recently Goswami and NANDA [9] investigated the problem of oscillating radial flow
between rotating disks.

The influence of geometric deviations from the ideal case of flat, aligned surfaces has
been studied-by SNeck [10}-[12] using the “short bearing” approximation of the lubri-
cation theory, modified to include inertial effects. The radial velocity is assumed to be
small in this solution. An important example of geometric deviations is misalignment,
i.e. the case when the disks are not strictly parallel. This problem was first studied by TAy-
LOR and SAFFMAN [13] in a attempt to explain the experimentally observed excess pres-
sure at the centre of the airspace between two closely spaced parallel disks, one of them
rotating. In their paper TAYLOR and SAFFMAN considered compressible as well as incom-
pressible flow. The analysis, however, is restricted to zero radial volumetric flow rate and,
furthermore, the tangential and radial velocity components are replaced by their mean
values over the thickness of the fluid layer. Recently EtsioN [14]-[16] has studied this
problem using the “short bearing” approximation and creeping-flow conditions.
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In the present paper the problem is solved by a perturbation expansion about the known
creeping-flow solution for source flow between closely spaced parallel disks rotating
with different velocities. A solution which is valid in an annular region is obtained.

2. Analysis

The coordinates («, §, r) shown as in Fig. 1 and the corresponding velocity components
(4, v, w) are used. The surfaces of the two disks are placed at « = 0 and o = ap. The
disks are rotating about axes perpendicular to the disks at r = 0 with the angular veloc-

z

F1G. 1. Coordinate system.

ities sw(—1 < 5 < 1) and o, respectively. The spacing between the disks at the centre
of the disks is d = Ra,. We consider an annular region with inlet radius kr, (k < 1) and
outlet radius rq.

The continuity equation and the Navier-Stokes equations for the incompressible
steady flow of constant viscosity can easily be derived from the general equations in cur-
vilinear orthogonal coordinates, see e.g. Rouse [17]. In the present case

= (R+rcosB)cosa,
Y= (R+rcosf)sina,
Z = rsinf.
The corresponding scale factors are
hy = R+rcosp,
hy =r,
hy = 1.
The resulting equations are as follows:

r Ou . aw
2.1) w o Rﬂ % —rsmﬁv+rRﬂF+(R+2rcosﬁ)w-.=0,

e NI Rl R e R .
ﬂoRﬁ ag i r ¥ 6ﬂ i or Rﬂ 4 Rﬁ

1 ;
22) ou 1 0du ou sinf 3 cosf o5

1 op [ 1 % sinfou 1 d%u

" R 0 SRZ & TR, 0B ' 2 o0p°
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R+2rcosp ou 0w  2sinf dv Zcosﬂﬂ_l_u
YR, T o T Rl %t R % CREV)
1 v 1 v ov 1 'sinﬁ‘”2

1o [1 v sinf v 1 & R+2rcosf dv

e \BREE TR, BT op T TR,
0% 20w 2sinf du  R>+2Rrcosf+r? e Rsinf i
T TP T R r2R} RE ")’
1 ow 1 ow ow 1 , cosfp , 1 dp 1w
@) R T T B e vV R YT e Plan
sinfow 1 0*w- R+2rcosfp ow 0*w 2 dv  sinfcosf
TR, BTt T R, ot vt R
2cosp Ou  R*+2Rrcosf+2r’cos®p o
" R} 0 2R} ;
where

&= %, Ry = R+rcosf.
If the flow rate, i.e. the strength of the source, is Q, the boundary conditions are
u=w=0 até=0, £=1,
v = srw at £=0,

v=ro at £ =1,

1 =a
[ [ w(R+rcosp)ardpdé = Q.
L

It is further assumed that the pressure is independent of the tangential coordinate £ at
the boundaries r = kr, and r = r,.

The gap width d is assumed to be small compared with the disk radius r,, which in
its turn is small compared with R:

d @ o < R
or
Fo
(2.5) - 5 <£ T < 1.
The creeping-flow solution is approached when the Reynolds number
2
(2.6) Bym L2 41,
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These assumptions mean that the problem contains three mutually independent dimension-
less parameters that are small compared with unity, namely Re, 7,/R and d/r,. Thus the
solution is expressed as a perturbation expansion in powers of these parameters:

@7 u= dw{Ho(E,r)+RcH &, r)+ Hz(.E ,8,1*)+——H’3(<.t N+ .. }
(2.8) 0= row{Ga(é, r)+ReG, (¢, r)+-:% G,(¢, B, l')+r—i Gy(§, )+ }.

2.9 w—rowiFo(E,r)+ReF,(E,r)+ F,(&, ﬁ,r)+ F,(E N+ . }

ngr’
dZ

It has been assumed that the solution is axisymmetrical when the limit r,/R — 0 is taken,
i.e. when the disks are parallel. However, no fundamental difficulty is avoided by this
restriction. Nonaxisymmetrical boundary conditions can easily be treated, if the unknown
functions are dependent on B. Substituting Egs. (2.7)-(2.10) into Egs. (2.1)-(2.4) and
collecting terms of equal powers of the perturbation parameters yields the following
equations: '

System 1 (terms of order unity; the solution of this system describes the behaviour in
the limit when Re = ry/R = dfr, = 0)

r aHo aFo

(2.10) PolE, )Y+ REP, (6, 1)+ T2 o, o) P )+ ]

r—o oF +r +Fy =0,
oP,
ok =
9%G,
o =0
Fo _ 0P
o8 % or

with the boundary conditions
Fo(0,7) = Fo(1,7) = 0

Go(0,7) = s—,
To

r
Go(1,r) = o

[]

1 =
[ [ rowFoRardpdé = @
0 —-n

The solution is simply the creeping-flow solution for the case of parallel disks:
(2.11) Hyo =0,
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@12) Go = — [(1=5)é+s],
0

(2.13) B 3 o G

. 0= —'—5‘1}— >
(2.14) B il t

. o———;an—o+cons,
where 0

7= drie’

System 2 (terms of order Re; the solution of this system describes the corrections to system 1
due to inertial effects)

r aHl aFl

(2.15) =gl F =0,
(2.16) =0
%G 3G, dG,
(2'17) as; = Hﬂ 6E +rDFO or 2 + FOGO!
&°F, P, oF, oF )
(2.18) aEI =Ty ar +Ho aE +roFo 67' —‘—r"G
with
H,(0,r) = H,(1,r) = 0,
. Gi(o, ]"') = Gl(l,r} = 0’
2.19) F(0,) = Fy(1,7) = 0, .

1
[Fae=o.
0

Substituting Egs. (2.11)-(2.13) and (2.16) into Egs. (2.17)~(2.18) yields
PG, 6 1o . B
B = ;47[(1 )&%+ (25— 1)&2=5s¢],

0*F dP 9 3

B =g - (6’—5)‘-% [(1-5)?62+25(1-5)é+57]

which may be integrated to give

e B
10%

1 dP1
2

(220) G, = q% [3(1—5) &5+ 5(2s — 1) £* — 10s&3 + (3s +2) &],

221) F, = (&2-§)- 205” (256 —6£°+584—¢)

1—12—[(1 S)2E4 +4s[(1—5) 83+ 65282 — (32 + 25+ 1)E].
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Substituting Eq. (2.21) into Eq. (2.15) yields

0H, 1 r3 (rz d’P, dPl

& T T2\ Tar

)(E“ -&)— Ouzq #(255 6£5 +5¢4—¢&)

¥ % [(1—5)22% +4s(1 — 5) &> + 6522 — (3s2 + 25+ 1)&] .

As there are two boundary conditions (2.19), to this first order equation, not only an
expression for H; but also a differential equation for P; are obtained:

—_ 3 ng 7 - 6 5 __ 3 2 l — Y2 ES
222) Hy = =570 & QF -TE+TE =38+ )+ 55 [(1-9)%
+55(1 —5) &4+ (752 — 45— 3) &3 — (3s2 —5—2) &7,
d*P dP 21 ,rd 1 2
@2) rPgr—l = -y q’-;g-+~5—(3$’+4s+3)—:%-.

The solution of Eq. (2.23) is

2
(2.24) P, i A I e g 18

o T Ut 20 (3" +4s+3)—

The constant B is determined by substituting Eq. (2.24) into Eq. (2.21) and using the con-

1
dition f F,dt =0 (2.19),. The result is simply B = 0.
0

Hence

21 | W r?
(225) P, = Taor U5z + -26-(33 +4\s+3)—rg+const,
@26) Fi= - gl TS (1485 4285 43584~ 982 +2¢)

- E% 48 [5(1—5)%£*+20s(1 —5) &3 +3(7s2 —4s—3)£2 - 2(3s2 —5—2) £].

System 3 (terms proportional to ro/R; the solution of this system describes the correc-
tions to system 1 due to inclination of the disks)

2.27) }%%%i+%—:—osinﬁ60+r—a§— L —-+F,+2—~cosﬁFo=0
aé? i

(2.28) a;;, =l a;; ,

2.29) =T g o0,
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with
H:(U’ ﬁ’ r) = Hz(l’ﬁs l") = Gz(O, ﬁ! P‘) = Gz(],ﬁ, l‘) = F:(O’ ﬁl l")
= F,(1,8,r=0,

I__f (Fz +Fo?:'; cosﬂ) dpdt =0 :.‘f_f F,dBdé = 0.

Substituting Eqgs. (2.12) and (2.13) into Eqgs. (2.27) and (2.29) yields

(2.30)

r 3H2 an rz o . BFZ 3 - -
(2.31) ;;T-}.W_;gw [( SjE‘l‘S]S!Dﬁ-{-? e “_:,;[-Q(E E)COSﬁ'I'Fg =0,
0°F oP 12
(2.32) —'EE—:—= To—"é}z—— -;‘—'qcosﬁ.

The functions H,, G,, F, and P, are expanded as follows:

(2.33) Hy(&, B,7) = g He,(§, r)cosnp+ 2 H,(&,r)sinnp,
(2.34) Gy(¢,B,1) = "2: Gen(é, )cosnf+ 2 Gun(£, 7)sinnp,

(235 Fy¢,B,7) = Z:: Fen(§, r)cosnf+ Z Fy(&, r)sinng,

(2.36) P8, 1) = 'ch,(r)cosnﬁ+ j:r,(r)sinnp.

Substituting the expressions (2.34)-(2.36) into Eqgs. (2.28) and (2.32) and collecting terms
yields
?Ge __To
gz "7 P
0%G,,
o2
#F, _dP, 12
% "4 a2 ?

To
= —"—',-'Pm ;

8°*F,, dP,,
o5 =g @D
o°F,, dP,,

L a
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which may be integrated to give

nr

Gﬂ = ?_Pm(‘sz E);

nrg

G.m -, = ‘i‘ Pcn(Ez E);

chl

@7 Fi=sr B giop-Sqe-p,

Fau——

=£).

Substituting Eqgs. (2.33)-(2.35) and (2.37) into Eq. (2.31) and collecting terms yields the
differential equations:

1
37
F., %“dr E2-8) (m#1),
1
2

chl —_ 1 rg(zdzpcl chl - 2_ 9 ro 2_
& -2 e\ A e la| -0t 74T =0,
MHu _ 173 |;8Ps APy ; -

& - '2‘?(" gty T Pa| 282D,
0H, 1 r2(,d*P,, _dP,

- —5—?—(:'2 2t +rd—;—P,l)(e=—a+%[(1—s)s+s1.
0H,, 173 d*P,, , _dP,

P13 —“7,—3(' - e +d——ﬂ2P )(5‘-5) (n>=2).

These equations may be integrated to give the axial velocity functions H,o, H,, ... and
a set of differential equations for the pressure functions:

H,=0,

H, = —}‘5; [(1+5) &3 — (1 +25) &2 +s£],

Ha=0 (n22)

and
2
r de;‘i +r d;"‘ —n?P,=0 (n#1),
d?P, dP, 18 r
2 cl 3 . S P S
2 " Pey Fi ro’
d?P, dP r?
2 51 s — 2.0
r ar? +P—EF-—- PII 6(1 +3) l'g ’
dzP dP,

o +r—dr"' —n?P,=0 (n=2).
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The solution is

r
Pco s c0+Dcoln—,
To

r To 9 r
Pci=ccl;;‘+Dcl ¥ ;QKIDE

r n r -n
re-cufg o) e

r To
Pll.= 51?6'+Dﬂ _—(l+s)r3=

pem ol 2 o2uZ)” @5

The condition that the pressure is independent of g at the boundaries r = kroand r = r,
yields

9 k2Ink
Ccl = —-D, = _:;g'_i___"c?:

Ccn = Dcll =0 (ﬂ = 2):

C,y= ::.—(l+s)(1+k’),

-Dsi = ——i—-(l-}-S)kz,

Co=Du=0 (n=2).

[

1 =
Substituting the expression for P, into Eq. (2.37), and using the condition [ [ F,dp3& =0
0 —-=n

(2.30), determines D, = 0.
Hence

(238) H,= ri [(1+5)&° — (1+25) &% + s&]sin B,
[1]

9 r k*Ilnk
239 G;= - 54 [ln (

e I——r—%- (82-&)sinp
ro 1-k2 r?

+ -g—(l+s) (l +k2— k’— - ——) (§*—&)cosp,

Q40) Fo=- (1+s)(1+k2+k2—-—3——) (&= &)sinB

2 2
3 [31n —1+3 ;‘_"”‘ (1+%)] (& —&)cosp,

t o4 k2
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241) P = ’ (1+s)| (1+k?) F _g2lo L
@4) Pa=g N
9 r r Klak [r 1
t1 EI”E*‘W(K‘T)]“’S‘B'
System 4 (terms of order d/r,)

The system is found to be identical to system 1 (with subscripts 3 instead of 0) but
with homogeneous boundary conditions.
Hence

(2.42) Hs'—Gg_'Fs P3=0
Substituting into Eqs. (2.7)-(2.10) yields the final solution:

243) u= 3—10d'wRe[(l—3)25"’-5-55(1-s){E“+(‘i's2—4s—3)‘53

218 Qe - 4380 1 8)

+dw-1—;- [(1+5)8 = (1+25) €+ s¢]sinB,
244) v =ro[(1-s)é+s]

2{}“ rowReq "% [6(1—5)8° +10(25~ 1) —2058* +2(35 +2)¢]

9 r r  knk r$ ;
“z;;"o“’%"[’“r—*iik—z(‘“r_:)]@z'mmﬁ

]

+ ?(l+s)row—-k— (1-1-kz k‘— - —)(Ez —&)cosp,

(245 w= ——%rowq—?-(éz-é)-— rocuReq" ré (14¢

3

14077

— 4285 43584 — 9082 4 26)— — rowRe - [S(1—5)2£*
60 o

+20[(1—5) &3 +3(7s2 —4s —3) £ = 2(3s2 —s— 2) €]

(1+s)r[,c.u—(l+kz+kz—r1

r? .
R —3;3-) (&2~&)sinf

3 To r kzlnk l"o 2

P‘P("ﬂ) . 6 r 27 2 l'%
G wergar = w15, * a0 R (1—;,—
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+ -ﬁ(?’s +4s+3)Re (-—~—1) -—-(l+s)%—[(l+k’)r%

9r |1 r k’hlk(r To
- 2____ e i [V
k ]sulﬁ-i- [romro+ = e - cos f.

3. Discussion

The solution (2.43)-(2.46) can be compared with the results obtained by Sneck [11].
The assumption ro € R used in Sneck’s pressure distribution yields after some manip-
tlation

p—p(ro) 6 r?
(3‘1) Ewwrz/dz -?an +E(35 +4S+3)R€(—3——1)

k*—-1_r 18 r, r
3(l+) [l 3 Ing +l] smﬁ-——iq I-—r;-—W —]cosﬁ

However, Sneck’s solution is valid only for a small volumetric flow rate under the “short
bearing” approximation. It can be shown that Eqs. (2.46) and (3.1) coincide if ¢ < 1,
r~ro and k ~ 1. In the same way the pressure distribution obtained by Etsion [14],
[16], which is valid under the same restrictions and creeping-flow conditions can be shown
to agree with Eq. (2.46).

The analytical solution by TAYLOR and SAFFMAN [13] is valid for compressible flow
(with poog). If the analysis is repeated for incompressible flow, the result is

p=p(rd) 3 r(r 1
R 1 hi

which is identical to Eq. (2.46) when ¢ = 5 = Re = k = 0. As was pointed out by Taylor
and Saffman, it is obviously a good approximation to replace » and w by their mean val-
ues through the thickness of the fluid layer.

It should be noted that the validity of the solution is restricted not only by the assump-
tions (2.5) and (2.6). Some terms in Eqs. (2.2)-(2.4) become very large for small values
of . As ro has been considered to be a typical value of r, this means that terms that have
been assumed to be small during the analysis cannot be neglected generally. However,
it is possible for any given combination of d/r,, Re, r,/R and g to determine a value of k
that justifies these assumptions. According to PeLecH and SHAPIRO [7] Re = 1072,
g = 10~2 and dfr, = 103 are typical values in a practical case. If r,/R = 10~2, it can
be shown that 0.1 is an acceptable value of k in this case.

The pressure and the velocity components have been calculated for this case as func-
tions of the tangential coordinate g for different values of s, r/r, and &. It can be seen
that the combination of inclined disks and rotation has a remarkable influence on the
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FIG. 2. Pressure at a small volumetric flow rate
as a function of g for various values of r/ro and
S(—ys=—1; ———,5=0; ——, 5=1).

q =0.01,

Re = 0.01,

ro/R = 0.01.

FiG. 4, Perturbation of circumferential veloc.
ity due to inclination at a small volumetric flow
rate for various values of s (—, s= —1;
———,8=0;——,5s=1).g = 0.01,Re = 001,

ro/R =001, k=0.1,

£=0.05 rfro=04.

Vw/pw)-10°

./:.'.--"-——:'.:-,
£ —— o— —7 f‘/fg=0.4
5 -\'Z_--—_ .-‘-"/
!‘f s X
4 /’-_‘:"‘-‘-:h\
- e /=07
R e A N
= ; A /=10
W Vs
W 1
AN
VN o _/1 <
| e /
1 \\ ;' L -
=71 % Y, I ﬁ
L

Fic. 3. Radial velocity at a small volumetric
flow rate as a function of B for various values
of rfroand s (——, s= -1, ———, 5=0;
——, §=1)., ¢=0.01, Re=0.01, ry/R=

=001, k=0.1,£&=0.5.
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pressure and the radial velocity (Figs. 2-3) except in the case s = —1 (counterrotating
disks at the same angular velocity). This effect is analogous to that of a journal bearing.
If s = 1 (corotating disks), the calculated values will even correspond to negative pressure
and negative radial velocity, i.e. backflow, in some cases. It should also be noted that
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Fi1G. 5. Perturbation of circumferential velocity due to inclination at a higher volumetric flow rate for
vmousvaluﬁofs(——,s.- —l;———,5=0,——5=1).9=05B8e = 0.01,r/R =001,k = 0.7,
&= 05 r,"fo = 0.85.

(""o/rq)’t:?‘ma

FiG. 6, Perturbation of radial velocity due to inclination at a higher volumetric flow rate for various values
of l"ffn and s(—, s=—1; ———, s=0; ——, s=1). g =05, Re = 0.01, ro/R = 0.01, k = 0.7,
&=0.5.

[50]



SOURCE FLOW BETWEEN TWO NON-PARALLEL ROTATING DISKS 51

the sign of the angle-dependent velocity term depends on the value of the radial coordin-
ate. The effect of the flow rate (g) is a small pressure increase and a small radial velocity
decrease at that part of the region where the disks are closer to each other (cosf-< 0),
as would be expected.

The combination of inclination and source flow will cause a tangential flow from
regions of a smaller gap width towards regions of a higher one. If the angular velocity w
is small or even zero (i.e. fixed disks), this contribution will be dominant. The effect of

the rotation (if s # —1) is a tangential flow from g = %towards B=- % (Fig. 4).

This angular dependence of the tangential velocity is in complete agreement with the pres-
sure variation, as could be seen from Eqs. (2.44) and (2.46).

(ro/R)P,-10° F1G. 7. Perturbation of pressure due to incli-
AT nation at a higher volumetric flow rate for va-
1k i \ rious of s (—, s= —1; ———, 5§ = 0; ——,
/ L s=1). ¢=0.5, Re= 001, ro/R =001, k =
! \ = 0.7, rfry = 0.85.
/ e "\\ “
I/ N

:n'l" L }T yi
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FIG. 8. The disk at « = 0 viewed from the outside.

At higher values of ¢ the terms that are independent of # will dominate. The angle-
dependent terms of the pressure and the velocity components have been calculated for
the case of ¢ = 0.5. Some results are presented in Figs. 5-7.

It is now possible to calculate the bending couple exerted by the pressure forces on
the disks. With notations according to Fig. 8 the components on the disk « = 0 are

To ngro

—k2)3 >
(3.2) M, = 6(l+)R S (1—-k*)? >
_9 ro ovorg 5 —k*

(3.3) Mym4qR9'd2 (k1k+ i) >0

As the pressure is independent of a, the couple on the disk & = «, is the same but oppo-
sitely directed. These results are in agreement with ETsioN’s results [14], [16] when k —1
and s = 0.

A simple examination shows that if the disks are corotating (s > 0), the component
M, tends to change the angular momenta in a way that corresponds to a decrease of the
angle . The rotation thus has a stabilizing effect, although the analysis of course assumes

4*
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that the angle a, is fixed. If s < 0, it is not possible to deduce anything about stabilizing
tendencies in general, However, if the moments of inertia about the axes of rotation are
equal for both disks, it can be shown that the effect is destabilizing. If the disks are non-
rotating, only the component M, exists, which obviously has a restoring effect.

The inclination of the disks will also produce a radial force. The force acting on the
disk « = 0 has the components

nor

Fo= [ j (%rC08 B— T3sinB)rdrdp,

—nkry

M ra

F,= ff(tmsinﬁ+rp,cosﬂ)rdrdﬁ,

—-n kro

where 7,, and 7, are the shear stress components at o = 0. The resuit is

(3.4) Fym3g-2 "" 9”“”° (1-k?),

(39) F,=0.

These results differ from those obtained by EtsioN [15] probably because Etsion in part
has neglected the circumferential pressure gradient. Thus the value of 74, will be incorrect.
Etsion’s results (if r, < R) are

3 r g_wwr’

Fe=5qg— (1=K,

_ & To grorg 3(1—
F,= &g 7 U+k*1-F.

These results are claimed to be valid if s = 0and k =~ 1.
The case of a precessing disk can be analyzed in the same way using a rotating coordi-
nate system.
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Corrigendum

Source flow between non-parallel rotating disks
P. A. JANSSON
Arch. Mech., 33, 1, pp. 37-53, Warszawa 1981

Egs. (3.4)—(3.5) should read:

3 re pvord
34 Fo mimm 1—k?),
G4 'R 4 ( )

ro grors
R d
The component F, still differs from the one obtained by EtsioNn. However, when the limit k — 1
is taken, the results are in agreement.

(1—k*).

3.5 T ; (1—-s3)





