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DURING DYNAMIC LOADING PROCESSES, large plastic deformation associated with
high strain rates leads, for a broad class of ductile metals, to degradation and failure
by adiabatic shear banding. The paper presents an attempt to model some salient
features of this process viewed as an anisotropic damage mechanism coupled with
thermo-elastic/viscoplastic deformation. The model is destined to be applied in the
context of high velocity impact and penetration mechanics. The methodology em-
ployed within the framework of the internal state variable structure strives to keep
a middle way between extensive description of complex viscoplastic flow and dam-
age events and application-oriented accessibility requirements. Model capabilities are
prelaminarily illustrated for shear loading process.

1. Introduction and scope

DYNAMIC LOADING CONDITIONS such like high-velocity impact and penetra-
tion (see Figs. 1, 2), explosive vs. metal interaction, high-speed machining and
other, imply high strain-rate viscoplastic flow characterized by negligible redis-
tribution of the heat generated by plastic deformation. The process is essentially
adiabatic and leads to thermal softening which, at some advanced stage of de-
formation, becomes prevailing against the strain and strain-rate hardening. One
observes a decrease in the flow stress and large plastic strain localization within
narrow regions known as adiabatic shear bands. The latter are most frequently
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observed in high-strength alloys and steels (see e.g. WOODWARD [1] and NEMAT-
NASSER et al. |2]). A significant temperature difference exists between the inside
of bands and the outside. Adiabatic shear band localization phenomena are gen-
erally attributed to plastic instability events generated by thermal softening, see
e.g. Bal [3] and WRIGHT and BATRA [4]. Extensive investigation and literature
have been devoted to the matter in the 1980’s and later. The experimental stud-
ies by MARCHAND and DUFFY [5], employing thin-walled tubes twisted at high
strain rates by means of a torsional KOLSKY bar set-up, are most frequently
cited. The reader can find more references, including the earliest investigations
into the fracturing by adiabatic shear banding from the mid of the 20*" century
on, in WOODWARD [1]. As stated by MERCIER and MOLINARI [6], most of the
early theoretical approaches to the subject considered a shear band as a one-
dimensional entity in a much simplified context of material behaviour. A great
number of studies in the 1990’s went deeper into multiform material parame-
ter influence on multiple shear band forming, spacing, characteristic thickness
and related propagation phenomena (velocity, extension of the process zone),
see e.g. MOLINARI [7] and GRADY [8]. Most of those analyses are performed by
zooming on an elementary layer under simple shear loading conditions. Various
approaches of instability have been advanced and connected with the geometric
pattern of shear bands, e.g. MOLINARI [7] and PECHERSKI [9].

PERZYNA was probably the first to have incorporated the shear band forma-
tion into three-dimensional (3D) modelling, regarding viscoplastic flow coupled
with micro-damage process embodied by specific internal variable(s). In the pa-
per [10] adiabatic shear band localization under dynamic loading conditions has
been considered together with spalling by ductile void formation in the mod-
elling framework insisting on and turned towards induced anisotropic effects.
The microdamage mechanism by nucleation and growth of microcracks is dealt
with in [10]. The anisotropic nature of the process is accounted for by specific hy-
potheses concerning the distribution and the shape of defects including a random
nature of micro-damage evolution. The more recent papers by LODYGOWSKI and
PERZYNA [11] and DORNOWSKI and PERZYNA [12] focus even more on fracturing
phenomena related to localized adiabatic shearing in a quantitatively elaborated
damage modelling coupled with thermo-viscoplastic flow. The well-posedness
of the evolution problem and numerical regularization aspects are discussed in
the framework of consistent formulation of the discretized initial-boundary-value
problem.

The objectives of the present paper are clearly situated in the above per-
spective traced by PERZYNA’s damage-and-viscoplasticity 3D modelling of duc-
tile metals at large strains and high strain rates. Including specific anisotropy
effects induced by a particular deterioration mechanism, i.e. shear banding re-
lated damage, it is being done in an alternative manner based on the second
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FiG. 1. Impacted hard steel plate (after Fig. 2. Adiabatic shear band with ulti-
GIAT Industries). mate crack (after GIAT Industries).

authors earlier contributions to anisotropic damage, see e.g. the synthetic re-
view by DRAGON et al. [13]. The highly non-trivial and still arduous problem
of combining finite-strain plasticity and anisotropy effects is being considered
here using Mandel-Sidoroff framework, see e.g. MANDEL [14] and SIDOROFF and
Dogut [15].

The present work presents an attempt to model some salient features of dam-
age by shear banding as coupled with thermo-elastic/viscoplastic deformation,
involving multifold anisotropy effects while introducing some simplifying hy-
potheses (e.g. as concerns plastic hardening). The purpose is to get a tractable
model to be applied in the context of high-velocity impact and penetration me-
chanics.

The paper is organized as follows: in Sec.2 preliminary remarks concerning
internal damage variable related to adiabatic shear bands (ASB) are given and
some terminology is introduced. In Sec. 3 large deformation thermo-elastic/visco-
plastic model with internal variables and damage-induced anisotropy effects is
introduced and discussed. An auxiliary analysis, allowing for evaluation of the
onset of instability via thermo-viscoplastic perturbation method, is employed to
pose a damage-inception criterion. This analysis is summarized in Sec. 4. In Sec. 5
the constitutive model is preliminarily but extensively tested on a homogeneous
volume element (material point) under simple shear loading. Some comments
concerning the identification and bounding of material parameters are also given
in Sec. 5.

2. The ASB-related damage variable and kinematic preliminaries

In this paper, we are interested in the description of the material behaviour
in the presence of ASB considered as damage mechanism to be put forward in
the framework of a 3D continuous model: within this model, the deterioration
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Fic. 3. Equivalent homogeneous volume element (o = 1).

at stake is to be captured by a corresponding internal variable, its evolution and
its effect on elastic stiffness and viscoplastic flow. The model should be robust
enough to overcome local instabilities relative to inception and growth of ASB on
mesoscale level. Another feature to be accounted for by this model is a strongly
oriented character of ASB, thus inducing significant mechanical anisotropy with
both elasticity and plasticity being potentially affected.

In order to describe the anisotropic degradation state of the material caused
by the presence of ASB, a 2°9 order tensorial damage variable is introduced.
Its components are denoted as D;; and are expressed by (2.1), where d* and
n® represent respectively the scalar intensity and the orientation of the band
pattern « (see Fig. 3).

By = ¥ d%-NE,
(2.1) >
Ni‘; = nf‘n}’ .

As discussed before, the onset and further evolution of adiabatic shear band-
ing are a consequence of thermal softening, respectively in the sound material
during locally homogeneous plastic deformation, and inside the bands themselves
during evolving localization process. The intensity d® includes consequently in-
formation relative to temperature inside the band pattern «. Consider now a
single band pattern (a = 1), and introduce the adjective “singular” for the pro-
cesses relevant strictly to the adiabatic shear banding, and the adjective “regular”
for the processes not relevant to the adiabatic shear banding. With such a dis-
tinction, the current density d of the damage variable D depends on “singular”
temperature, and can thus be written as:

(2.2) d=d(T*,..)

where T™* represents the “singular” temperature, and where the dots represent
other possible arguments.

The lower bound dpin = d(T},...) of the density d is obviously zero, Tj rep-
resenting the initial “singular” temperature value which is equal to the “regular”
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temperature value at the incipience of damage. On the other hand, temperature
is supposed to be bounded in the band material by the melting point. This is
probably a strongly over-estimating statement (see e.g. [1]) for metallic mate-
rials subject to this mechanism of adiabatic shear banding. The density d of
the damage variable D is consequently bounded too. The upper bound of d is
denoted by dmax = d(Thm, -..), where T}, represents the temperature value at the
melting point. In Sec. 5, an estimation of dmnax is given based on mechanical
considerations for the case of simple shear.

The geometric consequences of the shear band pattern (Fig. 3) are viewed
as those of a “super-dislocation” (see also PECHERSKI [9]). By using concepts of
the crystalline plasticity, the damage-induced supplementary strain rate d¢ is
introduced as the result of the glide velocity 4 caused by the band pattern «
of normal n® and with orientation g (see Fig. 3):

d .
d o Y YTMSG,
(2.3) & 1
S
My = (98n5)° = 5 (g + g5ms)

The kinematic variable d9 allows to smooth the boundary discontinuity caused
by the ASB (see Fig. 3). There are thus two contributions to the inelastic evolu-
tion of the equivalent homogeneous volume element: the “regular” plastic strain
rate, denoted by dP, and the “singular” damage induced strain rate, denoted
by d4. The total inelastic strain rate d9P is written as the sum of those two
contributions:

‘ dj d
(2.4) dif = dp; +dj;.

Further on, care must be taken to ensure the concomitance of the two rates ]?)
(an objective derivative of D to be defined) and d9, which are both relative to
the same process of ASB-induced damage.

On the other hand, very large strains and rotations occurring during the adia-
batic shear banding process make the finite elastic-plastic deformation framework
indispensable. Since pioneer MANDEL'’s works [14], many valuable contributions
appeared concerning the introduction of (initial and/or induced) anisotropy in
the context of large elastic-plastic strains. Despite this, the problem remains still
open, see e.g. SIDOROFF and Dogul [15] and EKH and RUNESSON [16]. In the
present approach, a spatial vision of the motion is adopted in order to preserve
the physical signification of the state variables, of their derivatives and of their
conjugate forces. Clearly, the Eulerian point of view is suitable to deal with plas-
ticity whose rheology is close to the fluid one in some aspects [15]. However, the
Eulerian point of view is not proper to identify material symmetries. In isotropic
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elastic-plastic media, the rotation required to define the intermediate configura-
tion is in fact of secondary importance, and rotational and material derivatives
lead to the objectivity of the incremental constitutive model as well. With re-
gard to anisotropic elastic-plastic media, the definition of the rotation becomes
essential [14].

3. Large deformation damage-viscoplasticity constitutive model with
ASB-anisotropy effects

The constitutive model to be formulated must be able to describe the thermo-
elastic/viscoplastic behaviour of the sound material and the mechanical aniso-
tropy (directional degradation of both the elastic and viscoplastic moduli) in-
duced by ASB. As stated above, the framework of large elastic-plastic deforma-
tion with anisotropy is put forward.

3.1. Large elastic-plastic deformation kinematics including anisotropy

Let Cy be the initial undeformed configuration of the material, and C; its de-
formed configuration at current time ¢. In order to account for finite elasticplastic
strains — plastic means here inelastic in the sense of both plastic “regular” and
damage-induced “singular” terms — the pseudo intermediate configuration Cinter
is introduced by elastic unloading with respect to the current configuration C;.
Because arbitrary local rotations superposed to relaxed state give alternative
intermediate configurations, Cinger is generally non-unique. The deformation gra-
dient F from Cy to C; is conventionally decomposed as the product F = FeFdpP

(Fi g = iaF(f’}), where F9P denotes the “damage-plastic” transformation from

Co to Cinter, and F*© denotes the elastic transformation from Cipter to Cy.

In the present case, anisotropy is induced by damage (in the form of adiabatic
shear bands) during inelastic transformation F9P. It then seems to be natural
to define anisotropy in the intermediate configuration Ciyter that becomes hence-
forth a pseudo-material configuration (see also LUBARDA [17]).

During inelastic deformation F9P, matter is moving with respect to the lab-
oratory fixed frame S. This motion can be decomposed as the sum of the motion
of the matter with respect to the anisotropy axes A and the motion of the
anisotropy axes 4 with respect to the laboratory frame &. To maintain the axes
of anisotropy (damage tensor eigenvectors) A fixed with respect to the laboratory
frame &, it is necessary to rotate at the same time the intermediate configuration
Cinter- The rotation needed is then included into elastic transformation F€. On
the other hand, the parameters (vectors and tensors) are expressed with respect
to the laboratory frame S. To ensure the double objectivity (invariance under
change of frame on the current configuration (¢, and invariance under rotation-
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F

Fic. 4. Intermediate configuration as pseudo-material configuration.

of the intermediate configuration Cinter) of the constitutive model, derivatives
in the motion of the matter with respect to the anisotropy axes .4 are required
[14]. Interference effects of the rotation of anisotropy axes .4 with respect to the
laboratory frame § have then to be neutralized.

Let the current configuration C; be virtually unstressed by a pure elastic
stretching Ve~ to a new configuration called C; (Fig. 4). Q denotes the orthogo-
nal transformation from Cjyter to 5,; (Q describes the rotation of anisotropy axes .A

with respect to the laboratory fixed frame §), and W = QQT (Wij = Qngj)

denotes the rotation rate relative to these two configurations.
The deformation gradient F can be written as:

(3.1) Fiy = Vi QuaFSy = VLFS
with
V
(3.2) F¥ = Qi F®
Vv

Introduce the derivative F4P of f‘dp, objective under any rotation of the inter-
mediate configuration Ciyter as follows:

V
(33) F] = QzaFg"} = Ff_ljj Wikadg

1

and denote 19P the objective damage-plastic velocity gradient:

~d dpT _ 7d ; @ o !

(3.4) ll.jp = Ol BQ P li;’ — Wi with - s
- p—

lij = F; KFKJ .
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The velocity gradient 1 can thus be expressed by:
; _ i 3 Sdn ~dp— .
(35) L= FxFg} = VEVe + Vi P Fp v
v 5
& Vi + Wi+ ViRl Vi
where
Ve re € e

As objective derivatives (3.3), (3.4) and (3.6) are constructed with the orthogonal
tensor W, they will be called rotational derivatives.

The decomposition of the velocity gradient 1 (3.5) into a symmetric part, the
strain rate d, and an antisymmetric part, the spin w, yields:

Ve e—1 > e jdp yre—1 5

ik ij “ (Vimlmpvp_j ) )
(3.7) . A - s
wy = Wi+ ( i Vkej_l) + (Vf lfrfp"}ej_l)

The elastic strain rate d® and spin w®, and the inelastic strain rate d9P and
spin w9P are extracted from (3.7) as follows:

v S
5 - ()
(3.8) . P
“’fj = (iivkej_l)
dp e jdp yre—1 g e ~dpyre—1 S
dij = [Vimdmpv;)j ] '*‘[Vmwnq"’:;j ]
and AS AS
Wil = [Vigndf,i’pv;j—l] + [W@ﬁ’;n‘}*]
where
i (z@zﬂ)sz(ﬁp)s
(3 9) 17 1 ¥ ’
‘ ~dp _ (l“dp)AS
W = 5 .

According to (3.7) and (3.8), the total strain rate d and spin w are given by:
dy = df+dif,

(3.10) i i
wij = Wij + Wy + W -
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The rotation rate W of the damage tensor eigenvectors (anisotropy axes) is
obtained from (3.10)2 by:

(3.11) Wij = wij — (wfj +w;ijp) :

As previously written by MANDEL [14], constitutive relations for anisotropic
media need not only the definition of the strain rate but also that of the spin.
The laws concerning w® and w9P are indeed required to achieve the calculation
of the rotational derivatives (see also DAFALIAS [18]).

3.2. Constitutive model

The state of the material is described at the intermediate configuration Ciyger
employing the following variables:

e elastic right Cauchy-Green tensor ey =Fe gy = U, U,

e absolute “regular” temperature

e scalar isotropic strain-hardening variable p

e internal damage variable Dag = d.ngng with d = d(T™,...).

When the corresponding state variables are expressed in the current configu-
ration Cy, they must be invariant under rotation of the intermediate configuration
Cinter- The elastic left Cauchy-Green tensor b€ satisfies this condition.

Anisotropy evolves during the inelastic transformation F9P. Through a rota-
tion Q of the intermediate configuration Ciyer, the vector n is transformed into
nasn=Qn (n; = Qiane).- Then

Dep = d - nang = dQT7:QT7; = dQLiA;Qjs = QL Di;Qjp.

Consider the new damage variable D invariant under rotation of the intermediate
configuration Ciyter as:

(3.12) D;j = drifij = QiaDapQf; -

The state of the material may be described at the current configuration C; em-
ploying the following variables:

o clastic left Cauchy-Green tensor b = F&Fgf = Vit Vi

e absolute “regular” temperature T

e scalar isotropic strain hardening variable p

e internal damage variable Dy = diiiy = QmDaﬁng

The objective rotational derivative of D (3.12) is obtained by neutralizing
the rotation Q:

v :
(3.13) Dij = QiaDap@f; = Dij — Wit Dij + DipWp; .
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The thermo-elastic response of the anisotropic medium is supposed to be de-
scribed by a thermodynamic potential, namely the free energy per unit un-
stressed volume pPy(C®,T;p, D), where p? represents the density in the inter-
mediate configuration and (C®,T;p,D) the specific free energy. Assuming in-
compressible inelastic deformation (det F4P = 1), initial and unstressed volume
are equal, then pgyp(C®,T;p,D) = p(C®,T;p,D), where py represents the
initial density. Material frame-indifference requirement is ensured through the
invariance of the thermodynamic potential by any rotation of the intermediate
configuration:

oot (C%, T, D) = pot (QC°QT, 755, QDQT) = pot (b°, T:p, D) .

The free energy per unit initial volume is further decomposed into a reversible
part po®(b®, T; D), namely the elastic potential, and a stored energy part
po? (T; p, D) as follows:

(3.14) pod (be,T;p,ﬁ) = poy* (be,T; f’) + poy? (T;p,ﬁ) -

The elastic potential includes the initial isotropic linear thermo-elasticity of the
sound material and damage-induced anisotropic elastic effects in the degraded
material. It is constructed from the theory of isotropic scalar functions of several
tensorial arguments (see BOEHLER [19]). The elastic degradation is described
as dependent on D, thus comprising damage-induced orthotropy effects via two
terms involving material constants a and b below, see also DRAGON et al. [13].
It is assumed that possible interactions between different band clusters are not
taken into account. The form (3.15) below is thus limited to the first order in D.
The elastic potential is assumed in the form:

e A e e e € C
(315) po'l/) —] i-e%ejj + ,ueijeﬁ — aKe"AT -~ %&ATQ

e 6. _ e e ..
== aekkeiJ-DJ,, 2bel‘jejkaz

with
3N+ 2u
3 )

where e® represents a spatial elastic strain measure, a function of b® (see
Eq. (3.23) below), which satisfies the hypotheses mentioned above concerning
the elastic potential under the assumption of small elastic strains. The expres-
sion of corresponding stress tensor is given in Eq. (3.26); below. In this context,
A and u represent Lamé’s coefficients, K the bulk modulus, o the thermal dilata-
tion coefficient, pg the initial density, C' the heat capacity, a and b the constants

£

f]‘_‘g(bfj): A‘T':IT'—T‘Q7 K=
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mentioned above related to elastic energy degradation caused by adiabatic shear
banding.

The stored energy reflects the competition that takes place inside the material
between hardening and softening. Hardening is a consequence of the micromech-
anisms of “regular” plasticity, while softening is due to heating on the one hand
and to current ASB-related damage on the other one. During their evolution
(formation and propagation), ASB modify internal stresses. In this sense, one
can assume that damage acts much like temperature to release the stored energy.
These considerations justify the choice of a multiplicative decomposition of the
hardening into respective heating and damage contributions. Note that in the
expression (3.16) below, the introduction in the stored energy of the 27 invariant
of the damage variable D allows to produce some effects of band interaction.

The stored energy is written as follows:

(3.16)  po¥* = Reo [P 4+ %exp(—kp)] exp(—T) exp (_dIDii - %Diiji)
where R., represents the saturation stress, k the plastic hardening parameter
linked to the initial hardening modulus,  the thermal softening parameter, d;
and dy the damage (ASB)-related softening constants.

A model consistent with irreversible thermodynamic framework should sat-
isfy the Clausius-Duhem dissipation inequality. The latter is written below in
the current configuration:

(3.17) Dint = U,’jdji - p (T,!) + ST) 2 0

where o represents the thermo-elastic (reversible) Cauchy stress tensor, p the
current density, and s the entropy.
Chain rule applied for differentiation of the free energy gives:
Obie Oy O, O

(3.18) Y= Bbe ], 6TT+ 8]7 p+ a—ﬁi—jDﬁ.

Nevertheless, the invariance of v requifes objective derivatives for the tensors. To
avoid surplus contribution to dissipated energy, rotational derivatives are used
following DoGUI and SIDOROFF [20]:

Wy, % p

M ¥ 0¢ :
o b+ + 22 3 +aD,;j Dj;.

(3.19) P =

v
In the foregoing, the derivative b® is related to the strain rate d by:

im*mj

v v
(320) bf] = ( ﬁc‘/kej) o kadkllflj (be ld.p +ldpbe )
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Gibbs relation and Clausius-Duhem inequality are finally written as:

v
—psT + Tij (dﬁ = dﬁo) + Rp — Klj Dji 3
V
Diny = (sz J,, RP+K1_1D >0,

pip
(3.21)

where o represents the thermo-elastic Cauchy stress tensor, R the isotropic hard-
ening conjugate force, K the damage conjugate force, and s the entropy.
The conjugate forces are derived from the thermodynamic potential:

Ty = JJij:2p0 zkab zpabe )
i JRzpoa—w,
op
(3.22)

By = JI? =—p oy
¥ "oD;;

oY
Pos = —pogm

where 7 represents the thermo-elastic Kirchhoff stress tensor, and J the Jacobian
determinant of F.

As stated above, the class of materials considered here implies small elastic
strains. The elastic strain measure €® is chosen herein as follows:

1
(323) efj ] 5 lnbfj =In V;; .

v
Derivation of e® yields an equality between the rotational derivative e and the
elastic strain rate d®:
Z [ e (4 e
(324) eij = dU = e’ij = Wikek]- + Biprj .

On the other hand, the thermo-elastic Kirchhoff stress tensor is simply expressed
as follows:

A

3.25 = Po—— -
( ) Tij Poae%

The conjugate forces (3.22) are henceforth expressed by:
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Tij = ,\eikéij = 2,“18%- - C\!KAT(S,‘]'
=l (efnnﬁﬂmdij g eikﬁij) —2b (egkﬁkj + ﬁikeij) '

N B e
7 = Roo [1 — exp (—kp)] exp(—~T) exp ("dlek ~ ?EDlelk)y

1
(3.26) kij = aegyel; + 2befier; + Roo [p + o exp(—kp)]
i iy e o
-exp(—T) exp (—dlek = —22"DkzDuc> |:d15ij + dQDij] ;
C
pos = aKej, + pT—AT
0

1 I T
+ 7R [p”r Eexp(—kp)} exp(—T) exp (_dIDkk = Eszlle)-

Isotropic heating and anisotropic damage contribute to reduction of the stress
level 7;; (ee, T D) (3.26);. Positive constants a and b contribute both to reduc-

tion of the Young’s modulus, while b is alone related to the decrease of the shear
modulus (see also Sec. 5).

Without heating and damage (isothermal conditions in quasi-static configu-
ration), the conjugate force 7(T';p, D) in (3.26)3, relative to isotropic hardening,
tends to the saturation stress R, exp(—77Tg). This force increases during pure
hardening but decreases with heating and damage, describing the competition
between hardening and softening. N

The damage conjugate force k(e®, T';p,D) — the energy release rate with
respect to D (3.26)3 includes the first contribution from the reversible part of
the free energy, and the second one from the stored energy. The corresponding
terms represent respectively elastic and stored energy release rates. It is notewor-
thy that both contributions to the damage conjugate force exist before damage
inception. It is assumed that a finite supply of energy is necessary to activate
the damage process.

The objective formulation of the incremental constitutive model can be writ-
ten in a compact form as follows:

v i
+ 7ij Cyst 0  Eym I it ~ diy
+7 0 A S b
(3.27) v b= @ ;i v
— kij Li;;jkl A; L‘;jkl I;{” Dy
",003 ki kl T
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with
8%y 9% 8%y 8%y
Cijet = Proeaee s Bt =po——=—;  Jij= Q=i
ikl = PO 5et, et ijkl = PO 6es,05 5 = Po 5es,0T Q=po a5
and
8= 32_2[’ e 32_1'[’ Liing = 62—¢
PoapaT ) 1] ] 3}03_51] 1 ijkl = £0 aﬁijaﬁk! 3
8%y Y
"’i' = — i X = pp—
J Po 8D”8T Po aTg

(see Appendix A for further details).
Since we have assumed small elastic strains (V;$ & d;; + €i; with €;;e5 < 1),
expressions (3.8) are reduced to:

v p _ Fdp

(3.28) d; = Vg dy = dy.
' d ~d
wy = 0 wy = Uy

ij
As a consequence, the rotation rate (3.11), needed for the rotational derivatives,
becomes:

. d
(3.29) Wij = wij — wif.

As stated before, the constitutive model requires a law specifying w9P in addition
to the conventional complementary laws.

Another consequence of the small elastic strains assumption concerns the
form (3.27) which becomes:

v de

+ 7y Cijrl 0 Eijui  Jij il

+7 0 A S p

(3.30) v b= 4 B v
., & Eijw Ay L Vi B

iy Jit S Vi X T

The dissipation can be decomposed into a “regular” part directly linked to plas-
ticity and a “singular” part resulting from band formation:

(3.31) Dint = Dreg + Dsing -
The respective contributions are as follows:

Dreg = Uijdgi — Rp,
(3.32) v
Dging = Uz’jd?i + Fi; Dy,
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where dP represents the “regular”’ plastic strain rate, and d? the “singular”
damage-induced strain rate.

The effects of “singular” heating localized inside the band cluster are included,
by definition of the damage variable (2.1)—(2.2), in the scalar damage density
d® (2.2), evolving with the ongoing deterioration. “Regular” heating caused by
plasticity outside the bands is then expressed by the common relation established
with the adiabaticity assumption:

(3.33) poCT = oy;d5; — Rp.

One may distinguish three stages during the deformation progress: before
the onset of localization, “regular” plasticity is the only dissipative mechanism:
just after the onset of localization, both mechanisms, namely “regular” plasticity
and “singular” damage coexist; when localization advances, ASB damage pro-
cess becomes progressively the prevalent dissipative mechanism. Using a single
yield function that includes both the plasticity and damage effects, seems to be
suitable to favour such a chronology in the evolution of “regular” and “singular”
variables.

The following extended form of the plasticity and damage loading function
F is postulated:

(3.34) F (Tz'_j,r, ’Eij) = J2 (Tij,fﬂij) — {Ry +7),

where the generalized 279 invariant jzs (7’, E) incorporates the damage conjugate

force k (f), ) as follows:

(3.35) 43 (Ti;‘,fcq) = \/%Sijpijkt (ffmn) Ski-

In (3.35) s represents the deviatoric part of the Kirchhoff stress tensor, and
P (E) the 4'" order tensor inducing anisotropy of plastic flow.

The tensor P (E), see (3.37) below, includes the first term relative to conven-
tional plasticity without damage and the second one relative to damage-induced
effects on the plastic flow. The evolution laws (3.43), which are derived from
the normality rule, require by definition the collinearity of the “regular” plas-
tic strain rate dP to the deviatoric part s of the Kirchhoff stress tensor, the
collinearity of the “singular” damage-induced strain rate d9 to the orientation

tensor M (according to (2.3)1), and finally the collinearity of the damage rate
v

D to the orientation tensor N for conservative damage growth configuration
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considered here (according to (2.1);). Conjugate forces (S,E) and “orientation”

tensors (s, M, N) are then associated in the generalized 2" invariant (3.35) to
satisfy such conditions. The continuity of stress at the onset of damage is pre-
served. In the expression of P, the damage driving force k intervenes via the

expression Tr (E+N), where Tr (1~c+N) represents the difference between the
current value Tr (EN) and the corresponding one at the incipience of damage
Kinc = T (EN) A

mc

(3.36) ]E?}Nji = <l~fiiji = kinc> 5

where the bracket (-) defines the ramp function. To determine kine, an auxiliary
analysis based on perturbation method will be conducted in Section 4 for a
particular loading path.

On the other hand, to ensure the concomitance of both damage-induced rates

v
d? and D, the polynomial in Tr (k+N) specified below in (3.37) starts with the
exponent g = 2 (see (3.43)2 and (3.43)4 below).
The 4" order tensor P (E) is finally represented as follows:

N
1 o q
(3.37) Pijkt = (0 + 0ubin) +2 > g (kpinNnm | My My .
2 =

The function Ry in (3.34), which represents the radius of the Huber-Von Mises
cylinder without hardening in the stress space, must account for heating and
damage softening. A form close to the hardening conjugate force (3.26)9 is
adopted:

- do ~  ~
(3.38) Ry = R; exp(—~T)exp (_dlek - ';DmnDnm> )

where R; represents the internal stress, v the thermal softening parameter, d;
and dy the damage (ASB) softening parameters. The inelasticity criterion F = 0
is assumed. The viscoplastic flow and (viscous) damage growth domain is thus
F =20

The existence of a viscoplastic potential of PERZYNA’s type [21] is assumed:

v F n+1
6= (5)

where F represents the yield function, ¥ and n viscous parameters relative
to “regular” plasticity, and the bracket () the ramp function. Time-dependent
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shear banding (damage mechanism considered here) is an evident consequence
of thermo-viscoplastic flow. The viscous damage potential is thus chosen close
to the plastic one (3.39):

z = m+1
{10 %= <"z‘>

where F represents the yield function, Z and m viscous parameters relative to
“singular” damage, and the bracket (-) is the ramp function.
Evolution laws are consequently derived from the normality rule:

a¢; oF
dp d _ “%p _ :
diy = df+d;= Brs —ApaTij’
(3.41) 5 =
o _ 0% _ LOF & 045 4OF
=p = 8— = (9_’ R ke e
r r Ok;; Bky;

with the viscoplasticity and viscous damage respective multipliers expressed by:

o= ()5 ()5

The corresponding fluxes are finally written as follows:

Po= SApS
il ~ q
2. Mg (k'v_;nNnm) Sp My
dd = 3AP2 M
1] j‘s 179
(3.43) 3
p = AP,
N i g—1
v Z q- Mg (kr;nNnm) (Sklel)2
By = gl Ny
1y 9 j;; LV
v

As discussed above, the rates dP, d9 and D are respectively collinear to s, M

and N. The adiabatic shear banding process which generates the damage-induced

strain rate d4 modifies the initial direction of the inelastic strain rate d9P. The
v

norms of the damage-induced rates d¥ and D contain both a part relative to
the damage conjugate force k (via the expression Tr (fﬁN)) and another part

relative to the resolved shear stress 7res = Tr(sM) (in the band cluster plane).
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The damage conjugate force k is actually the preponderant driving force of the
damage-induced strain rate d? (see the expression (3.43); above), while the
damage conjugate force k and the resolved shear stress 7.5 keep approximately

the same weight in the expression (3.43)4 governing the magnitude of the damage
v

rate f), recalling that damage is primarily the consequence of a shearing process.
Let the inelastic velocity gradient 197 be decomposed into a “regular” contri-
bution 1P and a “singular” one 19:

d.
(3.44) 19— P 41

In the absence of damage (19 = 0), the “regular” structure of matter can be
supposed to be approximately statistically isotropic, what implies that wP = 0,
see MANDEL [22]. The rate W is in this case equal to the spin w: rotational
derivatives are then simply the Zaremba-Jaumann derivatives. In the presence
of damage, the damage-induced velocity gradient 19 generates the spin w9. As-
suming that the effects of the distorsion caused by the presence of ASB are
concentrated in their close vicinity, “regular” matter is supposed to be globally
weakly affected. In this sense, the “regular’ plastic spin wP can be neglected
with respect to the “singular” damage-induced spin w9. The rotation rate (3.29)
is thus reduced to:

(345) Wij = (JJij - wfj

The analogy drawn in Section 2 between a band cluster and a “super-dislocation”
is used here again to postulate the “singular” contribution 19 as:

(3.46) 1 oY 42gens.
(03

The partition of the damage-induced velocity gradient 19 (3.46) gives the damage-
induced strain rate d and the damage-induced spin w9 as follows:

A S ()
(e}

(3.47)
wfj o Z"y" (gf‘n?‘)AS.
[&]

According to relation (3.43)2, which expresses the damage-induced strain rate
dd, one can express the damage-induced spin w9 (3.47), as:

N - r
> (kLqu) Skt My
(3.48) wi = 3Ar=2

Js T
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where

AS

1:
T = (ginj)™” = E(giﬂj — gjn;).

As stressed before, material behaviour, described via the incremental law (3.30),
requires objective rotational derivatives. From the analogy of damage-induced
viscoplastic deformation with finite plastic distorsion in crystals, the above eval-
uation of the damage-induced spin has been obtained, thus completing the con-
stitutive relations.

4. Damage incipience via simplified perturbation analysis

The constitutive model is now completed by a damage incipience criterion
based on a simplified analysis of material instability using the linear perturbation
method.

The method is in general applied in the case of simple shear under con-
stant velocity boundary conditions. Assuming negligible elastic effects, laminar
viscoplastic flow and adiabatic conditions, the problem can be reduced to a one-
dimensional formulation, see e.g. BAI [3], CLIFTON et al. [23], MOLINARI [24],
and SHAWKI and CLIFTON [25]. Admitting analytical solutions, the linear per-
turbation method provides in this case a criterion of instability onset, which is
interpreted as the incipience of the adiabatic shear banding process. Nevertheless,
instability does not rigorously imply localization [24]. This means that the use
of the method gives a “lower” bound of the deformation localization incipience.

An auxiliary simplified analysis performed here is intended to help to estab-
lish damage incipience threshold and its form based on more pertinent indica-
tions than the purely phenomenological formulation. The output of the analysis
presented below will be limited to a particular loading path. Instead of rigorous
instability search (“lower” bound for localization mentioned above), the aim is
to search a more realistic (“upper” bound) evaluation for localization incipience.
The hypotheses taken further favour delaying the strong localization onset with
respect to the supposed instability onset.

As mentioned in Sec. 3, this auxiliary analysis allows actually to determine
ke = T (EN) in (3.36), which activates the damage-related rates d9 and

mc
Vf
D (see expressions (3.43)7 and (3.43)4), from mechanical considerations. In the
absence of damage, assuming negligible elastic effects, the governing equations
may be written as:

Tijj — Povi = 0,

(4.1) . _
poCT = KT gy — (J2 —1)p =0,
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1 3 .55
—(v55 +vj;) — =p—=== 0,
(4.1) 2(Uw i) 2p T
[cont.]
Tj - Ap(Tijapv T) = 01
3 g
where Jy = ESijSﬁ and where k represents the thermal conductivity.

Let a small perturbation 6U = (dv;, §745, 6p, 0T) be superposed on the set of
homogeneous solutions U = (v, 75, p, T) of the system (4.1):

U=U+4dU with 6U < U.

Homogeneous solutions evolution is supposed to be slower than perturbations
(see also KERYVIN et al. [26]): the system is considered to be temporarily frozen.
The perturbed system can thus be studied independently.
After linearization, it takes the form:
57‘”‘,]' — poai)i = 0,
poCOT — kT g — (6J2 — 6r)p— (Jo —1)8p = 0,
1 3.8 3..(Sii
~(v; i+ 6v;3) — =6p=L ——pd (L) =
5}9 = 5Ap(Tij,p,T) = 0.

(4.2)

Let the perturbation have a wave-like form:
(4.3) 6U = U exp (wt + iknz) = U exp[wgt] exp [ik (ct + nz))

where U represents the perturbation magnitude, w the wave pulsation, &k the
wave number, n the wave vector, wg and wy respectively the real and imaginary
parts of the wave pulsation w, and ¢ = w;/k the wave velocity.

According to the right-hand term of (4.3), the case wp = 0 points the tran-
sition between the stable and unstable states:

e if wp > 0, the perturbation increases with time;

e if wg < 0, the perturbation decreases with time.
The objective consists in looking for the conditions of the transition from the
stable state to the unstable state by studying the sign of wp.

After injecting the perturbation (4.3) into the system (4.2), one obtains:

z'k:nj?ji — powv; = 0,
A= LY 85T . _
(ngw + kk® + SOp) T — P —1?]# -+ [QOP - (J2 — r)w] p = 0,
(4.4) . 2
i 38

— (njﬁi + nﬁj)

7 @p — PG = 0,

2 Jo
(w—B)p—- P;7;i— ET = 0,
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with
? (Sij)
or or 3 J:
07 e 0 = —_— o = - = 5
@ = ap’ S =gri  CGum=j3 ot
OAP OAP JAP
PE-_a’ﬁ'j’ ap E—aT

(see Appendix B for further details).
The system (4.4) can be written as:

(4.5) (M {T} = {0}

The next step consists in finding the roots @ from the determinant of the matrix
[M]. In the case of a thermo-viscoplastic behaviour, the determinant is a 4'h
degree polynomial in w. Solutions are not trivial and require the knowledge of
the perturbation direction.

In the particular case of simple shear, where v; # 0 and 72 # 0, the perturbed
system (4.4) takes the form:

1tknoTig — ppwt; = 0,
(poCw + Ksk? + S%) T — V3p712 + [Q% — (V3m2— 1) w]p = 0,
(46) iknyT; — V3wp = 0,
(w—-B)p— V3a7, — ET = 0,
or otherwise
—pow@ ikmg 0 0
n 0 —/3p [Qof) - (\/51'12 - 'r) w] (poCw + kk? + S‘Jp)
ikng 0 —3w 0
0 —V3a (ww — B) —FE
71 0
T19 0
X > =%
g 0

The system (4.7) can be written as:
(4.8) (M]{U} = {0}.

The direction of the pertubation is obviously collinear with z; and the determi-
nant of the matrix [M] is a 3™ degree polynomial in w:

(4.9) det[M] = asw® + a3w? + a1 @' + ag
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where

a3 = 3piCa,

a = p [3 (E+Socr)_75-}-k2 (3ma+C)J ,

a k? [kk? + S% — pyCB — E (V3r2 —1)],
ap = k*[(EQ’-BS®)p-kk?B].

(4.10)

Assuming adiabatic conditions (x = 0), the coefficients (4.10) are reduced to:

a3 = 3p¢Ca,
ay = p0[3(E+SOa)p+kQC],

4.11
(A1) a; = k?2[S% - poCB—E (V3r2—r)],
ag = k2 (EC;)0 — BSO) D,
B+ 8% = —a% ,
(4.12) R
0 _ 0 — _,20 0
EQ" - BS o 5T Q°,

(see Appendix B for further details).

As stated previously, the idea is to delay the instability onset to approach
the strong localization incipience. Adiabatic shear banding occurs as thermal
softening overcomes the plastic hardening. In the constitutive model developed
in Section 3, thermal softening is described through the partial derivatives of

the hardening conjugate force r (T; P, f)) and of the internal stress R (T; f))

with respect to temperature. By neglecting the last contribution (0Rg/0T = 0)
to thermal softening, the aforementioned delayed estimation (an “upper” bound
for the instability onset) is reached without losing the mechanical consistency.

It is noteworthy that this simplification facilitates obtaining the analytical
results. The expressions (4.12) become indeed zero, as also the coefficient ag in
(4.11). The degree of the polynomial (4.9) is then equal to 2, and analytical
solutions are obvious.

With the simplification dRy/8T = 0 in the stability analysis, the coefficients
(4.11) become:

a3 = 3piCa,
az = pﬁkzcy

a1 = k*[S% —pCB—E (V3mnz—r)],
ag = 0.

(4.13)
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As shown above, the determinant of the matrix [M] is a 2" degree polynomial
in w:

(4.14) det [M] = a3@* + ayw + a1 = 0.
The condition of instability may thus be written as:
w >0 if and only if aqa3 < 0.
The perturbation grows if and only if
(4.15) 3psCak? [S’O[} - pCB—-E (\/51'12 - r)} <0,

or else, with the relations in Appendix B,

p
(4.16) QT—< (\/5712_7)‘*‘& ———a—r
' Op poC orT )
s yalin
With g ) . , inequality (4.16) becomes:

v 21/n
ar (‘/5712 - T) + I; or
4.17 — & -—— .
aad ap pC ( or )
This condition of instability involves plastic hardening and thermal soften-
ing through the partial derivatives of the isotropic hardening conjugate force

r(T;p,D).
Consider another expression of inequality (4.16) as follows:
. Or Or
(4.18) G (Tz'j,?",P; ap’ ﬁ) = \/3si; M5 My,
or
Y 21/n a
r— i + POC*“‘%— > 0.
(-57)

Inequality (4.18) relates the resolved shear stress 7pes = s;;Mj; to the isotropic
conjugate force r, the strain rate-induced overstress Yp'/", and the ratio of the
plastic hardening dr/dp to the thermal softening dr/dT.

In the present simplified analysis, the damage process is actually assumed to
. Or Or
run as soon as G | 7,7, P; EI;’ ﬁ) = 0. This latter condition must be inter-

preted as the auxiliary indicator for the damage process incipience leading to the
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mc

model of Section 3, see Eq. (3.36). Though a delay has been introduced in the
instability onset, this condition is surely necessary but not sufficient, as shown
in [24]. Further advanced studies involving the onset of strain localization in the
presence of multiple mechanisms of inelastic deformation can be envisioned fol-
lowing the lines of the recent study by PETRYK [27]. The latter would necessitate
adaptation to the rate-dependent constitutive framework.

It is noteworthy that the criterion (4.18) is obtained from an analysis based
on the linear perturbation method, and not from an arbitrary, or purely phe-
nomenological, damage incipience criterion.

determination of the damage conjugate force threshold kisc = Tr (EN) in the

5. Preliminary evaluation and comments on model capacities

The three-dimensional constitutive model developed in Sec. 3 is tested on a
volume element (material point) loaded in simple shear in the context of adi-
abatic dynamic process. The time integration procedure is purely explicit and
the time increment is imposed at the beginning of the analysis. The simple
shear loading is applied via the velocity gradient /5 (Fig. 6). The damage pro-
cess (strong deformation localization) is supposed to occur inside the material
through the development of a single shear band pattern of normal vector n
collinear with the z, axis (Fig. 5). The calculation of ki, is determined via the
auxiliary method detailed in Sec. 4.

I
X2 A
e
p Xl t
Fi1G. 5. Volume element Fi1c. 6. Nominal shear strain
containing a band. rate history.

The nominal deformation gradient F, the nominal velocity gradient 1, ind
the damage variable D are given by:

1 I 0 01 0 000
[Fl=|0 1 0|, \]=|o0o o0 0|, [Dj=d|0 1 0],
00 1 000 000

where I” represents the nominal shear strain rate, and I" the nominal shear striin.
In order to illustrate the model capabilities, experimental data by MAR-
CHAND and DUFFY [5] have been chosen as general reference. The curve (Fig 7)
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they obtained from a high strain rate torsional test on a HY 100 steel tubular
sample is usually used to illustrate adiabatic shear banding effects. This curve
displays three consecutive stages: in the 1% stage, thermo-elastic/viscoplastic
behaviour is stable; in the 274 stage, a weak instability in flow appears; in the
3 stage, the instability becomes strong and the deformation localizes through
adiabatic shear bands. Model constants (Table 1) have been identified from these
experimental data (Fig. 7). Consequently, the curve in Fig. 8 should not be
considered as the one validating the model; it reproduces simply the experimental
curve of Fig. 7. The discussion of model capabilities will be given below on the
basis of specific additional correlations concerning the actual model, namely its
response in terms of the state variables and their conjugate forces. Finally, by
modifying the loading conditions given by [5], the beginning of validation will
be considered (Figs. 22, 23).

Table 1. Material constants of the constitutive model (Section 3).

po (kg/m?) | C (J/kgK) | E (MPa) v a (K™ a (MPa) b (MPa)
7800 500 200e+3 0.33 le—6 0 15e+3
R: (MPa) | Roo (MPa) k y(°eC™h di d> n(MPa™?)(N =2)
510 400 20 1.5e—3 0.05 0.05 0.01
Y (MPass!/™) n Z (MPa-s'/™) m
100 10 10 2

Following simulations have been performed for Ty = 20°C and I" = 1600 s™!.

The value of nominal shear strain at the damage incipience (strong deformation
localization onset) is close to 39%.

Numerical strain components have been drawn versus the nominal shear
strain I in Figs. 9 to 11. Strains have been obtained by integration from the
corresponding expressions giving strain rates as follows:

} s ..o P d
vij = dij + Wigvgj — vipWp; Vij = (61]7eij=eijieij) )
(5.1) i - where
Vi Vi i At dij = (d17=dij’d%=dz‘j) ’

After the onset of damage, damage-related strain contribution increases while
both elastic strain and plastic “regular” rate decrease: as the deformation con-
centrates more and more inside the bands, the mechanism of damage replaces
progressively the mechanism of “regular” plasticity.
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FiG. 9. Strain ej2 vs. nominal shear strain I. Fic. 10. Strain e;; vs. nominal shear strain I".

Numerical spin components have been drawn versus the nominal shear strain
I' in Fig. 12. According to (3.45), the rotation rate W represents, in the absence
of damage, the spin w obtained from the anti-symmetric part of the velocity
gradient 1. In this case, the objective derivative is simply the Zaremba-Jaumann
derivative. After the onset of damage, Fig. 12 shows how the increase of damage-
induced spin w9 leads to the decrease of the rotation rate W.

Total strain components have been drawn versus the nominal shear strain I”
in Fig. 13. After a value of nominal shear strain I" close to 10%, strain compo-
nents ej; and egq increase and become significant compared with the strain ejs.
This induces a change of the ratio ej2/I" which is initially equal to 1/2. Finite
rotation-related terms which appear in the time derivative (5.1); are directly
responsible for the existence of both strain components e;; and es2. In the small
deformation framework, these strain components would be zero because (5.1),
should be reduced to v;; = d;;. This remark concerns also time derivative of
stress.
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“Regular” temperature has been drawn versus the nominal shear strain I” in
Fig. 14. “Regular” temperature increases indeed until the damage onset. During
the damage process, “regular” heating contribution decreases while “singular”
heating contribution increases (see (3.32)) in relation to the damage variable
growth.

Components of the thermo-elastic Kirchhoff stress tensor 7 (called S _i7)
have been drawn versus the nominal shear strain I" in Fig. 15. The existence
of stress components different from 719 is a direct consequence of the finite de-
formation framework (see the remarks on strain derivatives). The various stress
contributions to the generalized 2" invariant J§ (called J;) have been detailed
in Fig. 16. It is noteworthy that, while the shear stress 712 decreases strongly,
the isotropic hardening conjugate force r remains significant. This preserves a
certain strength of the material outside the bands.

The first invariant (density d) of the damage variable D has been drawn versus
the nominal shear strain I" in Fig. 17.

At the end of the calculations, the value of d is about 3. Interpretation of
this result needs returning to the definition (2.2) of the density d of the damage
variable D:

d =d(d" 0n):

In the case of simple shear, neglecting second order terms (resulting from com-
plete time integration (5.1)), the thermo-elastic shear stress (3.26); is approxi-
mately:

(5‘2) T2 = 2;1‘6‘132 i 266‘132522 =2 (,LL = bﬁzg) 6?2
where
(5.3) Dyy = diigfiy, 7= (0,1,0).

According to (5.2) and (5.3), with the notation employed in (3.30), one can write:
(5-4) Croi2=p—bd

where C212 represents the current “global” shear modulus and u is the initial
shear modulus.

As shown in Fig. 18 below, the shear modulus can be approximated by a 2"
degree polynomial in temperature, in the interval [300 K, 1000 K]:

c; = 8.1le — 3 GPa/K,

5.5) p(T) = p(0) — ;T — e2T?  with
( (T) = u(0) 1 2 {C2=2e—5GPa/K2.
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Fluctuations in shear modulus at low temperature (from 300 K to 400 K, which
bound the range of “regular” temperature before the onset of damage) are weak,
what justifies that the constitutive model supposes independence of the shear
modulus p from temperature in the elastic potential (3.15). On the other hand,
at high temperature, especially inside the bands, the shear modulus is strongly
affected. As the deformation is accommodated by ASB at advanced stage of
localization, the current “global” shear modulus is close to the shear modulus of
the band material.
Combining relations (5.4) from the present model with (5.5) yields:

(56) for T>T;  Ciarz = (T*) = p(0)—c1T* — ;T2 = u(Ty)—bd(T*).
Rearranging (5.6) gives the following expression for d(T™*):

*) T* T*Q
(57) d(T*) - ,u(TO ) ,UJ(O) '+b_ C1 + ¢z ,

which verifies dmin = d(Tj]) = 0.
As a result of highly overestimating evaluation of an upper bound for d =
d(T*), we can state first that temperature inside the band is bounded by the
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Fi1G. 18. Shear modulus u vs. temperature for a hard steel
(after JUANICOTENA [28] with u(0) = 80 GPa).
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melting point. Consequently, the shear modulus is bounded by its value at the
melting temperature. Extrapolating relation (5.5) to the melting temperature,
the expression (5.7) gives the upper bound dpax of density d as:

_ (T3) = u(0) + a1 Tn + 2T
= : ,

(5.8) g = d{Th)

If u(Trn) = 0, the upper bound dmay can be crudely approximated from (5.8) by:

(5.9) dmax ~ %
The value of the material constant b, related to elastic energy degradation
through the degradation of the shear stiffness produced by adiabatic shear band-
ing, governs the upper bound dpmax. In the present numerical example, the value
of b is chosen as 15 GPa (Table 1), which gives an upper bound for dmax close
to 5. In the foregoing case (Fig. 17), the value close to 3 attained for nominal
shear strain of about 1.2 is well below this limit. If prolonged further, the curve
in Fig. 17 would ultimately approach (but never attain) the upper bound limit.
Evolution of the current “global” shear modulus C215 versus the nominal shear
strain I" is reported in Fig. 19.

In a tentative conclusion to this evaluation, it is interesting to note that
when b — p, then, according to (5.9), the interval of d(T*) is [0, 1], and conse-
quently, according to (5.4), the interval of C212 is [g,0]. In that interval, Cjg;9
takes the values (1 — d(7*)) which can be approximated, following (5.7) and
assuming independence of the shear modulus from temperature before damage
incipience, by u(0) — ¢;T* — caT*?. The shear stiffness of the representative vol-
ume becomes a function of the “singular” temperature only (with no b explicitly
intervening). Fluctuations in “singular” temperature inside the band cluster are
thus directly and exclusively responsible for fluctuations in the shear stiffness of
the representative volume. This limiting case can be further explored in the fu-
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ture, especially in the context of mesh sensitivity control when performing finite
element numerical calculations.

The upper bound of d(T™*) being related to the value of shear degradation
constant b (dependent on particular material) may represent some inconvenience
in practical applications. Normalizing definitely the function d(7*) by fixing
its maximum to, say e.g. 1, necessitates some technical modifications of the
preceding equations (this will obviously shift in parallel the actual limit value of
dmax = 1 for b — ). This subject will not be analysed here.

The components of the damage force tensor k (called £ 4j) have been drawn
versus the 1% invariant (density) of the damage variable in Fig. 20 and versus
the nominal shear strain I" in Fig. 21. The damage conjugate force increases with
the nominal shear strain. At the onset of damage, the component kg, diverges
from ki1 and k33 to increase more strongly in the damage process.

Different loading conditions have been imposed in shear to test the response
of the model. Following effects have been illustrated in Figs. 22 and 23:

e nominal shear strain rate I" effect on stress-nominal strain response;

e initial temperature T} effect on stress-nominal strain response.

Figure 22 shows that instability appears earlier when the nominal shear strain
rate is higher. This agrees with the experimental investigations. Concurrently the
influence of the nominal shear strain rate on stress increase is higher after the
onset of damage.

Figure 23 shows that instability appears earlier when the initial temperature
is lower. Numerical values of nominal shear strain I" at the onset of localization
do not agree exactly with experimental values obtained in [5]. The influence of
the nominal shear strain rate on stress is higher before the onset of damage.
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6. Concluding remarks and perspectives

An elastic/viscoplastic constitutive model has been elaborated involving dam-
age and damage-induced anisotropy produced by adiabatic shear banding. The
latter deterioration mechanism has been captured through a second-order ten-
sorial damage internal variable whose evolution is considered as rate-dependent
(viscous) in some formal analogy to the plastic flow evolution.

As pointed out by PERZYNA et al. [11, 12], rate dependency favours main-
taining ellipticity of the equations governing the evolution problem related to the
class of constitutive models including the present one. The viscosity-related reg-
ularizing influence of the viscoplasticity and damage respective relaxation factors
Y and Z (together with the exponents n and m; see Egs. (3.39)-(3.40)) allows
to overcome local instabilities, as it is shown in the numerical simulations above
(Sect. 5).

The modelling methodology put forward herein in the finite elastic-plastic
strain Eulerian framework has had to face the difficulties inherent for this for-
mulation to cope with anisotropy effects and objectivity requirements combined
[15]. As there is no clear consensus of the scientific community on this subject
(while some convergent methodologies can be noticed, see e.g. LUBARDA’s study
[17] including damage and EKH and RUNESSON [16]), the Mandel-Sidoroff based
approach has been favoured and adapted in this study. The analogy advanced
here between an adiabatic shear band (ASB) cluster and a “super-dislocation”
leads to a fairly simple evaluation of the damage-induced spin. The objective
rotational derivatives can thus be operational within the model framework. By
combining these specific factors, relevant to kinematics and anisotropy hypothe-
ses, with thermodynamic postulates (existence of the free energy and dissipa-
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tion potentials, and their consequences), a coherent model could be formulated.
Some simplifying assumptions, regarding notably the strain hardening descrip-
tion and small elastic strain, have been made. The assumption of a single damage-
plasticity yield function allows to express the strong coupling between the dissi-
pative mechanisms at stake.

Constraints relative to consistent formulation of discretized boundary value
problem and to relevant numerical implementation of the model have constituted
a significant guideline to the formulation presented. Those aspects will be pre-
sented in details in forthcoming papers. Another question concerns the number
and nature of material constants involved in the formulation presented. A com-
promise has been searched between conceptual pertinency of the constitutive
model vs. complexity of mesomechanical and metallurgical phenomena and the
tractability of the formalism advanced when applied to high velocity impact and
penetration engineering problems. Those applications are currently under way.

Appendix A
9 - o
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A GENERAL FRAMEWORK for the analysis of heterogeneous media that assesses a
strong coupling between viscoplasticity and anisotropic viscodamage evolution is for-
mulated for-impact related problems within the framework of thermodynamic laws
and nonlinear continuum mechanics. The proposed formulations include thermo-
elasto-viscoplasticity with anisotropic thermo—elasto-viscodamage, a dynamic yield
criterion of a von Mises type and a dynamic viscodamage criterion, the associated
flow rules, non-linear strain hardening, strain-rate hardening, and temperature soft-
ening. The constitutive equations for the damaged material are written according to
the principle of strain energy equivalence between the virgin material and the dam-
aged material. That is, the damaged material is modeled using the constitutive laws
of the effective undamaged material in which the nominal stresses are replaced by the
effective stresses. The evolution laws are impeded in a finite deformation framework
based on the multiplicative decomposition of the deformation gradient into elastic,
viscoplastic, and viscodamage parts. Since the material macroscopic thermomechani-
cal response under high-impact loading is governed by different physical mechanisms
on the macroscale level, the proposed three-dimensional kinematical model is intro-
duced with manifold structure accounting for discontinuous fields of dislocation inter-
actions (plastic hardening), and crack and void interactions (damage hardening). The
non-local theory of viscoplasticity and viscodamage that incorporates macroscale in-
terstate variables and their higher-order gradients is used here to describe the change
in the internal structure and in order to investigate the size effect of statistical inhomo-
geneity of the evolution-related viscoplasticity and viscodamage hardening variables.
The gradients are introduced here in the hardening internal state variables and are
considered to be independent of their local counterparts. It also incorporates the ther-
momechanical coupling effects as well as the internal dissipative effects through the
rate-type covariance constitutive structure with a finite set of internal state variables.
The model presented in this paper can be considered as a framework, which enables
one to derive various non-local and gradient viscoplasticity and viscodamage theories
by introducing simplifying assumptions.

Key words: non-local theory; anisotropic viscodamage; viscoplasticity; gradient the-
ory; heterogeneous media.
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1. Introduction

THE INELASTIC MATERIAL behavior of engineering materials may be attributed
to two distinct material mechanical processes: viscoplasticity (i.e. dislocations
along crystal slip planes) and/or damage mechanics (cracks, voids nucleation
and coalescense, decohesions, grain boundary cracks, and cleavage in the regions
of high stress concentration). Plasticity/viscoplasticity theories, by themselves,
are insufficient for modeling the material behavior since both damage defects
(cracks and voids) and dislocation densities (viscoplastic flow) are present in
their inelastic response. A constitutive model should address equally the two
distinct physical modes of irreversible changes and should satisfy the basic pos-
tulates of mechanics and thermodynamics. A multi-dissipative model that ac-
counts for both the material decohesions (discontinuities within a material) and
the dislocations along slip planes is necessary. This is accomplished by adopting
two loading surfaces and two potential functions, one for the viscoplasticity and
another for the damage.

Experimental observations show that in general the processes of cold-working,
forming, machining of mechanical parts, etc. can cause an initial evolution of de-
fects in the virgin material state at localized zones, such as the nucleation of cer-
tain amount of cracks, voids, dislocation densities, and shear bands. Those local-
ized defects of viscoplasticity (rate-dependent plasticity) and viscodamage (rate-
dependent damage) induced in the material structure along with the subsequent
defects that occur during deformation process lead to a heterogeneous (non-
uniform) material behavior. Further loading of materials of this type will cause
failure mechanisms to occur at localized zones of viscoplasticity and viscodam-
age. In those localized zones, a lot of defects may undergo irreversible growth; co-
alescence of pre-existing cracks and voids may occur; propagation of dislocations
may proceed; and new defects may nucleate and their ultimate coalescence results
in failure. Moreover, intensive interaction mechanisms of the evolved defects may
take place at those localized zones; such as dislocation-dislocation interaction,
microdamages-microdamages interaction, crack dominated-dislocation interac-
tion, dislocation-dominated crack interaction, dislocation-crack grain boundary
interaction, etc.

As the viscoplasticity and viscodamage defects localize over narrow regions of
the continuum, the characteristic length-scale governing the variations of those
defects and their average interactions over multiple length-scales falls far below
the scale of the local state variables of viscoplasticity and viscodamage used to
describe the response of the continuum. This leads to the loss of the statistical
homogeneity in the representative volume element (RVE), in such a way that all
the macroscopic response functions of interest (e.g. the Helmholtz free energy, ¥;

3

the dissipation potential, IT; the Cauchy stress tensor, o; the small strain tensor,
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g; the stiffness tensor; C; etc.) are sensitive to the distribution, size, and orien-
tation of the mesostructural and macrostructural defects within the RVE. The
viscoplasticity and viscodamage evolution processes are, therefore, statistically
inhomogeneous at the macroscale level (at the RVE scale). This suggests that
the macroscopic inelastic deformations and failure are governed by mechanisms
at different scale levels (nonlocality). For example, dislocation interactions are
observed on a mesolevel with length-scale 0.1 — 10pm GAoO et al [36] affecting
strongly the material behavior on the macrolevel with length-scale > 100um.
Thus, different methodologies rather than the local theories are necessary to
adequately capture the decrease in the length-scale from the macroscale to the
mesoscale level. The non-local theories are expanding steadily in order to ap-
propriately overcome this problem, which take into account the influence of the
nt? nearest neighbor of the material points or the long-range microstructural
interaction.

Moreover, it is a well-known fact that the use of classical rate-independent
plasticity theory or local theory do not possess an intrinsic length-scale, which
leads to numerical stability problems, such as mesh size and mesh alignment
sensitivities, particularly, in problems exhibiting strain localization phenomena.
However, several regularization approaches have been proposed in the consti-
tutive modeling to accommodate this problem. They include: viscoplastic mod-
els (e.g. PERZYNA [73], NEEDLEMAN [70], WANG et al. [106] DORNOWSKI and
PERZYNA [30], GLEMA et al., [43]), thermal dissipation models (e.g. LE MONDs
and NEEDLEMAN [57], non-local models (e.g. AIFANTIS [2], PIJAUDIER-CABOT
and BAZANT [85], BAZANT and P1JAUDIER-CABOT [14], VoY1ADJIS and DE-
LIKTAS [94], VOYI1ADJIS and DORGAN [97], and gradient models (AIFANTIS [3],
ZBIB and AIFANTIS [107], DE BORST and SLUYS [27], FLECK and HUTCHINSON
[35], BAMMANN et al., [10], Busso et al. [19], VOYIADJIS et al. [96], BASSANI
[11], GURTIN [44], VOY1ADJIS and ABU AL-RUB [93]).

In the literature, many non-local plasticity/visco plasticity and damage/visco-
damage models were proposed to introduce intrinsic length-scale measures in the
constitutive equations, which can be grouped into two classes: integral models
and gradient models.

KRONER [53] and ERINGEN and EDELEN [33] incorporated nonlocal terms
through integral equations of elasticity. PIJAUDIER-CABOT and BAZANT [85],
extended this concept to continuum damage mechanics. BAZANT and OzBOLT
[13] also proposed a nonlocal anisotropic damage formulation, which is based on
nonlocal tensorial variable. However, integration in the nonlocal integral models
requires a global averaging procedure with resulting equations that can not be
easily linearized (DE BORST and PAMIN [26]). This makes the nonlocal integral
models computationally inefficient.
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However, the integral approach generally involves an infinitely extended zone
of nonlocal action and may be approxiamated by truncated Taylor series expan-
sion, giving rise to the so-called gradient theories. Gradient approaches typically
retain terms in the constitutive equations of higher-order gradients with coeffi-
cients representing length-scale measures of the deformation microstructure as-
sociated with the nonlocal continuum. AIFANTIS [2] was one of the first to study
the gradient regularization in solid mechanics. The gradient methods suggested
by LAsRY and BELYTSCHKO [56] and MUHLHAUS and AIFANTIS [69] provide an
alternative approach to the nonlocal integral equations. The gradient terms in
plasticity models are introduced through the yield function (e.g. MUHLHAUS and
AIFANTIS [69] DE BORST and MUHLHAUS [25], DE BORST et al. [28], DE BORST
and PAMIN [26], AIFANTIS et al. [4], GAO et al. [40], FLECK and HUTCHINSON
[36], VoviaDJIS et al. [96]). The gradient damage theory has been developed for
isotropic damage (e.g. PIJAUDIER-CABOT and BAZANT [85], PEERLINGS et al.
[84], LACY et al. [55], GEERS et al. [42], SVEDBERG and RUNESSON [90], ZHOU
et al. [111], ASKES and SLUYS [7]) and for anisotropic damage (e.g. KUHL et al.
[54], Vov1aDJis and DELIKTAS [94], VOY1ADJIS and DORGAN [97], VOYIADJIS
and ABU AL-RuUB [93]).

The motivation of this work comes from the experimental tests of specimens
made of ductile materials and heterogeneous materials loaded at low- and high-
speed impacts (BELINGARDI and VADORI (15|, BORVIK et al. [18], Luo et al.,
[64] ESPINOSA et al. [34], SIERAKOWSKI [87], ZHOU et al. [110], MONTAGNANI et
al. [68], JOHNSON and COOK [47], ALBERTINI and MONTAGNANI [5] etc). Gener-
ally, these kinds of laboratory tests serve to verify the constitutive concepts and
material parameters. In many of those tests, the intensive nonlinearity induced
in the material is attributed to the viscoplasticity and viscodamage morpholo-
gies. Furthermore, the softening behavior in those experiments mostly appears
as the result of temperature rise and damage growth. Those experiments indicate
that the failure mechanisms occur at localized zones of viscoplasticity and vis-
codamage where a lot of interactions of defects take place. In order to be able to
capture such localized deformation zones and strain-softening material behavior,
we aim here to introduce explicit and implicit length-scale measures in plasticity
and damage governing equations through the use of the gradient-dependent and
viscoplasticity theories coupled to the viscodamage theory.

It is generally assumed that the rate of deformation can be additively decom-
posed into an elastic (reversible) part and an inelastic (irreversible) part (e.g.
NEMAT-NASSER [75], LUBLINER [63], SIMO and HUGHES [89]). “Non-instantane-
ously reversible” deformation is a more general description of the inelastic de-
formation since it is corresponding to the following set of physical phenomena:
instantaneous plasticity, viscoplasticity, instantaneous damage, and viscodam-
age. The first type of inelastic deformation is a time-independent mechanism,



NON-LOCAL COUPLING OF VISCOPLASTICITY. . . 43

which is generally considered in the rate-independent plasticity theories. The vis-
coplastic deformation, which is sometimes qualified as creep, is a rate-dependent
mechanism. Both of those two mechanisms or one of them is gengrally not suf-
ficient to describe the set of experimental observations under high strain rates
(dynamic loadings). Therefore, degradation of the mechanical properties up to
complete failure should be considered in the experimental simulations, in particu-
lar, simulating the heterogeneous material response under high strain-rates. This
progressive physical process is commonly referred to as damage and it can be
time-independent (damage theory) and/or time-dependent process (viscodamage
theory). The evolution, nucleation, and coalescence of microcracks, voids, and
cavities during manufacturing processes and subsequent loading enhance the
material to behave inelastically in the elastic and plastic domains. VOYIADIJIS
and PARK [102] tend to sum such defects as an inelastic strain called the dam-
age strain. They tend to decompose this damage strain into an elastic-damage
(recoverable) component attributed to crack closure and void contraction dur-
ing unloading, and an inelastic-damage (unrecoverable) component attributed
to random distribution and orientation of the cracks that make their recovery
impossible. Therefore, the second underlying motivation for this study is given
by the work recently proposed by VoviapJis and PArk [102]. They presented
a framework for finite nonlinear continuum damage involving seven different de-
formation configurations. In accordance with their work, two irreversible strains
are considered in this study: the viscoplastic and viscodamage strains. The vis-
codamage strain component tends to be considerable in engineering materials
under impact loading processes as compared to the viscoplastic strain compo-
nent. We will also use a similar approach with a more attractive physical inter-
pretation of the viscodamage deformation mechanisms. The proposed approach
is analogous to the finite elasto-plasticity (e.g. NEMAT-NASSER [76], PERZYNA
[82], LUBLINER [63], SIMO and HUGHES [89]) involving the multiplicative de-
composition of the deformation gradient into elastic and inelastic parts. All con-
figurations induced by the multiplicative decomposition are, as in finite elasto-
plasticity, macroscopic. The damage evolution equations, however, are based on
micromechanical considerations established through the use of gradient theory
(for a detailed demonstration consult LACY et al. [55]).

There are many models with weak coupling between plasticity /viscoplasticity
and damage/viscodamage; hence, no consistent model realizing a strong coupling
has been published yet (HESEBECK [46]), which serves as our third motivation.
In this work, the strong coupling between viscoplasticity and viscodamage will
be implemented by using two independent viscodamage mechanisms. One mech-
anism is coupled with viscoplasticity, while the other one occurs independently
of viscoplastic deformation. To formulate that on the basis of the thermody-
namic principles, the two viscodamage processes are represented by two additive



44 G. Z. Voviaplns, R. K. ABu AL-RuB, A. N. PALAZOTTO

portions in the dissipation potentials. Because this work focuses on the devel-
opment of coupled viscoplastic-viscodamage governing equations based on ther-
momechanical postulates, the various possibilities to describe the viscoplasticity
and anisotropic viscodamage will be considered here.

To mention some of the important contributions to phenomenological dam-
age modeling, we have to start with effective stress concept of Kachanov (1958),
who was the first to introduce for the isotropic case a one-dimensional vari-
able, which may be interpreted as the effective surface density of microdamages
per unit volume (VOYIADJIS and VENSON [104], VENSON and VOYIADJIS [91],
VOvIADJIS et al. [105]). Following Kachanov’s pioneering work researchers in
different fields applied continuum damage mechanics to their areas in fields like
brittle materials (KRaJCINOVIC and FONESKA [52], KrRAJCINOVIC [51]) and duc-
tile materials (e.g. LEMAITRE and CHABOCHE [59], LEMAITRE [60], KACHANOV
[49], MURAKAMI [71]). In the 1990’s coupling of continuum damage mechan-
ics to plasticity have appeared (e.g. VOYIADJIS and VENSON [104], VOYIADJIS
and KATTAN [98, 99, 100], LuBARDA and KRAJCINOVIC [62], VOYIADJIS and
ABU-LEBDEH [92], VOYIADJIS et al. [105]).

The objective of this paper is to derive a general thermodynamic frame-
work for the modeling of heterogeneous media that assess a strong coupling
between viscoplasticity and viscodamage evolution for impact-related problems
with considering the discontinuities on the macroscale level. The essential as-
pects of interest here can all be examined within the context of: (1) Finite strain
kinematics; (2) Rapid time variations in temperature, strain, strain rate, and
other field variables; (3) Viscodamage effects on moduli and strength (hard-
ening/softening); (4) Strong viscoplasticity and viscodamage coupling; and (5)
Numerical stability through using the regularization approaches (i.e., using vis-
coplasticity and viscodamage gradient-dependent theories). This can be effec-
tively characterized through a thermodynamic framework for the development
of a continuum thermo-elasto-viscodamage and thermo-elasto-viscoplastic based
failure model. The constitutive equations are derived from the first and second
laws of thermodynamics, the expression of Helmholtz free energy, the Clausius-
Duhem inequality, the maximum dissipation principle, generalized normality,
and the thermomechanical heat equation. All the thermodynamic equations are
expressed in the spatial configuration. The evolution laws are impeded in a finite
deformation framework based on the multiplicative decomposition of the defor-
mation gradient and the additive decomposition of the spatial rate of deformation
tensor into elastic, viscoplastic, and damage parts. The nonlocality is introduced
here through the viscoplasticity and viscodamage hardening variables. The first-
order gradients in the gradient-dependent theory are disregarded and the second-
order gradients are mainly considered in this work. The local viscoplasticity and
viscodamage hardening variables and their corresponding second-order gradients



NON-LOCAL COUPLING OF VISCOPLASTICITY. .. 45

are considered to be independent of each other, allowing one to computationally
introduce independently the macroscale and mesoscale levels influence.

The outline of this paper is as follows: in Sec. 2, we outline a summary of
the finite deformation kinematics and some of the fundamental definitions of
nonlinear continuum mechanics. In Sec. 3, we outline a general thermodynamic
framework for the elasto-viscoplastic and elasto-viscodamage material behavior
with thermal effects for impact-related problems using the gradient-dependent
theory. In Sec.4 the rate-type constitutive relation is derived. Finally, in Sec. 5
the thermomechanical couplings equation is formulated.

2. Finite deformation kinematics and fundamental definitions
2.1. Fundamental measure of total deformation

Here we summarize some of the fundamental definitions of nonlinear contin-
uum mechanics (SMO and HUGHES [80], BELYTSCHKO et al. [16], DOGHRI [29])
relevant to our subsequent developments. Our notation throughout is as follows:
C° and C* are the manifolds, where we refer to a point X € C%s a point in the
reference configuration of a continuum body and a point x € C* as a point in
the current configuration (at time ¢). Assuming that the deformation is smooth
regardless of damage, one can assume a one-to-one mapping such that:

(2.1) z;=x;(X,t) or X;=X; (:E, t) (1)

which maps the reference configuration C° onto the spatial configuration C! at
time £. The corresponding deformation gradient is expressed as follows:

oz;

0X;

(2.2) Fy=

which is a linear transformation for each X € C° at time t.

Note that in this work the subscripts indicate the tensorial nature of the
variables unless specifically stated otherwise.

For each X € C? there exists an orthogonal transformation R(X)called ro-
tation such that (polar decomposition):

(2.3) Fij = RixUx; = VigRy;

where U and V are the right and left stretch tensors, respectively.
The change in the squared length of a material filament dX is used as a
measure of deformation such that for a Cartesian coordinate system:

(dl)Q - (dL)2 = diﬂi dﬂ:,' = del dXi,

(2.4)
= 2E;;dX; dX;,



46 G. Z. VoviapJis, R. K. ABu AL-RuB, A. N. PALAZOTTO

or

(2.5) (dl)? — (dL)* = 2e;;dz; dz;j,

where (dL)? and (dl)? are the material filaments in the reference configuration
C° and the spatial configuration C?, respectively. E and e are the material (or
Lagrangian) and the spatial (or Eulerian) strain tensors, respectively, and are
given by:

1 1
(2.6) Eij = 5 (FeiFiej — 0i5) = 5 (Cij = 0y5)
and
1 i e 1
(2.7) e = 3 (51‘]' - Fkilejl) = (045 — €54) 4

where C = U? and b = ¢! = V2 are the right and left Cauchy-Green tensors,
respectively, and §;; is the Kronecker delta. C is defined with respect to the
reference configuration while b is with respect to the current configuration.

For the spatial strain tensor e and the material strain tensor E we have:

-1 -1
(28) €5 = Fki Eleij .
The spatial velocity, denoted by v(x,t), is the time derivative of the motion:

ox;
(2.9) vi =5

The spatial velocity gradient 1 is defined as:

B’Ui - L res]

where the dot denotes the time derivative. The symmetric part of 1, denoted
by d, is called the spatial rate of deformation tensor, and its skew-symmetric
part is called the spin (or vorticity) tensor, w. Thus one obtains:

(2.11) dij = o (lij + 1ji)
and

1
(2.12) Wwij = 5 (l,'j = lji) ;
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Let us define the Lagrangian rate of deformation tensor D and the Eulerian rate
of deformation tensor d as follows:

) 1.
(2.'_3) Dij = El'j = §Cij,

I _ 1 -1/ F—l
(2--4) dij = 'iji Cri -

Utlizing Eq. (2.13) into Eq. (2.14), d is then related to D by:
~1 =1
(2.15) dij = Fy; DuFj; .

while the spatial deformation rate tensor d is equal to the Cotter-Rivin convected
ratz of the Eulerian (Almansi) strain tensor as follows:

(2.16) dij = Ly(eij) = &ij + eirlej + exjles

where the symbol L, denotes the well-known Lie derivative with respect to v
(MARSDEN and HUGHES, [67]).

2.2 Rates of the stress tensors

The first Piola-Kirchhoff stress tensor P is a nonsymmetric nominal stress
tersor obtained by performing a Piola transformation on the Cauchy stress ten-
sor g, l.e.

(2.17) By = JF; oy

where J denotes the Jacobian of the deformation and represents the ratio of the
mass densities at the reference configuration and the current configuration:

(]

p dv
2.18 J="—=—=det(F),
2.18) = g = det(P)
where p° and p are the mass densities of the reference and current configurations,
resoectively. dV and dv are the initial volume and the volume after deformation,
resdectively.

The symmetric (or second) Piola-Kirchhoff stress tensor S is defined as fol-
lows:

(2.19) Sij = Fizlpkj = Jﬂ;lo'klfﬁ] = Filek[Fﬁl

where T = Jo is called the Kirchhoff stress tensor.
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The rate of the Kirchhoff stress tensor (the Lie derivative) is given as follows:
(2.20) Ly(7j) = FopSuFj = 7ij — liThj — LikTik

where T defines the material time derivative of the Kirchhoff stress tensor which
is given by the following relation:
_Om T

(221) Ty = ot EEZU!C

The Jaumann-Zaremba stress rate of the Kirchhoff stress is defined as follows:

(2.22) T2

i = Tij — WikTkj + Wk;Tik

Using Egs. (2.11) and (2.12) along with Eq. (2.22), we can express the Jaumann-
Zaremba stress rate, T°, in terms of the Lie derivative of the Kirchhoff stress
tensor (L,T) and the spatial rate of deformation (d) as follows:

(2.23) 7 = Ly(7ij) + dikTkj + dijTik.

Note that both the first and second Piola-Kirchhoff stress tensors, P and S,
are relevant to the reference configuration C°, while the Kirchhoff and Cauchy
stress tensors, T and o, are relevant to the current configuration C*. Also note
that the elastic components of the rate of deformation (d) and the spin tensor
(w) should be substituted in the stress rate tensors L,T and T°.

2.3. The deformation rate additive decomposition

Imagine an elastically loaded representative volume element (RVE) contain-
ing uniformly distributed (micro)-cracks of Mode I, which are triggered by the
process of cold working, is deformed by a total strain €;. A certain part of this
strain will be elastically recoverable (¢{) and another part can be induced by
damage (£§¢). When the loads are released before yield limit, the body will have
no permanent strains left. However, the elastic stiffness of the RVE could have
been reduced by the growth of microcracks. This is clearly demonstrated in Fig-
ure 1 which shows the foregoing micromechanics of a continuum point in the
RVE and the corresponding macro-stresses and strains.

Imagine now the elastically loaded RVE containing an arbitrary distribution
of (micro)-voids and (micro)-cracks of mixed modes (Mode I, II, and III), which
are triggered by the process of cold working, and subjected to 3-D state of stress.
Generally, this situation is more likely to happen in materials than the above one.
This RVE is deformed by a total strain of € a certain part of it will be elastically
recoverable (e°) and another part is induced by damage (e%). When the loads
are released before the yield limit, the body will have, similarly to plasticity and
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Fi1G. 1. Fictitious uniaxial stress-strain elastic response resulting from a growing micro-crack.
All damage strain is recoverable (the crack is closed but not healed).

L
o~ o~ _'
- -
oA A
: ; o ||
\
1_ — - 050, 20,51,
' c L)
1|6y 1
1 bd & &
FAT T TR
rFa 5] v o 0
/ 2 — |4 - -« -
K & 1 - & -
L :. i E o E - dE| « E E
:: E o, ﬂ;rr T T2 o,
o g a, 0, =0,
JABAE R ' =
*
EIJ-EM & 82

Fi1G. 2. Fictitious stress-strain elastic response of an RVE subjected to 3-D state of stress
o2 > 01 = g3 > 712 resulting from a growing microcrack and microvoid. Part of the damage
strain is recoverable (not healed) and the other part is unrecoverable.

in contrast to the above fictitious situation, permanent deformations left ().
Fig. 2 shows the underlying micromechanics of a continuum point in the RVE
and the corresponding macro-stresses and strains in one of the directions.
Motivated by the above discussion and assuming small elastic and finite vis-
coplastic and viscodamage deformations under high-impact loading, we can pos-
tulate the additive decomposition of the total spatial deformation rate tensor (d)
into elastic (d®), viscoplastic (d*?), and viscodamage components (d?). Although
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the damage process is an irreversible deformation thermodynamically; however,
the deformation due to damage itself can be partially or completely recovered
upon unloading. Thus, the damage deformation component is also decomposed
into elastic-damage (reversible) and viscoinelastic-damage (irreversible) parts.
The recoverable part is attributed to crack closure upon unloading (but not
healing), while the unrecoverable part is attributed to the lack of crack closure
and void contraction that cause permanent deformation. Both cause degrada-
tion in the material stiffness (ABU AL-RUB and VOYIADJIS [1]). Hence, the
total deformation rate tensor can be written as:

(2.24) dij = df; + dif + df;
and
(2.25) dd = de! + di2,

where d®@ and d* are the elastic-damage and viscoinelastic-damage parts of the
damage strain, respectively. The superscripts here do not imply tensorial indices
but merely indicate the corresponding deformation configuration such as “e” for
elastic, “wp” for viscoplastic, “d” for damage, “ed” for elastic-damage, and “id”
for inelastic-damage.

During the unloading process, two types of deformation rates are purely
reversible: the ordinary elastic deformation rate d® and the elastic-damage de-
formation rate d°¢. Thus, the total reversible elastic deformation rate d® upon
unloading can be obtained by:

(2.26) dff = df; + dff.

On the other hand, the total viscoinelastic rate of deformation d! arises from
the two irreversible sources: viscoinelastic damage and viscoplastic flow, such
that:

(2.27) df; = di¥ + &,
hence Eq. (2.24) can be rewritten as:
(2.28) dij = df} + dj;.

The viscoinelastic damage may occur during only elastic deformations (in
the absence of plastic deformations) under the condition that micro-cracks occur
without the presence of a plastic process zone ahead of the crack tip.

Many researchers tend to adopt the traditional simple isotropic scalar dam-
age variable, “(1—¢)”, to model the material micro-damage mechanism, in which
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all components of the material stiffness are degraded by the same scalar damage
parameter, ¢. However, to ensure a more realistic application of the principles
of the damage mechanics, anisotropic damage will be assumed. In this case dif-
ferent levels of damage are related to the principal directions, and thus a simple
scalar damage parameter is no longer sufficient to quantify damage in all direc-
tions. Instead, the anisotropic phenomenon of the microcracks distribution in
the material is interpreted using a symmetric second-order damage tensor, ¢;;.

The linear elastic constitutive equations for the damaged material are writ-
ten according to the principle of elastic strain energy equivalence between the
virgin material and the damaged material (SIDOROFF, [86]). That is, the dam-
aged material is modeled using the constitutive laws of the effective undamaged
material in which the Kirchhoff stress tensor 7 is replaced by the effective stress
tensor T (MURAKAMI and OHNO, [70]):

(2.29) Tij = Mikj1Thi

where M is the fourth order damage-effect tensor. Many different expressions
for M exist in the literature. A comprehensive review of the most widely used
expressions are presented by VOYIADJIS and PARK [101]. The following expres-
sion for M, which have been proposed by CORDEBOIS and SIDOROFF [24], is
used here due to its attractiveness in the mathematical formulations and its
symmetrization ability of the effective stress tensor T, such that:

(2.30) Mgt = 2 [(8ik — dik) 60 + Gax (650 — 1))~

where d;; is the Kronecker delta.
The elastic-damage stiffness C in the case of finite deformation is given by
VovIADJIS and PARK [102] as follows:

(2.31) Cijkt = NikjtCripgNprgs
where
(2 32) Nikﬂ Mt;_jl

= Qika4 = %[( ¢1k) d; 3l . 5 Jzk ( 5] ¢Jl)]

and C is the fourth-order elastic moduli tensor given by:

1
(2.33) C”kl K(S,JCSM +2G (Jik5jt — géijék,) ;

where K is the bulk modulus and G is the shear-modulus in the effective con-
figuration.
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The rate of the Kirchhofl stress tensor is defined in terms of the elastic
deformation tensor as follows:

(2.34) Ly(7i5) = Sijudgy,

where S is the effective spatial elasticity tensor related to the effective fourth-
order tensor of elastic constants C by the (push-forward) transformation as fol-
lows:

(2.35) VN 5 -

Similarly, Egs. (2.34) and (2.35) can be defined using the Jaumann-Zaremba
stress rate tensor as follows:

(2.36) o = Gijkidyy -
where
(2.37) aiet = Sijrt + 6Tk + 6Tk -

2.4. Finite elasto-viscoplastic and elasto-viscodamage deformations

The processes of cold-working, forming, machining of mechanical parts, etc.
can leave an initial damage. The initial damage induced in the material mi-
crostructure along with the subsequent damage that occurs during elastic load-
ing, enhance the material to behave inelastically before viscoplasticity occurs.
Therefore, if the material is elastically unloaded before forming dislocations along
slip planes (viscoplasticity), permanent strains consist observed. Those strains
are irreversible damage strains, while the reversible damage strains consist of
two parts: elastic part and damage part. Then, if viscoplasticity occurs, both
viscodamage and viscoplastic permanent deformations are anticipated.

First we motivated this basic behavior in one dimension. Consider the uni-
axial tension test shown in Fig. 3. In this test, a bar of uniform cross-section is
subjected to the uniaxial loading history: O — B — C, during which the length
of the bar takes the following values: L — [P — [P — P4 _, | Stage O — B
corresponds to a monotonic loading beyond the elasticity domain, and B — C'
to elastic-damage unloading (C' — B corresponds to elastic-damage loading pro-
cess). State C corresponds to a stress-free, unloaded configuration. We can write
the following trivial identity:

vpd v
(2.38) L PR L, o i
L [vd vp [

or

(2.39) Xoe= RERER
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where A = I/L is the axial stretch at the end of O — B, A®* = [/I"P* can be
viewed as the elastic stretch at the end of the elastic transformation B — F,
A4 = [ /%P corresponds to the viscodamage stretch between D state and
a viscodamage-free state between C and O, and A" = ['P/L corresponds to
viscoplastic stretch between O state and a viscoplastic-free state between C and

O. Additionally, A¢ can be written as:

l'upd l'upd lvpid

(2.40) T = R T
or
(2.41) X =9 Xelod

where \é¢ = [vPd / [P is the elastic-damage stretch (recoverable viscodamage

stretch) between states D — C, and A = [vPid / I[P is the unrecoverable visco-
damage stretch between C state and a viscodamage-free state between C and O.
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F1a. 3. Uniaxial stress-strain response of a metallic specimen.

The illustration of Fig. 4 in three dimensions is similar to that of the one-
dimensional case (Fig. 3). If O designates the initial state (C°), B the current
state (C?), and D — O (C%™P, C"*? and C"P) the local intermediate, stress-
free, unloaded states, then the deformation gradients are: F for O — B, F* for
D — B, F? between D state and a viscodamage-free state D — O, and F?
between state O and a viscoplastic-free state between O and C. Additionally, F¢
can be decomposed into F*¢ for C — B, F'“ between C state and a viscodamage-
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free state between C' — 0. Thus, the deformation gradient F (X, t) is split into
elastic, viscoplastic, and viscodamage parts as follows:

oz Oz Oz §gvP
) 8X ~ Ozvrd 9zvr 9X
or
(2.43) F=F¢. F”. F¢

introducing tacitly the local intermediate natural state configurations. In the
sequel we suppose that elastic strains are small compared to viscoplastic and
viscodamage strains. Also F¢ is split into elastic-damage (reversible) part and
inelastic-viscodamage (irreversible) part as:

vpd vpd vpid
T T T

e dzvp — Jzvrid Prvp
or
(2.45) Fé =,

Therefore, the total deformation gradient can be decomposed into total elastic
part (FF = F¢. F¢) and inelastic part (F/ = F*¢ F') such that:

(2.46) F =FF F!

Fd

Fig. 4. Tllustration of the multiplication decomposition of the deformation gradient.

The determinate of the total deformation tensor J (or the Jacobian of defor-
mation, Eq. (2.18)) that characterizes the volumetric deformation can then be
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multiplicatively decomposed into elastic, viscoplastic, and viscodamage parts as
follows:

(2.47) J = Jegve e
where
(2.48) J¢ = det (F¢); JU =det (F?); J%=det (Fd)

3. Constitutive modeling for dynamic impact loading
3.1. Thermodynamic formulation

In this section, the thermo-elasto-viscoplastic and thermo-elasto-viscodamage
material behavior is considered. This means that the strain, strain rate, tem-
perature material dependence, and the nonlinear material response are consid-
ered. The dependent constitutive variables are functions of the Eulerian to-
tal elastic strain tensor (e”), temperature (T'), temperature gradient (VT),
the deformation gradient tensor (F), the measure of volumetric deformation
(J = det (F)), and njne- of phenomenological internal state variables (Wi, k =
1, .oy Ming; Nne = 1). Hence, within the thermodynamic framework the thermoe-
lastic Helmholtz free energy density at the current state of deformation can be
written as (DUSZEK-PERZYNA and PERZYNA, [32]):

(3.1) U =0 (eff, T, ViT, Fyj, J; Ry) .

However, by considering the assumption of small elastic strains (usually ac-
cepted for metals and other materials subjected to high strain-rate loading), the
specific free energy function ¥ may be written as follows (MURNAGAHAM [37],
GARCIA GARINO and OLIVER [41] CELENTANO [21]):

(3.2) U =V (e, T, ViT, J; Xg)

Moreover, under severe loading conditions the elastic strains are comparably
smaller. Thus, the elastic part of the deformation gradient can be assumed to
be unity (i.e., J¢ = I). By adopting, also, the incompressibility assumption (i.e.,
JP =I), which is an acceptable postulate for metals, we can rewrite the specific
free energy function ¥ as follows:

(3.3) =¥ (eg,T, VT, J%: Nk)

where J¢ = det(F%). This last simplified form of ¥ is used in the formulation
described below.
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Analogous to the additive decomposition of the deformation rate d¥ into
elastic and elastic-damage components (Eq. (2.26)), the Eulerian total elastic
strain tensor e? can be also decomposed as follows:

(3.4) eg =ef; + ef]'-i.

This additive decomposition of the Almansi total elastic strain can also be de-
duced from the multiplicative decomposition of the deformation gradient into
elastic and elastic-damage parts, FF = F¢. Fe?,

Since the main objective is to develop the rate-type constitutive equations for
a viscoplastic and viscodamage material, the effects of viscoplastic strain hard-
ening/softening, viscodamage strain hardening/softening, micro-damage mecha-
nism, and thermomechanical coupling have to be considered. In order to compen-
sate for such mechanisms, a finite set of internal state variables Ry (k = 1, ..., mn¢)
representing either scalars or tensorial variables are assumed, such that:

(35) Ny = Z:'zlc (¢i_j1 Ens VQEH)

where ¢ is the average damage density, =, (n = 1—4) are the viscoplasticity and
viscodamage hardening variables, and V?Z, are the corresponding higher-order
gradients (Laplacian) of =,,.

We make use here of the postulate of the isotropic influence of averaging of
the evolution equations of the assumed internal state variables =, over a repre-
sentative volume element (RVE). The first-order gradients are disregarded and
the second-order gradients are mainly considered in this work. Moreover, setting
Z, and V?E, as independent internal state variables allows one to computa-
tionally introduce independently the macro and meso-scales. It also allows these
two different physical phenomena to be identified separately with different evo-
lution equations. This approach is considered in this paper. The set of the macro
internal variables Z,, is postulated as follows:

(36) En = én (pa Qi Ty Fij)

where p denotes the accumulative or equivalent viscoplastic strain and o denotes
the flux of the residual stress (backstress). p is associated with the isotropic hard-
ening and o with the kinematic hardening in the viscoplastic flow process. Simi-
larly, r denotes the accumulative viscodamage and I" denotes the flux of the resid-
ual stress (kinematic hardening) in the damage flow process. Those viscoplastic-
ity and viscodamage hardening variables are introduced in the Helmholtz free
energy density in order to provide sufficient details of the deformation defects
(cracks, voids, mobile and immobile dislocation densities) and their interactions
in order to properly (i.e. physically) characterize the material microstructure be-
havior. These variables will provide an adequate characterization of these defects
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in terms of size, orientation, distribution, spacing, interaction among defects, and
so forth. In addition, in order to be able to achieve this, macroscale discontinu-
ities influence should to be addressed and implemented properly.

For the strain-softening regime of the material behavior, the non-homogenous
states of deformation can appear as localized regions with large deformations. A
suitable description of the evolution of such zones can be obtained with the use
of a non-local or gradient theory, examples of which are given by AIFANTIS [2],
MUHLHAUS and AIFANTIS [69], BAZANT et al. [12], and VOYIADJIS et al [96].
The gradient theory introduces in the material constitutive equations higher-
order deformation gradients with coefficients that represent length-scale mea-
sures that characterize microstructural links with the non-local continuum. An
attempt is made here to account for the non-uniform macroscale viscodamage
and viscoplastic distribution on the overall macroscale response by assuming
the thermoelastic Helmholtz free energy density ¥ to depend not only on the
macroscopic response associated with the internal variables =,, but also on its
macroscopic spatial higher-order gradients V2Z,,. Both =, and V2%, are con-
sidered to be independent of each other. This postulate is motivated through the
fact that certain internal state variables such as the mobile and immobile disloca-
tion densities do not necessarily have the same evolution equations (BAMMANN
and AIFANTIS, [8,9]). They have different physical interpretations that guide one
to different evolution equations for Z, and V2Z,. Thus, the set of internal state
variables V2Z,, are postulated as follows:

(3.7) Vg, = V25, (V?p, Viayj, Vr, VT;;)

where V?(0) denotes the corresponding higher-order gradient Laplacian of (O).
The assumed dependence of the Helmholtz free energy on the distinct variables
V?2ZE, is also motivated by the necessity to include length-scale measures into
the equations of state that link the mesoscale interactions to the macroscale
viscoplasticity and viscodamage, which can not be captured by Xi, variables
only.

The viscoplastic hardening presented by the internal state variables p and «
accounts for the dislocation interactions. The isotropic hardening internal state
variables p and V?p are associated with the density of dislocations in the current
state and characterized by statistically stored dislocations and geometrically nec-
essary dislocations, respectively (GAO et al., [40] FLECK and HUTCHINSON, [36]).
The kinematic hardening variables a and V2 correspond to the incompatibility
of viscoplastic deformation between various parts of the material (LEMAITRE
and CHABOCHE,[59]). Hence, the viscoplasticity hardening variables depend on
the interaction of the statistically stored or mobile dislocations and geometrical
necessary or immobile dislocation densities. On the other hand, the viscodamage
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hardening presented by the internal state variables r and I accounts for retar-
dation of the (micro)-crack growth at higher strain rates resulting from (micro)-
crack growth arrested by other (micro)-defects (VOY1ADJIS and DELIKTAS, [95],
ABU AL-RUB and VoYIADJIS, [1]). The gradient of the assumed internal state
variable is used to describe the corresponding non-local material behavior, i.e.
it is used to overcome the deficiency of the classical continua to capture the
length-scale effects due to localization of viscoplasticity and viscodamage. The
damage variable ¢ reflects the material degradation at a micromechanical scale
due to nucleation and coalescence of voids, cavities, and microcracks in an av-
eraged sense. The determination of the assumed internal state variables is the
main challenge of the constitutive modeling.

The proposed viscoplastic and viscodamage constitutive modeling is formu-
lated within the framework of thermodynamic principles; that is, the use of bal-
ancing laws, the conservation of mass, linear and angular momenta, and the first
and second laws of thermodynamics. Those fundamental laws of continuum me-
chanics in the spatial representation can be written as follows (COLEMAN and
GURTIN [23], LUBLINER (63|, LEMAITRE and CHABOCHE [59], BELYTSCHKO
et al. [16], DOGHRI [29]):

(1) Conservation of mass
(3.8) p+ pdiv(v;)) =0 or pJ=p°
(i1) Balance of linear momentum
(3.9 div (%nj) + pb; = p;.
(iii) Balance of moment of momentum
(3.10) =

(iv) Conservation of energy (first law of the thermodynamics)
. 1 1
(3.11) U= E'fijdij + i~ ;CIk,k-

(v) Law of entropy (second law of the thermodynamics)

(3.12) pii + div (%) y p% > 0.
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and the Clausius-Duhem inequality, which can be derived from the previous laws
of thermodynamics, such that:

. 1 gi
(3.13) —u+ 0T + ETijdij — p—TViT >0

where p° is the reference mass density, p is the current mass density, v is the
spatial velocity vector, b is the specific body force vector, u is the internal energy
density, h is the external specific heat source, n is the specific (per unit mass)
entropy, ¢ is the heat flux vector, and J > 0 is the determinate of the deformation
gradient tensor F. V denotes the first order gradient (V; = d/0z;). Meanwhile,
u, ¥, T, and n are related by:

(314) y = ‘U.—-TT[

Using the above equation in Eq. (3.13), one can rewrite the Clausius-Duhem
inequality as follows:

(3.15) rigdig — p° (& +0T) - JZV,T > 0.
T
Note that the time rate of a spatial field ( f) is defined as the material-time
derivative (D f/Dt) and given as follows:

bf_of ., Of
Dt ot "™az,

The Lie derivative of Eq. (3.3) with respect to its internal state variables in the
updated configuration is given by:

(3.16) f=

. g Oy o N jd oY
(3.17) Y= e Edz] + 6—TT+ oV, T V T+ﬁ‘] AR, ——L,(Ng)
where

ov ov ov ov
18 — Ly (R ——Ly(Eg) + e 2z,).
(3 ) 3Nk ( k) 642” (¢z]) =, v( n)+aVQEnLv(V n)
The last two terms of Eq. (3.18) are given by:

ov -, oV ov ov., ov
(319) a—EnLv(_n) app-l— B IJL (Olq,]) + E‘T"I‘ ELU(FZ])
and

ov ov av
3.20 L (V°Ey) = V2 P T
(320) gyvag, L(V'En) = o, VP + gyagy 1V o)
d ov
2 2
‘s PNV \Y +3\72F,J Ly(V°Ty5)
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Note that in Eq. (3.17) the Lie derivative of the Almansi total elastic strain
(LyeF) defines the total elastic spatial rate of deformation tensor (d¥). The
material-time derivative of the Jacobian of the damage deformation (J¢) is ex-
pressed as follows:

8J°
—— F = J%6y;.

d —
(3.21) 7= 5re

Substituting the rate of the Helmholtz free energy density (Eq. (3.17)) into the
Clausius-Duhem inequality (Eq. (3.15)), one obtains:

(3.22) ( p(,?ﬁ.)d

o) aw 6¢ e o 6¢ 1

if

) ; oy o 0¥ di
+T,Jd:; o° (6T+n)T paVTVT ax; —— LNy — JTVIT 0.

Assume that the axiom of entropy production holds, then the above inequality
equation results in the following thermodynamic state laws:

ij = 6 E’ n BT’ T P aviTv
(3.23) o0 o0
P=—tpi 2= gy

The above equations describe the relation between the state variables (observable
and internal) and their associated thermodynamic conjugate forces. These ther-
modynamic forces conjugate to their state variables are listed in Table 1, where
S ={Y,R,X,K,H,R9, X9, K9, HY} are the conjugate forces corresponding to
the viscoplastic and viscodamage internal variables = = {®,p, &, 7, T, V2p, Via,
V?2r, V2I'} respectively. The stress 7 is a measure of the elastic changes in the
internal structure, while Y is a measure of the elastic-damage changes in the in-
ternal structure resulting from crack closure and void contraction during the
unloading process. The conjugate forces R and X are measures of the vis-
coplastic changes in the internal structure, while K and H are measures of the
viscoinelastic-damage changes in the internal structure. P is the thermodynamic
pressure, where Eq. (3.23)4 is consistent with the definition of thermodynamic
tension (which is opposite in sign to that of pressure) of Gibbsian thermody-
namics (NARASIMHAN [73]).
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Table 1. Thermodynamic state variables and their corresponding conjugate

forces.
=

?)tsssr:;;;: g Internal Associated Conjugates

e T

T 7
e? T
e’ -7
2 &
vT q
p, Vp R, RY
a, Via X, X9
r, Ver K, K¢
T, V°T H, H¢
¢ Y

The additive decomposition of the rate of deformation tensor (Eq. (2.24))
implies that the Helmholtz free energy function ¥ can be written as a sum of
elastic, viscoplastic, and viscodamage portions, such that:

(3.24) w(efj,T,viT,J‘i;Nk)

= ¢ (853 T-) ViT, ¢"L]) + g (Tw V'iT:pi VZP, a4, Vzaij)

+ ol (T, VT, J% r,V?r, T;;, V2T, qsij)

where ¢ is the thermoelastic stored energy, while ¥*Pand ¥? are the energy
stored due to material hardening.

The complexity of a model is directly determined by the form of the Helmholtz
free energy ¥ and by the number of conjugate pairs of variables. It is possible
to decouple the Helmholtz free energy into a potential function of each internal
state variable in such a way that an analytical expression for the thermodynamic
potential is given as a quadratic form of its internal state variables. However, cou-
pling is possible in the viscoplastic potential or the viscodamage potential if they
depend on more than one variable (HENRY and HASLACH [45]), which makes the
evolution equations more complex. CHABOCHE [22] said that an energy ¥ with
non-quadratic kinematic hardening variables leads to abnormal results, but cou-
pling with temperature was not discussed there. In high velocity impact-related
problems, very high-strain rates combined with large deformations can produce
a significant temperature rise due to adiabatic heating, where most of the work
done on solids is usually dissipated in the form of heat resulting in local increase
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in temperature, which affects the behavior of the material during deformation.
This necessitates the inclusion of the temperature in the constitutive modeling
of the material. KAPOOR and NEMAT-NASSER [50] measured the energy con-
verted to heat during inelastic flow using infra-red method for some metal alloys.
The infra-red measurements showed that 70% of the work done is converted to
heat. BJERKE et al. [17] examined experimentally the role of plastic deformation
in generating heat during dynamic compression and fracture of polycarbonate,
where Split Hopkinson pressure bar (SHPB) experiments and opening mode
dynamic mode fracture experiments were performed to measure the thermome-
chanical response of polycarbonate at various loading conditions. The results
indicate that plastic deformation is not the main source of heat generation dur-
ing the dynamic fracture, but it only accounts for about 8% of the measured
heating and the other portion is due to thermofracture coupling providing that
the deformation is the only source of material heating. Hence, the thermome-
chanical coupling in both viscoplasticity and viscodamage mechanisms needs to
be considered in the material behavior modeling for more accurate comparisons
with the experiments. A necessary explicit multiplicative temperature coupling
term can be introduced in the hardening state variables for more realistic de-
scription of their evolution equations and good conformity with the experimental
observations that show strong dependence of such states on temperature.
The thermoelastic energy (¥€) is postulated as follows:

1
(325) ¥ = 5 el ignt(4) i

1
200T

1 1
- p'_oﬁijeiEjAT — AT — §CAT2 - kijViijT

and the viscoplastic and viscodamage energies, ¥*? and ¥? on the long term
manifolds (neglecting the short term manifolds) are respectively assumed to have
the following analytical forms, such that:

v v 2
(3,26) TP = ﬁ [a1p2 + as (Vzp) + a3 + a4V2aijV2aij]

9
(3.27) 9= 2 [a5'r2 +ag (V2r)” + 7Ty Ty + asVZPijVQFij]

+¢ (T -T,)

where $(¢) is the fourth-order damage elastic tensor and is a function of ¢,
are the thermo-mechanical coefficients, c is the coefficient of thermal expansion,



NON-LOCAL COUPLING OF VISCOPLASTICITY. .. 63

7y is the reference entropy, ax(k = 1 — 8) are the material-dependent constants,
k is the heat conductivity coefficients tensors, AT = T — T, is the temperature
difference, ¥ is the homologous temperature defined as ¥ = 1 — (T'/T},)", where
n is the temperature softening component, 7 is the reference temperature, and
Ty, is the melting temperature. ¢, is the specific heat at constant volume (or the
constant volume heat capacity), and T% is chosen to have the form of ideal gas
temperature that can be expressed as follows:

(3.28) T%
=Trexp|[(n —nr)/c] [1 + Ed] (W_I)exp [(’y -1) (1/(1 + sd) - 1)] .

¥ = ¢p/cy is the ratio of the specific heats, where ¢, is the specific heat at constant
pressure. Both ¢, and ¢, are related to the gas constant by ® = ¢, — ¢,. The
above expression is postulated in order to derive an expression for the equation
of state, which relates pressure to specific density. e? is the nominal volumetric
damage strain, which can be expressed in terms of J¢ as:

(3.29) g = ],

Note that in this paper the foregoing material properties are taken as inde-
pendent of temperature unless specifically stated otherwise.

The proposed definition of ¥ allows the derivation of the constitutive equa-
tions and the internal dissipation described next. Moreover, the definition of the
different contributions of ¥ given by Egs. (3.25), (3.26), and (3.27) consider the
density at the initial configuration p° instead of its current value p. This simpli-
fication is consistent with most of the large strain models exists in the literature
(see DOYLE and ERICKSEN [31], DUSZEK-PERZYNA and PERZYNA [32], CELEN-
TANO [21] etc). However, any density change in the evolution equations is given
by the conservation of mass law (Eq. (56)). The constitutive equations for stress
and entropy, Eqgs. (3.23); and (3.23)3, can be written from the thermodynamic
potential equations, Egs. (3.25), (3.26), and (3.27), by neglecting higher-order
derivatives, such that:

(330) T,'j = Sz’jklekEl = ﬁ,‘jﬂT,
where

o o
3.31 Sis =075 » Bii=— 5
( ) jkl = P Befgaefl ﬁl] P 8(353T
and

(3-32) N ="Ne + Nup + N4,
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where
1

(3.33) e =7 + AT + ;ﬁijeﬁv

1 a9
(3.34) Uy = 50 [alp2 + ag (vzp)2 + agoy;y + a4V2ai]‘V2aij} T

1 2 9
(3'35) Ng = 5 [blT-? + by (VQT) + bg[\ijrij + b4V2Fi]‘V2FU] 'a'f
with

ol n T \"!

(3.36) T T (ﬁ) ,

In Eq. (3.30) the instantaneous elasticity tensor & could be considered con-
stant either on the spatial (updated) or in the material (reference) configuration.
If it is considered constant in the material configuration, < is obtained by “push
forward” operation, while if it is considered constant on the spatial configura-
tion, the elasticity tensor in the material configuration comes out by performing
a “pull back” operation (CAR et. al. [20]).

The constitutive equations for the heat flux vector q and the pressure stress
P can be obtained from Eqgs. (3.23)3 and (3.23)4, respectively, as follows:

(3.37) Qi = —ki; V;T

which is the Fourier heat conduction equation. The negative sign indicates that
the heat flow is opposite to the direction of temperature increase.
The thermodynamic pressure stress P is given as follows:

(3.38) P=(1—7)c, T4

which gives the equation of state necessary for high-impact loading. The equation
of state accounts for compressibility effects (changes in density) and irreversible
thermodynamic processes.

Coupling between elasticity and damage does exist indirectly since the elas-
tic modulus is a function of the damage variable ¢. Furthermore, coupling be-
tween viscoplasticity and viscodamage exists since the viscoplastic thermody-
namic states are expressed in the current damaged configuration. The state laws
of the assumed internal state variables, Eq. (3.23)s, are obtained from Table 1
and the thermodynamic potential equations Egs. (3.25), (3.26), and (3.27) are
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expressed in Table 2 in terms of their associated internal state variables. The
superscript ‘g’ in Table 2 indicates the thermodynamic conjugate force corre-
sponding to the gradient internal variable. Other choices of the Helmholtz free
energy function ¥ lead to conjugate forces which differ in algebraic form but not
in the fundamental concept from the specific case considered here.

Table 2. The thermodynamic conjugate forces.

Isotropic Hardening R=p° ['N'p = a1p¥,
Plasticity R = Pa%!i =az (V?p) 9
Kinematic Hardening | X;; = p”“’_‘ = azqy; 0,
Xl = pf’aiv“gal = a4 (Vaij) 9
Isotropic Hardening K= "‘N' =bird,
Damage K9 = p"%—; = by (V2r) 9
Kinematic Hardening | H;; = p”% = by, HY = p"s-g—g’—;; —
by (VIy;) 9
Damage Force -Yi; =p°% Q— = af‘-j [2elSijk () et)

Substituting of Eqgs. (3.23) into Eq. (3.22) modifies the Clausius-Duhem in-
equality to express the fact that dissipation energy II is necessarily positive, such
that:

(3.39) II = ry;d]; + PJ%d%6i; — Mint — @i %@ + JV%'T >

where the rate of internal dissipation II;,; is given by the relation:

(3.40) Min; =) LyRx=—Rp-— ngp —Xi;Ly(04;) — X§Ly(V2arij)
k

— Ki — K9V —Hi; Ly (Tyj) — HS Ly (V°Ty5) + Vi Ly (655) > 0.

Based on the previous assumption of Helmholtz free energy additive decom-
position (Eq. (3.24)), the dissipation energy (Eq. (3.39)) can be rewritten as the
summation of dissipation energies due to mechanical dissipation (viscoplasticity
and viscodamage) and thermal dissipation, such that:

(3.41) I = II°7 + ¢ + I1** > 0,
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where

(342)  I'" =r;dif — Bp — R V2p—XijLy(otij) — X[ Lo(V2esi5) 2 0,

(3.43) T =7;;d4 + PJYdLs;; — K7 — K9 V2r —Hy;Ly (T))

_ Higj[,v(vgrij) + Y Ly(¢s5) > 0,

(3.44) m* = —g;

This result requires that all inelastic work should dissipate away as heat, ex-
cept for that energy which is stored because of the rearrangement of the material
internal structure. Note that not dissipation occurs not only due to deviatoric
stresses associated with d"? and d* but also due to the pressure stress associated
with d?. This result suggests that viscoinelastic-damage deformation is controlled
by deviatoric as well as volumetric stresses, while the elastic-damage deformation
is mainly controlled by volumetric stresses. Moreover, writing the dissipation po-
tential function IT as in the decoupled form shown in Eq. (3.41) does not mean
that the corresponding physical mechanisms are decoupled. Coupling does oc-
cur in the viscoplastic potential given by Eq. (3.42) between viscoplasticity and
viscodamage since the conjugate forces are expressed in the current deformed
and damaged configuration of the material. Hence, two additive damage mecha-
nisms are introduced in the dissipation function (Eq. (3.41)); one mechanism is
coupled with viscoplasticity and the other occurs independently of viscoplastic
deformation. Complementary laws can be related to the dissipation processes
given by Egs. (3.42) and (3.43). This implies the existence of the dissipation po-
tential expressed as a continuous and convex scalar-valued function of the flux
variables.

It is obvious that the definition of ¥ and consequently of L,N; (kK =1—9)
are essential features of the thermodynamic formulation in order to describe the
thermomechanical /microstructural behavior of the material involved in the de-
formation process. The evolution laws of d! and ¢ can be obtained by utilizing
the calculus of several variables with Lagrange multipliers A¥? and A%. The dis-
sipation function I/ = IT*? 4+ I1¢ (Eq. (3.41)) is subjected to the two constraints,
namely f =0 and g = 0 (VOYIADJIS and KATTAN [98]), such that:

(3.45) Q=117+ 1% — A”F — A%.
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For generality purposes, we will assume here that the time-dependent be-
havior of both viscoplasticity and viscodamage mechanisms are controlled by
different relaxation times associated with A*” and A%, which may not generally
be the case. This congruous is suggested to occur only for material impact be-
havior above a certain material threshold of impact speed. This is not the subject
of the present work, but it will be discussed thoroughly in a forthcoming paper.

Now we make use of the maximum viscoinelastic dissipation principle (SiMO
and HONEIN [88], SiMO and HUGHES [89]), which states that the actual state
of the thermodynamic forces (T, Y) is that which maximizes the viscoinelastic
dissipation function over all other possible admissible states. Thus, we maximize
the objective function by using the necessary conditions as follows:

o0 o0

(3.46) 0 and Mj:o.

015 -

Substitution of Eq. (3.45) into Eq. (94) along with Eq. (3.41) yields the thermo-
dynamic laws corresponding to the evolution of the total inelastic deformation
rate (d’) and the viscodamage variable (&), where Eq. (4.46); gives the inelastic
deformation rate tensor as follows:

of

) .2 iy
47 gl = AP 2. 4 A¢
(3.47) K O7ij T 0T

Considering the earlier postulate of the additive decomposition of the inelas-
tic deformation rate into viscoplastic and viscodamage parts (Eq. (2.27)), the
following assumption is made:

of

. s« gl
4 d'? = AV i A% 2
(3.48) ij 7r; and d;j A Bri;

while Eq. (4.46), gives the viscodamage rate evolution law as follows:

sop 8 | 14 98
)y = A 2L
(3.49) Ly(¢i;) = A 3y, +A aY,;

where f and g are respectively the dynamic viscoplastic and viscodamage loading
surfaces outlined in the following section. Egs. (3.47) and (3.49) show that a
strong coupling exists between viscoplasticity and viscodamage in such a way
that d’ is decomposed into viscoplastic (d"?) and viscoinelastic-damage (d*¢)
components and both d/ and ¢ are expressed in terms of the viscoplastic and
viscodamage potentials.

Now, in order to obtain non-associative rules for the viscoplasticity and vis-
codamage hardening variables, one can assume the existence of a viscoplastic
potential ' and a viscodamage potential G such that they are respectively not
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equal to f and g. This postulate is essential in order to obtain nonlinear viscoplas-
tic and viscodamage hardening rules, which give a more realistic characterzation
of the material response in the deformation process. The complementary liws for
the evolution of the other internal state variables can then be obtained drectly
from the generalized normality rule, which are summarized in Table 3. Thoe evo-
lution laws show strong viscoplasticity and viscodamage coupling. This strong
coupling results, on the one hand, from the fact that the viscoplasticity evolu-
tion equations are obtained in the current, deformed, and damaged state and,
on the other hand, the damage evolution equations are expressed in termsof the
viscoplastic and viscodamage potentials.

It is noteworthy to mention that the Lagrangian parameters A% and \%, re-
spectively, characterize the effective or equivalent viscoplastic and viscocamage
deformations. Therefore, the evolution of the assumed gradient variables  asso-
ciated with the gradients of A*? and A?. This is clearly shown by the evdution
equations of V?p, Lya, V?r, and L,I" in Table 3.

Table 3. The thermodynamic laws for the evolution of the internal stite

variables.
;5 Isotropic Hardening p=—Aw2E
Plasticity ; . ok
Evolution Laws e 2 vp OF
\Y = -VeA DR
Kinemfitic Hardening Ly(a;;) = —A”P%,
Evolution Laws L,(V2a;j) = —V2AvP Bé;;:j
i Isotroglc Hardening r= =P,
Evolution Laws = .
V2r = —V2A* =%
Kinemfitic Hardening L,(Ty;) = —Ada%%,
Evolution Laws LU(VZF,'J') = —2Ad 3(3{6:;

The non-local evolution of each of the assumed internal state variables LU_E,T,,
(n =1—4)) at position z in the current configuration, can be expressedas the
weighted average of its local counterpart L,Z, over a surrounding volune v at
a small distance |(| < L¢ from the considered point, such that:

1

(3.50) Lo =3 [ MO LE e+ do,

where L. is an internal characteristic length and & (¢) is a weight functia that
decays smoothly with distance and in this work is given by h ({) = Ih(() vhere I
is an identity tensor. However, the identity tensor I may be suitably subsituted
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by another tensor in order to induce further anisotropic behavior of the material
(Voyiapyis and DORGAN [97]).The local variable L,Z, in Eq. (3.50) can be
approximated by a Taylor expansion at ¢ = 0 such that:

(3.51) LyEn(z+() = LyEq (z) + VL,E, (2) ¢ + %VQLEETA (z) ¢C

where V¢ denotes the i-th order gradient operator. Assuming only an isotropic
influence of the averaging equation, as we stated previously, the integrals of the
odd terms in Eq. (3.51) vanish. Furthermore, making use of Egs. (3.50) and (3.51)
and truncating the Taylor series after the quadratic term lead to the following

expression for the nonlocal variable L,Z,,:

~ 1 1
(3.52) LyEn = - fh(g)L,,an (z)dv + %/h(C) V2L,E, (z) ({ dv.

This relation can be expressed as a partial differential equation such that:

(i

=L = _1_ 27 =
(3.53) LyEn= LyBy + zv/[h(C)]ngv VLyEx.

.1 .
However, setting ;/[h(z)} dv =1, Eq. (3.53) can be re-written at constant z

v

as follows:

(3.54) LyZn = LyZp + ¢y Ly V2E,,.
such that:

(3.55) p=p+cVop,

(3.56) Ly(@45) = Ly(aij) + caLo(VZai;),
(3.57) N =

(3.58) Ly(Ty5) = Ly(Tyj) + 4Ly (V2Ty).
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In Egs. (3.54)-(3.59), (n = 1—4) are constants proportional to length squared
and weight each component of the gradient term identically, which give a rise for
explicit length-scale measures. If one assumes a more general tensorial character
for h not necessarily confined to the expression in terms of an identity tensor,
then one obtains a different weighting of the individual coefficients. This will
give a weighting function with a tensorial nature ¢, containing several different
integration constants.

Following Eq. (3.54), one can write the evolution equations of the correspond-
ing non-local state laws as follows:

(3.59) LyEn = LyTn + Ly2Y,
such that:

(3.60) E: R+ RY,

(3.61) Ly(X i) = Lo(Xs5) + Lo(X5),
(3.62) K =K + K,

(3.63) Ly(Hij) = Lo(Hy) + Lo(HE).

The next important step is the selection of the appropriate form of the vis-
coplastic potential function F' > 0 and the viscodamage potential function G > 0
in order to establish the desired constitutive equations that describe the mechan-
ical behavior of the material. It is clearly seen in the previous part of this work
that the viscodamage evolution laws are strongly coupled with viscoplasticity.
To maintain this strong coupling, two independent viscodamage mechanisms are
distinguished. One mechanism is coupled with viscoplasticity, while the other one
occurs independent of viscoplastic deformation. Similar argument was presented
by HESEBECK [46], where he showed that the first mechanism is dominated in
the case of shear stress and the second one for hydrostatic stress. In order to
be consistent and satisfy the generalized normality rule of thermodynamics, a
proper analytical form for the viscoplastic and the viscodamage potentials need
to be postulated to obtain consistent evolution equations for the flux variables,
such that:

oy b i e S b e, Bl s
(3.64) F = f 4 gk XnKn + ko X X + Skl + §k4Rgz,
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1 1 1 1
(3.65) G = g+ 5ksHmnHomn + 5 he A H, + Eksz 4 51381(92,

where k; (1 = 1 — 8) are material constants used to adjust the units of the equa-
tion, which are again independent of temperature. X and X9 are the effective
backstress tensors associated with the kinematic hardening and are expressed
similarly to Eq. (2.29) as:

(3.66) Xy = Mixj X and X%‘ = Mixj X},

The isotropic hardening represents a global expansion in the size of the yield
surface with no change in shape. Thus for a given yield criterion and flow rule,
isotropic hardening in any process can be predicted from the knowledge of the
functions R and RY, and those functions may in principle, be determined from
a single test (e.g. the tension test). Therefore, the effective isotropic hardening
functions R and RY are related to the nominal isotropic hardening function R
and RY similar to Eq. (2.29) as follows:

R

1—-7

(3.67) =

b]

_ RY

3.68 RY = ,

(3.68) g

where r is defined as the accumulative or equivalent damage and can be expressed
as follows:

(3.69) r =/ bijdi; -

The assumed potential functions indicate the need for two loading surfaces f
and g, one for viscoplasticity and another for viscodamage, respectively. Thus,
the coupled anisotropic viscoplastic and viscodamage formulation is a two-surface
model whereby anisotropic viscodamage is formulated in the spirit of viscoplas-
ticity, complete with a viscodamage criterion and flow rules.

4. Viscoplasticity yield criterion and its corresponding flow rules
4.1. Viscoplasticity yield criterion

Once a material is damaged, further loading can only affect the undamaged
material. Thus, the viscoplastic function f is defined in terms of the effective
stresses. For the classical J; rate-independent plasticity, the static yield surface
[s (at negligible viscoplastic strain rate) is assumed to be of a von Mises type
with isotropic and kinematic hardening, and defined as follows:

(1) fi= \/3J2 (7 = Xij = X8) = 74 (1) ~ R(B,T) - B (V?5,T) < 0
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where J, = 1/2(7 — X — X9) : (7 — X — X9) is the second invariant of the
deviatoric stress tensor (7 — X — X9), 7,,(T) is the initial yield strength as a
function of temperature, R and RY are the isotropic hardening functions, 7’ is
the absolute temperature, and p is the equivalent viscoplastic strain. T is the
effective deviatoric Kirchhoff stress tensor, X and X9 are the effective backstress
tensors associated with the kinematic hardening. T is expressed in terms of the
viscodamage tensor M (given by Eq. (2.30)) and the corresponding damage states
as follows (VOYIADJIS and KATTAN [100]):

(4.2) ’I’;j = szjktTkl with Mijkl = Mijkt — %Mr'rkldij-

The accumulative or equivalent rate of the effective viscoplastic deformation (p)
is defined by:

.2
(4.3) e 1 BE T

where d'P is the viscoplastic deformation rate tensor in the effective configura-
tion.

The extension of Eq. (4.1) to include the rate-dependent plasticity (viscoplas-
ticity) implies that the stress state is no longer constrained to remain on the yield
surface but one can havefs; > 0. Therefore, we define the dynamic yield surface
f as follows:

44 f= \/3J2 (7~ i~ X5) ~Fp— R— B —7p =0

where 7,, = (fs) is the viscous effective stress (or the overstress, i.e. the dif-
ference between the dynamic stress and its static counterpart) and (z) denotes
the MacAuley brackets defined by (z) = (z + |z|)/2. Clearly, 7, is the common
notion of viscoplasticity (PERZYNA [78]), which implies that an inelastic process
can only take place if, and only if, the overstress 7,, is positive. From the as-
sumed yield function f the current effective yield stress can be defined as follows
to account for high-strain rate and temperature effects:

(4.5) Y =7 (T) + R (5, T) + R? (V?5,T) + 7up (B, VD, 5, V?p, T)
where one can define the initial yield strength 7, as follows:
(4.6) Typ (T) = 09

where Y, is the initial yield stress in the undamaged state, which is obtained at
zero absolute temperature, zero viscoplastic strain, and static strain rate, and
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¥ =1—(T/Ty)". The evolution equations of the hardening functions R, R9, X,
and X9 will be derived in the subsequent sections.

The proposed dynamic yield criterion f = 0 (Eq. (4.4)) is a generalization of
the classical von Mises yield criterion f; < 0 (Eq. (4.1)) for rate-dependent mate-
rials. The latter can be simply recovered by imposing p = p, (rate-independent),
so that one has the plasticity case f < 0, where pg is the static strain rate
(i.e. the smallest strain rate of the strain-rate range considered), and is called
the control strain rate according to the notation of PERZYNA [81]. In the elas-
tic domain, both f; and f are equivalent since, in that case, p = 0. Therefore,
the admissible stress states are constrained to remain on or within the elastic
domain (f < 0). The viscoplastic parameter AP > 0, which is known as the
plastic consistency parameter, is assumed to obey the following Kuhn-Tucker
loading/unloading conditions (SiM0O and HUGHES, 1998):

<0 =AY =0 elastic unloading
(4.7) f<0 and f =0 =A"”=0 \ o ! neutral loading
=0 =A”>0 plastic loading

Thus, f still satisfies the constraint equation Eq. (3.45) and the maximum
dissipation principle Eq. (94);.

4.2. Viscoplastic flow rule d"?

One can substitute in Eq. (4.48); different admissible forms for the La-
grange multiplier A”P without violating the constrained maximization problem
presented by Eq. (4.46),. However, the evolution equation for A" is now defined
in a quiet similar way as in the classical viscoplasticity. Several evolution equa-
tions have been proposed in the literature to calculate the viscoplastic strain
rate. Some of them are physically-based and others are phenomenological. The
most widely used in rate-dependent plasticity (viscoplasticity) are those based
on the overstress concept (ZENER and HoLLOMON [108], [109], MALVERN [65],
[66], PERZYNA [77], [78], [80], [83]). One of the first and most widely used phe-
nomenological models for rate-sensitive plastic flow is due to PERZYNA ([77],
[78], [79], [80], [81]), which has been often considered in computational applica-
tions. On the other hand, ZENER and HoLLoMmoN ([108], [109]) proposed that
the functional dependence of the magnitude of the inelastic strain rate of metals
could be multiplicatively decomposed into two functions: thermal (static) and
stress (dynamic). FREED and WALKER ([37], [39]) and FREED et al. [38] showed
that the Zener parameter is very general and includes many viscoplastic theories
as special cases. In the spirit of the Perzyna-type and Zener-type evolution equa-
tions for the viscoplastic strain rate, one can postulate the following admissible



74 G. Z. Voviapiis, R. K. ABu AL-RuB, A. N. PALAZOTTO

form for the Lagrangian multiplier AP such that:

; 1 (Tup) }ml
4.8 AR = [ VUL
( ) Thp [‘T'yp + R+ RY

where my is the viscoplastic rate sensitivity parameter and 7, is the viscosity
or fluidity parameter, sometimes referred to as the relaxation time according to
notation of PERZYNA [81]. Note that the script “vp” used as a superscript or
subscript does not designate tensor indices but hardly denotes the corresponding
viscoplasticity.

One can now utilize the hypothesis of viscoplastic dissipation equivalence Lee
et al. [58], VOYIADJIS and THIAGARAJAN [103], VOYIADJIS and DELIKTAS [95].
This hypothesis assumes that the viscoplastic energy in terms of the effective
and nominal stress and strain quantities must be equal. Thus, one can write the
following relation, such that:
(4.9) &} = Nikjdyy
where N is the inverse of the fourth-order damage tensor which is given by Eq.
(2.32).

By making use of the effective stress equation (Eq. (2.29)) and the effective
viscoplastic deformation rate equation (Eq. (4.9)), we can write the viscoplastic
deformation rate equation (Eq. (96);) as follows:

. af

: d;? = AP —
(4.10) g = A oy
Since 8f /07 : 8f /97 = 1.5, it can be easily shown that the effective rate of the

accumulative viscoplastic deformation rate (p) defined by Eq. (4.3) is related to
V' by:

(4.11) p=A"P,

By making use of Eqs. (4.8) and (4.11), one can write an expression for the
overstress function 7, as follows:

(412) Tup = (up) ™ (Fyp+ R+ RY).

Note that from Eq. (4.12) the classical von Mises criterion fs = 0 (Eq. (4.1))
for rate-independent materials can be simply recovered by imposing 7., = 0
(no viscosity effect) on f (Eq. (4.4)). Moreover, the well-known fact tha:, from
the relation in Eq. (4.8), it can be noted that as the viscosity parameter 7,y
goes to zero, the consistency parameter VP remains finite and positive (though
indeterminate) since 7, also goes to zero.
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Setting the dynamic yield function f in the proposed form allows one to
use effectively the well-known rate-independent radial-return algorithm to inte-
grate the viscoplasticity governing equations. Applying the consistency condi-
tion, f = 0, also gives A" as proposed in Eq. (4.8).

4.3. Viscoplastic hardening rules

Now, in order to derive the evolution of the viscoplasticity isotropic hardening
functions R and RY in the effective state to be used in the dynamic yield function
f, we makes use of Egs. (3.64), (3.67), (3.68), (4.4), and (4.11) in p and V2p
equations in Table 3 along with the chain rule, such that the following expressions
can be written :

._ D _ =
(4.13) g (1-ksR),
S 25 _
(4.14) V2p = 1V—I:~ (1 - ksRR).

By operating on R and RY relations in Table 2, and R and RY relations (Egs.
(3.67) and (3.68)) with the Lie derivative for a given temperature and keeping
the damage history constant (i.e. the damage internal state tensor ¢ and tem-
perature T' are kept constant), one can write the following evolution equations
for R and RY, respectively, as follows:

L S, ¥

(4.15) A
(4.16) RY = %_V—?;f (1— kyR9) 0

Now in order to derive the kinematic hardening evolution equations associated
with viscoplasticity, one makes use of L, equation in Table 3 along with the
chain rule and Eq. (114),, such that one can write the following:

OF

(4.17) Ly(ai5) = _Avaminjms

Substitution of Eq. (3.64) into the above equation yields:

; o =
(418) Lu(aij) = —AUpMm,;nj (B—X{;; =+ lemn) )
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Since Bf/ﬁ‘)_( = —Jf /07 as it is clear from Eq. (4.1), it can be easily shown by
using Eqgs. (4.10) and (4.11) that Eq. (4.18) can be rewritten as follows:

(4'19) L'u(aij) = Mminj (Ci%)n - klﬁxmn) .

However, operating on the X relation in Table 2, and X relation Eq. (114),
with the Lie derivative for a given temperature and keeping the damage history
constant (i.e. the viscodamage effective tensor M and temperature T are kept
constant), one can write the following evolution equation for X as follows:

(4.20) Ly(Xij) = MigjtMongkni (a3di?, — k1639 Xmn) 0.

When the infinitesimal deformations and rate and temperature-independent
response of a material are assumed and the micro-damage effects are neglected
then the kinematic hardening law (Eq. (4.20)) reduces to that proposed by ARM-
STRONG and FREDERICK [6)].

Similarly, by utilizing L, V2@ equation in Table 3 and the Lie derivative of
X9 relation in Table 2, one can write the gradient-dependent evolution equation
of viscoplasticity kinematic hardening (L,X9) as:

= 0
(421) Lv(Xyi) — Mikleman (a4

s kza4)_(;qnn) V2 pd
OTmn

It is noteworthy to point out here that the derived evolution equations of vis-
coplasticity hardening (R, R9, L, X, and L, X9) containing hardening terms that
represent the strengthening mechanism as well as recovery terms that represent
the softening mechanism. Both the hardening and recovery terms are affected by
the static (thermal) recovery term © in such a way that the functional depen-
dence of the hardening of materials could be multiplicatively decomposed into
two functions: thermal (static) and stress (dynamic). Therefore, those evolution
equations characterize the time and thermal effects due to the rate and tem-
perature dependence. FREED et. al. [38] pointed out that in viscoplasticity at
elevated temperatures, thermal recovery of materials usually plays an important
rule in the deformation process. In impact-related problems, the thermomechan-
ical response of the assumed internal state variables is strongly dependent on
the temperature history. This requires existence of thermal recovery (softening)
terms in the evolution equations of the internal state variables.

4.4. Damage evolution criterion and its corresponding flow rules

4.4.1. Damage evolution criterion. By combining viscoplasticity with viscodam-
age, it seems natural that damage can only affect the undamaged material skele-
ton. Thus the viscodamage function ¢ is also defined in terms of the effective
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stresses. The anisotropic viscodamage calculation is formulated in spirit of vis-
coplasticity; therefore, analogous to the dynamic viscoplastic yield surface pre-
sented in the previous section, the dynamic viscodamage surface g which evolves
from a static damage surface g; can be postulated as follows:

(4.22) g=gs—L(T,r, 7, V2r) =0

(4.23) g = \/Jg(y;j ~ Hyj — HY) —1(T) - K (r,T) - K9 (V?r,T)

— L(T,r,V?r,7,V2r) =0

where Jo(Y — H — HY) denotes the second invariant of the damage force (Y —
H — HY), |(T) is the initial damage threshold as a function of temperature, and
L is the threshold damage force increment for microdamge nucleation, growth,
and coalescence, which is dependent on the temperature, damage accumulation,
and rate of damage accumulation.

Similar expressions for [(T) and A% can be postulated as presented by Egs.
(4.6) and (4.8), respectively, such that:

(4.24) H(T) = 19,
ad 1 (L) =
2] ey =1 I

where [, is the initial damage threshold at zero absolute temperature, zero dam-
age strain, and static damage strain rate, and ¥ = 1—(T'/T;,,)". my is the damage
rate sensitivity parameter and 7,4 is the viscosity parameter or the damage re-
laxation time, which can be different than 7,,.

By making use of Eq. (4.25), one can write an expression for the overforce
damage function L as follows:

(4.26) L = (muar)/™ (1 + K + K9) .

The postulated dynamic viscodamage function g = 0 (Eq. (4.23)) is a gen-
eralization of the static damage surface as proposed by Voyiadjis and Deliktas
(2000b) for rate-dependent materials. Similar to the yield surface, the static dam-
age surface can be simply recovered by imposing 7,4 = 0 (rate-independent), so
that one has the instantaneous damage case g < 0. In the undamaged domain,
both the static and dynamic damage growth conditions are equivalent since, in
that case, 7 = 0. Therefore, the admissible damage forces are constrained to
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remain on or within the undamaged domain (g < 0). The model response in the
viscodamage domain is then characterized as follows:

. g = gs < 0 & undamaged state = e = ;
4.27 0 d d Vi=10
<0 =A%=0 undamaged state
(4.28) g<0 and g =0 =A?=0 & ¢ damage initiation
>0 =>A4>0 damage growth

4.4.2. Damage hardening rules. Now, in order to derive the hardening evolution
equations associated with viscodamage process, we follow the same procedure
presented in the previous section for viscoplasticity. The evolution equations for
the viscodamage isotropic hardening functions K and K9 are obtained by making

use of Egs. (3.65) and (4.23) in 7 and V2r relations in Table 3 along with the
Lie derivative of K and K9 equations in Table 2 for a given temperature, such
that the following expressions are obtained:

(4.29) K =b, (1 - k:K) D

(4.30) K9 =by (1 — kgK9) V%0

Moreover, the viscodamage kinematic hardening evolutions equations can be
obtained by using L,T and L, VT relations in Table 3 and Eq. (3.65), such that
one obtains the following:

s dg
(431) Lo(Tyg) = —A° (aHij " ’“"’H”') ’
(4:32) Lo(V7Ty) = =VA° (aH% i ksH’%) |

Since dg/0H = dg/0HY = —08g/dY as it is clear from Eq. (4.23) it can be easily
shown by taking the Lie derivative of H and HY equations in Table 2 for a given
temperature that Eqgs. (4.31) and (4.32) can be rewritten as follows:

g .
(4.33) Ly(H;;) = (5387” g k5b3Hij) 79

(4.34) L,(HZ)

59 g 2.
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Similar to the viscoplastic hardening evolution equations, the derived visco-
damage evolution equations consider the dynamic recovery as well as the static
recovery (thermal recovery). Besides, the static recovery occurs in both the hard-
ening and the dynamic recovery terms. The hardening term of each assumed in-
ternal state variable accounts for strengthening mechanisms, while the recovery
terms account for softening mechanisms.

For the sake of completeness, we outline in the Appendix the derivatives that
are necessary to calculate the above derived evolution equations.

5. Rate-type constitutive relation

As previously mentioned, the elasticity tensor & can be considered constant
either in the material or current configuration. This leads to the definition of
different materials. We are going to consider here that the elasticity tensor &
is constant in the reference configuration C°. Therefore, operating on the stress
relation Eq. (3.30) with the Lie derivative and keeping the damage history con-
stant (i.e. the internal state variables ¢ constant), one can obtain for a general
thermo-elasto-viscoplastic and viscodamage flow processes the following relation:

(5.1) Ly(7ij) = Sijn (dk[ —df - dfﬁ) - BT

where S is the spatial elasticity-damage tensor related to the fourth-order tensor
of elastic-damaged constants C' (Eq. (2.31)) by the (push-forward) transforma-
tion as follows:

(5'2) Sh'jkl = ETFjstmEnCTsmn-

Similarly, Egs. (5.1) and (5.2) can be defined, respectively, using the Jaumann-
Zaremba stress rate tensor as follows:

(5.3) T = Qijkl (dkl —dF - di‘f) — BT
where
(5.4) aijkt = Sijki + 0uTjk + Sj1Tik.

Substitution of Eqgs. (4.48), (4.8) and (4.25) into Eq. (5.3), yields:

(5.5) 75 = aiju

o tlion)” o))
B Ty 'l_'yp+R+R9 Ok Mwa \l+ K + K9 Oty i
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6. Thermomechanical couplings

Substituting ¥ from Eq. (3.14) into Eq. (3.11) yields the following energy
balance equation:

(6.1) P (llf +nT + ﬁT) - p—po""ijdij —ph+q¢;=0

Substituting ¥ (Eq. (3.17)) into the above equality and taking into account the
results presented by Egs. (3.23) and (3.40) we obtain the following:

(6.2) pPiT = 735 (A + di2) = Tini + p°h + Jgi; = 0

Operating on the entropy relation Eq. (3.23)2 with the Lie derivative and sub-
stituting the result into Eq. (6.2), we obtain:

WP id P vp id , @
(6.3) pcpT = T;(;Tij (d:)f + dz]) £a TE;P (dij + d;;) — pllint + p T R T

= %ﬁﬁdﬁT + P°Tet + kV2T

where ¢, = T'dn/0T is the specific heat at constant pressure.

The rate type-equations (Eqs. (5.5) and (6.3)) take into account effects of the
viscoplastic and viscodamage strain-induced anisotropy (i.e. kinematic harden-
ing), flow stress temperature and strain-rate sensitivity (i.e. isotropic hardening),
anisotropic damage (i.e. softening generated by damage defects nucleation and
growth mechanisms), thermomechanical couplings (i.e. thermal viscoplastic and
viscodamage softening), strong viscoplasticity and viscodamage coupling, and
heterogeneity in the material behavior (i.e. the non-local influence).

7. Conclusions

A thermodynamically consistent nonlocal gradient-enhanced framework is
presented here with strong viscoplasticity and anisotropic viscodamage coupling
for impact-related problems. Thermodynamically consistent constitutive equa-
tions are derived in order to introduce issues such as the statistical inhomogene-
ity in the evolution-related viscoplasticity and viscodamage variables associated
with the RVE, localization and size effects of deformation defects on the macro-
scopic response of heterogeneous materials, and temperature and strain-rate sen-
sitivity.

This model is general enough to describe the evolution of visco-inelasticity
in a material body accounting for physical discontinuities through the use of
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a nonlocal approach based on the gradient-dependent theory of viscoplasticity
and viscodamage. The interaction of the length-scales is a crucial factor in un-
derstanding and controlling the material defects such as mobile and immobile
dislocation densities, voids, and cracks influence on the macroscopic response.
The behavior of these defects is captured not only individually, but also the en-
hanced strong coupling between the two dissipative processes takes into account
the interaction between these defects and their ability to create spatio-temporal
patterns under different loading conditions. An equation of state is presented
in this work for high impact loading that accounts for compressibility effects
(change in density) in terms of the nominal volumetric damage strain.

Length-scale parameters are implicitly and explicitly introduced into the
present dynamical formulation. Implicit length-scale measure is introduced through
the use of the rate-dependent theory, while explicit length-scale measures are in-
troduced through the use of the gradient-dependent theory.

The computational issue of this theoretical formulation with proper expla-
nation of the proper boundary conditions associated with the gradients and
evaluation of respective material parameters will be presented in a forthcoming
work. Calibration for the different material properties in the proposed approach
may be difficult, or impossible for certain cases. However, the proposed frame-
work is generalized to that of viscoplasticity coupled with viscodamage, and one
needs more studies to be performed in order to effectively assess the potential
applications of this framework.

Appendix
The following relations are necessary for model implementation:
(A'l) Y;j = Q\BEMkpqukplqij

where UF is given by:
DL A R
(A.Q) I~ = §Tij‘$ij'kl7-kf = §Tij‘sijkl7-kl’

and J is a sixth-order tensor and is given by:

3M,;jq 1
(A3) Jkplgab = " Bey 3 (01g0kabpb + Okpliadap) ,
s Of _ Of Otwn _,,  Of

an-,- i OTmn B-r,-j T e a"_'mn,
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dg dg Won g g

(A5) 'BTU = aymn aTij = € aymn Mk'pqukplqmn7
(A6) 0f _ Of Otmn _ Of (9Yy\™
’ a}fq_ o aTmn 81/1 BTmn 8Tmn ;
where
aYi;
(A.7) BT:,:;; = MigitsThstiii®mns
(A8) T
Y3 v/Jo (Y — Hy — HY)
of _ 38 Ty—Xy—Xj
G 7 2 o o
J \/BJQ ('Tr;j — Xp — Xf;)
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On the asymptotic partition of energy in the theory of swelling
porous elastic soils
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THE CESARO MEANS of various parts of the total energy are introduced in the context
of the linear theory of swelling porous elastic soils. Then, the relations describing the
asymptotic behavior of the Cesaro means are established.

1. Introduction

IT 1S ACCEPTED that the swelling of soils, drying of fibers, wood, plants, paper,
etc. are problems concerning the porous media theory. Several recent articles de-
scribe the work on the subject and introduce theories for fluids infiltrating elastic
media (see [1, 2] and references therein). Most research, in this area, is devoted
to some modification of the classical diffusion theory [3]: solids are considered
be not to deformable, fluids incompressible and inertial forces are negligible.
So, the main physics are diffusion and solid transport. On the other, hand the
classical mixture theory approach has been applied to derive a comprehensive
macroscopic constitutive theory for swelling porous media (see [4, 5, 6, 7]). A pre-
sentation of the continuum theory of mixtures can be found in review articles by
BOWEN [8], ATKIN and CRAINE [9, 10] and BEDFORD and DRUMHELLER [11].
In these works, constitutive equations and equations of motion, for mixtures
consisting of arbitrary number of fluids and elastic solids, have been obtained.
In [4], ERINGEN has developed a continuum theory for a mixture consisting
of three components: an elastic solid, viscous fluid and gas. The intended ap-
plications of the theory are in the field of swelling, oil exploration, slurries and
consolidation problems. The theory is relevant to problems in the oil exploration
industry, since oil is viscous and is usually accompanied by gas in underground
rocks, porous solid in slurries and muddy river beds. Consolidation problems in
the building industry, earthquake problems, swelling of plants and living tissues
and a plethora of other problems fall into the domain of mixture theory con-
sidered in [4]. It is also shown that the diffusion-type theories are special cases
of the present theory. We note that the theory can be extended in order to in-
corporate other effects, disregarded here. In this sense, Eringen pointed out: “In
some cases, it may be necessary to consider additional properties of mixtures.
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For example, elastic solid and/or viscous fluid may require the consideration of
memory effects. This is the case for viscoelastic materials..., dislocation problems
require consideration of non-local effects. In these problems, stress at a point
depends on strains at all points in the body. Plastic deformations of soils and
mechanics of sands are problems that require consideration of permanent de-
formations. These are crucial to the building industry. This divergence is made
here to point out to the vast field of mixture theories that are waiting future
developments.”

In the present paper we continue the study of fundamental qualitative prop-
erties of Eringen’s mixture theory [4], that began with the papers [12, 13, 14, 15].
Such studies are important to assess whether a given theory is mathematically
acceptable for use in a given physical problem. The purpose of this work is to
investigate the asymptotic partition of total energy within the context of isother-
mal linear theory of swelling porous elastic soils.

The question of partition of energy in the asymptotic form was first stud-
ied by Lax and PHILLIPS [16] and BRODSKY [17]. Further, this problem has
been studied by GOLDSTEIN [18, 19], DUFFIN [20], LEVINE [21]. In his anal-
ysis of the abstract wave equation, Goldstein applied the semigroup theory in
order to obtain an equipartition theorem stating that the difference of the ki-
netic energy and the potential energy vanishes as the time approaches infinity.
LEVIN [21] treated an abstract version of Goldstein’s approach by use of the
Lagrange identity method. His result represents a simplified proof that asymp-
totic equipartition occurs between the Cesaro means of the kinetic and potential
energies, a fact first demonstrated by GOLDSTEIN [19].

The asymptotic equipartition between the mean kinetic and strain energies
within the context of linear elastodynamics was established by DAy [22]. In the
classical linear theory of thermoelasticity, Chiriti [23] proved that the mean ther-
mal energy tends to zero as time goes to infinity and the asymptotic equipartition
occurs between the Cesaro means of the kinetic and strain energies.

This article describes the temporal behavior of solutions to the initial bound-
ary value problems associated with the isothermal linear theory of swelling
porous elastic soils. Using the method developed by Chiritd [23], we introduce
the Cesaro means of the kinetic, internal and dissipation energies. Then, with
the aid of some auxiliary Lagrange-Brun identities derived in [14], we establish
the relations that describe the asymptotic behavior of mean energies. In fact,
we prove that asymptotic equipartition occurs between the Cesaro means of the
kinetic and internal energies. Therefore, the results established by Day [22] and
Chirita [23], for elasticity and thermoelasticity, concerning Cesaro means of the
energies continue to hold (with. corresponding modifications) in the framework
of dynamic linear theory of swelling porous elastic soils.
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The method developed in [23] has also been used in [24] to study the temporal
behavior of solutions in the linear thermoelasticity of materials with voids.

2. Basic equations

We refer the motion of a continuum to a fixed system of rectangular Carte-
sian axes Ozx (k = 1,2,3). We shall employ the usual summation and differentia-
tion conventions: Latin subscripts are understood to range over integers (1, 2, 3),
summation over repeated subscripts is implied, subscripts preceded by a comma
denote partial differentiation with respect to the corresponding Cartesian coor-
dinate, and a superposed dot denotes time differentiation.

We consider a body that at time ¢ = 0 occupies the bounded regular region B
of Euclidean three-dimensional space whose boundary is the regular surface 0B.

We assume that B is occupied by a mixture consisting of three components:
an elastic solid, a viscous fluid and a gas. We use superscripts s, f,g to denote
respectively, the elastic solid, the fluid and the gas. Let p§, ,06 and pj denote the
densities at time ¢ = 0 of the three constituents, respectively. We consider the
fundamental equations for mechanical behavior of the mixture in the framework
of the linearized theory (see [4]). The equations of motion in the absence of the
body forces are

th 4 +p{ + pf = pjiis,

(2.1) tﬁ:j ——p;.f = pgﬁf

11

9 _ .9 _ g-g
t5i; — P = Poly,

f

i

where tfj,t{j
body forces and u, u{ and ! are the displacement vector fields.

The constitutive equations for a homogeneous and isotropic mixture are

tfj = (—- Z aaegr = Ae:"r') 67-.7 T 2""'65.7’
a=f,g

t,f;' == (—o-fef'r X Z O-faegr )‘Uéfr)dij + Zpuéifj’
a'=flg

and tfj are the partial stress tensors, p; and pf are the internal

(2.2)

g . s a_a
tij —F (_age'r‘r - Z 0.9 err) 6ij:

a=f,9

pi= ) &% -1f), a=f,g,

b=f.g
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where 0% (a = f,9), A\, i, 0% (a,b = f,9), A, 1, €% (a,b = f, g) are constitutive
constants; d;; is the Kronecker delta; and ej;, ¢; f and efj are defined by

1 1 1
23) o= ltu), el = gl vul), e =Sl
The coefficients in relation (2.2) have the following symmetries:
(2.4) o P =¢" ab=fg.

To the system of field equations we adjoin boundary conditions and initial
conditions. Many different types of boundary conditions are suggested in applica-
tions [8]-[11], [25]. We consider the following homogeneous boundary conditions:

w=0 uwl=0 =0 on S x [0,00),

(2.5) :
(t5 +th+9)n; =0, ul —uf =0, uf —uf =0 on S x [0,00),

where S; (i = 1,2) are subsets of dB such that 9B = S; U S, S§1 N Sz = 0.
Moreover, we adjoin the following initial conditions:

uf(x,0) = af(x) , uf(x,0)=af(x), uf(x,0)=a!(x),

(2.6)
wf(x,0) = bi(x) , ©f(x,0)=b/(x), @©d(x,0)=0bl(x), x€B,

where a?, a { , al, b, bf b are prescribed fields. We denote by (P) the initial-
boundary value problem defined by the basic equations (2.1), the constitutive
equations (2.2), the geometrical equations (2.3), the boundary conditions (2.5)
and the initial conditions (2.6).

As was shown by ERINGEN [4], the local form of the Clausius-Duhem in-

equality implies that

(2.7) BAp +20: 20, B 20,
and the following symmetric matrix is positive semi-definite
_ gff gla
(2.8) A= ( gof goe )0
so that the dissipation energy density ® defined by
(2.9) D =) e{zefj H 2;1,,6 + Z £ (0? — uf)(ad — af),
ab=f.g

is non-negative.
The internal energy density & is defined by

(2.10) E= —/‘\eflejj + uejje Z gteges, —= Z o, ?;
a=f,g ab—fg
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3. Hypotheses and some preliminary results

Throughout this paper we shall assume the following:

f

(i) the densities p§, py and pj are strictly positive;
(i) the following symmetric matrix is positive definite:

/ A+ 2u A A 0 0

A A+ 2u A 0 0

A A A+2 0 0

i 0 0 0 2u 0

(3.1) h= 0 0 0 0 2u
0 0 0 0 0

—gf —af - 0 O

\ —o9 —o9 —o9 0 0

—af
g
—gf

0

0

0
—off
—gle

(e s i s B e B e

oo

so, the internal energy density £ defined by (2.10) is positive;
(iii) the symmetric matrix A is positive definite, that is we have

—a? \

—o9
—g9
0

0 1

0
—gf9
—o99

(3.2) Em Y (0 —ud)(Gf —af) < Y £%(uf —uf)(ald —af) <

a=f.g a=f,g

<én 3 (i — i) (il — i),

a=f.,g

for any 4] — u, where &, > 0 and &j; > 0 are the minimum and the maximum

eigenvalues of £2°, respectively.
Let us introduce the following energies:
the kinetic energy

(3.3) ko= | ( Y pgud(tyig(

B a=sfg

the internal energy

(3.4) Uiy = | Et)dv,
/

the dissipation energy

(3.5) D(t) = j / &(r)dv dr,
0B

t)) dv,r
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the total energy

(3.6) E(t) = K(t) + U(t) + D(t),
and
(3.7 I /( Z pous (t)us t))d,"u + = // [A e;;(7
a=s,f.g
+ 2,u,, Z E“b( s('r)) (u?(r) - uf('r))] dv dr.
a,b=f9

Now, we recall some preliminary integral identities of Lagrange-Brun type [26],
established in [14], that are essential in studying the temporal behavior of the
solutions of the initial-boundary value problem (P). For the readability of the
paper we prefer to give here the proofs. Thus, in the present context, the lem-
mas 1,2 and 3 derived in [14] are:

LEMMA 1. (Conservation law of total energy). For every (uf, u; »”:) satisfying
the equations of motion (2.1), the constitutive equations (2.2) and the geometrical
equations (2.3), we have

¢
(3.8) E(t) = E(0) + / P(r,r)dr,  t€[0,o00)
0
where
(3.9) P(t,7) = / ( ) t?i(t)ﬁ?(T))nj s
LA —
P r o of. From the relations (2.2) and (2.10) it follows that
(3.10) St + Melel + 2u elel.
a=s,f.g

On the other hand, in view of (2.1)-(2.3) we have

(3.11) > t3é% = gat(zp"u )

a=3;fag a=s lfg

= ) gb(ug — ug)(ud - i) (Zt;;;*)j.

ab=f.9 a=s,f.g
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Then from the relations (3.10) and (3.11) we get

t
(3.12) gt( Z pousu + & +/ (7 )dT) — ( Z t?luf‘) E
a=s,f,g 0 a=s,f,9 »J
By an integration of the relation (3.12) over Bx [0, t], and by using the divergence
theorem and the relations (3.3)-(3.6) and (3.9), we obtain the identity (3.8) and
the proof is complete.
LEMMA 2. If(ul,u{,u ) satisfies the relations (2.1), (2.2) and (2.3), then for
every t € [0, 00)

t
(3.13) %(t) ‘”(0)+ / [4KC(7) + 2D (7)) dr

0

i r t
—2E(0 2/ PTTdeT+/W(T,T)dT.
00 0
where
(3.14) W(t,7) = / ( > t;(t)ug(T))njda.
3B a=s,f,g
O
P roof It follows from (2.2) and (2.10) that
(3.15) Y t8el =28+ Melel + 2 elel.
a=s,f,9
By taking into account the relations (2.1)-(2.3) we obtain
016) 3 smey =g ( 3 urur)- X ea - anal —u)
a=s,f,g a=s,f,g a,b=f.g
+ Y pfutud +( Y thul);.

a=s,f.g a=s,f,9
Then the relations (3.15) and (3.16) imply

0
(3.17) E( Zf oY ) + A e;';e';J +2u € {J {J
a:‘sl ’g

3 Z £ (a? — ) (ud — uf) Z pouau:’—25+( Z tu f‘) ,
J

a,b=fg a=s,f,g a=s,f,9
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If we integrate relation (3.17) over B x [0, t] and use the divergence theorem and
the relations (3.3), (3.4), (3.7) and (3.14), then we get

(3.18) =

t
Py =20 +2 / () — U(r)]dr + / W(r, r)dr.
0
A combination of the relations (3.8) and (3.18) gives the identity (3.13) and the
proof is complete.
LEMMA 3. For every (u,u
tity holds

ul) satisfying (2.1) to (2.3), the following iden-

(R l’

t
dl

(3.19) (t) =L(t)+At)+ ; /[W(t— T t+7)-W(Et+T,t—7)dr, t>0
0
where
1 o o a a
(3.20) L(t) = 5/[ Z pous (0)u7 (2t) + Z pou; (0)u; (215)] dv,
B La=sfg a=s,f,g

and

(3.21)

l\Dli—‘

= 3 [ ek 20 + 2020

B

b gy £ (u?(O) . uf(O)) (uf(zt) ~ uf(Zt))]d'u

a,b:f,g
O
P roof Let usintroduce the notation
(3.22) R(t,7)= Y t&(t)e(r).
a:s,f,g

Then, by (2.2) and (2.4), we obtain
(3.23) R(t—-7,t+7)— R(t+7,t—7)=X\e(t —1)el;(t +7)
+2u, el (t—r)el (t+r) =Ml (t4r)el (t=r) -2 el (t+ el (t-7)

= —5% ()\,,e (t 'r)e (t+7)+ 2p,,ef (t— T)e:.}(t + ‘r)).
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On the other hand, by means of the relations (2.1)-(2.3), we get

(3.24) R(t-r1,t+7)—R(t+T,t—7)

_ %[a§7g(pga?(t—7)uf(t+7)+p0“u (t — )it (t+r)ﬂ
+5‘9;[ Zj gab( ot — 1) —uf(t—r)) (ug(t+T)—uf(t+T))]
L ng( (t—7)u ?(t+'r)—t?i(t—k'r)u?(t—vf))]‘j.
Further, from (3.23), we get
(3.25) [[ —7t+7) — R(t+ 7,8 — 7)|dv dr

_ / [\vel0)ef;(20) + 2pefy 0)ef (26)) o
B

+ [ [uektrel;e) + 2 el 1y 0] av.
B
From (3.14), (3.20) and (3.24) we deduce

(3.26) /[R(t—v‘t+) R(t+ 7,t — 7)]dvdr

- ZB/(Zpou )d

a=s,f,g

gt (usw) - @) (st - uf(2t>)]dv

- B[ [ L (v - w20} (w00 - i) v

+- /{W(t— ,t+71)—W(E+T,t— 7)|drT.
0
A combination of the relations (3.25) and (3.26) implies the desired result. O
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4. Cesaro means and the asymptotic partition

In this section we study the time asymptotic behavior of the solutions of the
problem (P) defined by the relations (2.1) to (2.6). To this end, we introduce the
Cesaro means of various parts of the total energy and then, using the identities
(3.8), (3.13) and (3.19), we establish the relations that describe the asymptotic
behavior of the mean energies.

If (u, u{, 1) is a solution for the problem (P), then we introduce the Cesaro
means

t

(4.1) Kolt) = %/IC( o s
0
t

(4.2) Uc(t) == %/U(T)dT ;
0

(4.3) Bl o= % / D(r)dr .
0

If meas S; = 0, where meas S represents the area / da of the surface S. Then

S

there exists a family of rigid motions (uf = ulf =

i : = Ci + €ijkZide, ¢, di —
constants, &;;; — alternating symbol) that satisfy equations of motion (2.1),
constitutive equations (2.2) and the boundary conditions (2.5). For this reason,

we decompose the initial data af and bj as
(4.4) al =a+UY”, b="+V",

where a¥* and b7* are rigid displacements determined in such a way that

(4.5) /pf,UlOsdv =0, /pgsijk:ij,?sdv =0,
B B
/ pgV¥dv =0, / pieijkz; Vsdv =0 .
B B

We consider the sets

-

CI(B) = {V = (’()1,1)2,7}3),1),; € CI(E) :v; =0 on S and if meas 51=0 5

then /pgvidv =0, /pgaijk:cjvkdv = 1 3
B B
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W (B):=the completion of C!(B) by means of IIllw, (s, where C'(B) represents
the set of scalar functions that are continuous and continuously differentiable
on B. Moreover W,,,(B) := [W,,,(B)]?, where W,,,(B) is the familiar Sobolev
space (see [27]).

The hypothesis (ii) assures that the following inequality [28] holds:

(4.6) /[Av,-,wj,j + %(’U;‘J + vj,i)(vi,j + 'uj,,-)]dv >m /vmdv 5
B B
my = const > 0, VveW;(B).

If meas S; = 0, then we shall find it is a convenient practice to decompose

the solution (uf,u{, v?) in the form

(4.7) u§ = @+t 4 v, ul = af + b+ vzf, uf = a}® +th° + v},
where (v®,vf,v8) € W, (B) x W;(B) x W1 (B) represents the solution of the
initial boundary value problem (P) in which the initial conditions are substituted
by

kS ,UQ =at

s __ 7708 _f *$
v, = U;”, v =a; — a8, i i TG

(4.8)

=V o =H o, #—M-b, B, =0,

We are now ready to derive the asymptotic partition of the energies.

THEOREM 1. Let (uf, u{, u?) be a solution of the initial boundary value prob-
lem (P). Then, for all choices of initial data a%, af, a8, bf € Wy(B), b,
b8 € W (B), we have:

1)° if meas S; # 0, then

(4.9) lim Kc(t) = lim Ue(t),
t—o0 t—co
(4.10) lim D¢(t) = E(0) — 2 lim lCc(t) = E(0) — 2 lim Ue(t).
t—o0 t—00 t—00
2)° if meas S; =0, then
(4 11) lim K (t) = lim U (L L o b prs b )d
. t_lgloc —t_lglo C()+§ (Po;‘i‘*‘Xf:POii)'U,
B a=J.g

. . 1 * 5
(412)  Jlim De(t) = B(0) - 2 Jim Ke(t) + 5 [ (sitroers + Z,: PRbE )
B a=J,9

= 1 S 1% *S %
= 1(0) =2 fim Ue(t) - 5 [ (oporn + ij oBBEb) do.
B a=J,9
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P r o of. By taking into account the fact that (uf uf uf) is the solution of

the problem (P), from (3.8), we deduce
(4.13) K(t) +U(t) + D(t) = E(0), 7 &

If we further use the relations (3.13) and (3.19), we get

dl

> 0.
dt(O) t>0

(4.14) f[zyc )+ 2D(r)]dr = 2E(0)t + A(t) + T(t) —

A combination of the relations (4.13) and (4.14) leads to the identity

dI

(4.15) Ke(t) — Ue(t) = [A(t) FT(t) — E(O)] .

By letting ¢ tend to infinity and making use of the relations (3.20) and (3.21),
we obtain

(416)  Jim [Ko(t) ~ Uo ()] = nm—/{ S pgul(0)il(2t)

t—oo 4t

a=s,f,9
+ D aGuf0)uf(2t) + Avef (0)el (2t) + 2 el (0)ef; (20)
a=s,f,9
+ Y e (ut(0) - u(0)) (uh(2t) — w(2)) po

ab=f,g

On the basis of the hypotheses (i)-(iii), relations (2.7), (3.3)-(3.5), (4.13) and
Schwarz’s inequality, we deduce for the terms in the right-hand side of (4.16) the
following estimates:

(4.17) / > phuf(0)iag(2t)dv < (/ > pgu( d)lﬂ

B o=sf.g a=s,f,g

(f S girenigand)

a=s,f,g

VIO ([ ¥ surongoi)

B a=s,f,9



ON THE ASYMPTOTIC PARTITION. .. 103

(4.18) / S ol (0)ul (2t)dv =/{ S pgut(0)ul(2t)

% a=s.fg B ta=sf.g

+ [ 3 it ign) — isrldr + 3 it 0)us 0 —u;f*(on}dv

0 e=fg a=f9
/ z; poud(0)us (2t)dv + (// Z p(:n)g u? (0)dv al'r)l/2
4 a=stg
1/2
x (// abz;ggﬂb[u [ (1) — @i (r)]dv d'r)
+B[a:fgp u?(0) — u$(0)] dU<B/a§fgp uf (2t)dv
TR
+ VAUE( (Bfa;g L (O)d)

pr w2 (0)[ug (0) — uf(0)]dwv:;

B a=fg

(4.19) / el (0)el;(2) + 26l (0)el; (20)]dv = / (el (0)é]

+ 2,u,,, (7)]dv dr + /[)\ e;(0)e; . (0) + 2,uy ;(0)e {j(O)]dv

1/2
B0 [l 01 (0) + 201 0

B

+/[}‘Ue{i(0)6§j( )+2#u€ :(0) f(O )]dv;

B
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(4.20) / T g“b( 2(0) — us(0 ))(ufg(zt)—uf(m))dv

B wb=rfg
2t

[ & e(u0 - ut) (i) - is(r)) o ar

3 f > et (uf0) - u () (00) - ui(0))dv

B a,b=f,g

2tE(0) ( f > et (ut0) - u () (w0) —usm))dv)w

B a,b=f,9

> e (ut(0) - u(0)) (u(0) — ui(0)) o

B a,b=f,y

Using the estimates (4.17)-(4.20) in (4.16) we obtain

(4.21) Jim [Ko(t) — Uo ()] = lim / S ot (0)ul (2t)dv.

S e

Let us first consider 1)°. Since meas §; # 0 and u® € W;(B), from (2.10), (3.4),
(3.6), (4.6) and (4.13), we deduce

(4.22) / (P (r)de < mil / 26 (r)dv < m—z—lE(O) ,
B

B

so, by means of the Schwarz inequality, we get

(4.23) lim — / > pgu(0)uf(2t)dv = 0.

t—oo 4t
a=s,f,g

Thus, the relations (4.21) and (4.23) give the relation (4.9). A combination of
the relations (4.9) and (4.13) give the relation (4.10).
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Let us consider 2)°. Using the decomposition (4.4) and (4.7), we have

(4.24) —/ > phud(0)us (2t)dv

B a*saf)g
% 36+ V) + 3 pgee] [ar® + 2688 + i(2)] o
a=f.g
1
:E/ Sl + Y pibla; *5 dv-}-—/ > pgbus(2t)d
B a=f,g a=s,f.g

—

x5 / PEBEE + ) pgbgb;S]du.
B a':fvg

The Korn inequality (4.6) and the relations (2.10), (3.4) and (4.13) imply
1
| e ds € — | 28ivide € -
(4.25) ottt < - [aemi < 25,
B

B
s0, by means of the Schwarz inequality, we deduce

(420 Jim [ > stz = 5 [ o+ 3 ogoe]ay

t—oo 4
a= S,f,g B a:f,g
Thus, using (4.26) from (4.21) we obtain (4.11). The relation (4.12) follows then
by coupling the relations (4.11) and (4.13). The proof is complete. O

REMARK 1. Relations (4.9) and (4.11) (restricted to the class of initial data
for which b}* = 0) prove the asymptotic equipartition of the mean kinetic and
internal energies.

REMARK 2. Similarly to the previous papers concerning asymptotic partition
of energy, we supposed that body forces are absent (ff = ff = f? = 0) and this
assumption is essential in our analysis. Generally, the asymptotlc partition of

energy will be modified by the presence of body forces. For a solution (uf, u{ ,ud)
of the problem (P) the relation (4.13) becomes

¢
(413)  K() +UE) + D(t) = BO) + // S p8FR(r)is(r)dvdr, t<0
0B o=sf9
and it leads to estimate terms like that in the right-hand side of (4.16). Our anal-

ysis in the above can be applied under appropriate assumptions concerning the
behavior of the forces at infinity, but the calculation becomes more complicated.
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Pure shear of a cubic crystal

Z. WESOLOWSKI

Center for Laser Technology of Metal
Technical University and PAN,
Al. Tysigclecia P.P. 25-314 Kielce.

LARGE SIMPLE shear of a crystal of cubic symmetry is considered. The equations of
second order elasticity theory are applied. In this approximation three constants of the
second order and six constants of the third order characterize the crystal. The stress
for three shearing planes and three directions for each plane has been calculated. The
stresses have been calculated separately for each material constant. For copper, the
shearing planes and shearing directions for which stress reaches extreme values have
been determined. The extreme values for each component of the traction have been
calculated.

1. Introduction

CRYSTALS ARE of special interest in fundamental research. Taking into account
the symmetries (called point groups) the crystals may be divided into 32 classes.
All crystals belonging to one class have the same macroscopic symmetry. Cubic
crystals possess the highest symmetry. Their mechanical behavior in the linear
case is described by three elastic constants. Triclinic crystals belong to the class
of the lowest symmetry. In the linear case they are described by twenty-one
elastic constants.

Isotropic materials possess higher symmetry. Mechanical properties of lin-
ear isotropic material may be described by two elastic constants only. Isotropic
crystals do not exist. Typical isotropic material is an amorphous material, e.g.
glass. Approximation of an isotropic material is a polycrystalline cluster of ran-
domly oriented crystals. Most of the experience in engineering is connected with
isotropic materials. Manufactured pieces of single crystals are frequently used in
physical experiments and physical equipment.

External load applied to a crystal results in a deformation. Since a crystal
is not isotropic, its stress field differs from that of an isotropic material. The
present paper aims at analysis of the forces, necessary to result in a shearing
given in advance.

All 32 symmetry groups may be analyzed for linear and for the nonlinear
material. Obviously a linear material, due to simplicity, is of special interest.
Nonlinearity is manifested in the additional phenomena. Trying to avoid com-
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plex, non-transparent considerations, we do not consider general elasticity, but
confine ourselves to the second-order theory. The second order theory of elastic-
ity was presented in the monograph of GREEN and ADKINS [1]. All equations of
the first chapter are based on [1]. We confine the analysis to one symmetry only,
namely to the cubic symmetry. Typical material of this symmetry is the crystal
of copper.

Common for all theories is the notion of the strain tensor. Introduce the
Cartesian coordinates x;. The material point of the body is identified by its po-
sition x; in the stress-free initial state. In the course of time, the point x; moves
to a new position. The displacement vector u; is a function of the Cartesian
coordinates x; and time t,u; = u; (x;,t). In the whole paper we compare two
states only and time serves only as a parameter. Therefore for simplicity we shall
write u; = u; (x;). Partial derivative of u; (x;) with respect to x; is the displace-
ment gradient u; ; . The strain tensor ¢;; may be expressed by the displacement
gradient, [1]

1
(1.1) €ij = 2 (
The nonlinear product u,;ur; is present in this expression. Therefore the de-
formation tensor ;; is always a nonlinear function of the displacement gradient.
The linear measure of strain disregarding this term may be used only in the
linear theory, where the stress is a linear function of strain.

The relation (1.1) is purely geometrical. No material properties are involved.
The elastic energy (strain energy) is a nonlinear function of strain g;;. Second
order elasticity is the simplest generalization of the linear elasticity. The expres-
sion for the elastic energy ® (per unit volume in the stress-free state) takes into
account the cubes, but neglects the fourth higher powers of strain tensor €.
The elastic energy ® reads

Uiji + Uj + Ui Ur )

1
(1.2) P = - CiikmEig Eom + = Cifkmes Eij Ekm Ervar
2 6

It is a cubic function of strain, but polynomial of the sixth order in the dis-
placement gradient. The coefficients 1/2 and 1/6 are commonly accepted in the
literature, [2].

Summation convention is accepted in the whole present paper. The tensor
Cijkm 18 the tensor of second order elastic constants and cjjkmrs is the tensor of
third order elastic constants. In some older papers these tensors are called first
and second order elastic constants, respectively. Since the expression (1.1) is ho-
mogeneous in ¢;; it may be assumed that cjjrm, = Ckmij and Cijkmrs = Ckmijrs
= Cijrskm- SiNCe €;; is symmetric, it may be assumed without loosing the gener-
ality that the constants satisfy the relations ¢;jtm = Cjikm and Cijkmrs =Cjikmrs-
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The elastic constants of the second order and of the third order may be therefore
assumed to posses the following symmetries

(1.3) Cijkm = Ckmij = Cjikm,

/

(1'4) Cijkmrs = Ckmijrs = Cijrskm = Cjirskm-

Symmetry of the crystal results in additional symmetries. As mentioned above,
the second order elastic constants c;jxy,, for triclinic symmetry may be expressed
by 21 independent material constants. In the simplest case of cubic symmetry
there are only 3 non-zero independent constants of the second order and 6 ma-
terial constants of the third order. The 81 constants c;jr, and 729 constants
¢ijkmrs may therefore for the cubic crystal be expressed by only 9 elastic con-
stants. The isotropic material is characterized by only 5 elastic constants, namely
2 constants of second order (Lamé constants) and 3 constants of third order.

There exist at least eight different methods of measuring the constants of the
third order. The measurement of forces in static deformation is one of them, but
the most frequently used method is based on measurements of the ultrasonic
wave speeds.

Denote by H;; the symmetrized derivative of the elastic energy ® with respect
to the deformation &;;

0% 0%

From (1.2) and the symmetries (1.3)—(1.4) there follows

od i
(1.6) e = Cijkm Ekm + §Cijkmrs Ekm Ers)
ij
and further
(L.7) Hij = 2Cijkm€ km + Cijkmrs €km Ers-

The stress tensor 7;; may be expressed by the function Hj; and the displace-
ment gradient u; ;

(1.8) 27y = Hij + Hipuyr.

The stress tensor 7;; is not symmetric. It is in fact the first Piola-Kirchhoff stress
tensor. This tensor may be expressed by the deformation gradient and material
constants. Full expression for 7;; will be given further for simple shear.
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The most important mechanism of deformation of a crystal is simple shear, [4].
This deformation induces relatively small change of the volume. Consider sim-
ple shear of a crystal of arbitrary symmetry. Denote by n; the normal to the
shearing plane and by k; the shearing direction. Both vectors are unit vectors
and orthogonal to each other

(1.9) kiki =1, nin;=1, kin;=0.

In the case of shear in the direction k;, the displacement vector u; has the
direction of k; and is proportional to the distance n,z, from the plane n,z,.=0.
The displacement u; for hear reads

(1.10) 4 (2y) = vin oy,

where v is the measure of shear. For the whole plane n,z,=const the displace-
ment vector is the same. The strain tensor &;; may now be calculated from
(1.1) and (1.10). For each material, linear and nonlinear, it consists of a term
proportional to v and a term proportional to 2

{1.11) 2eij=v (k,-nj - kjni) + vzninj.

Substitute the above expression into (1.8) and take into account the symmetries
of ¢;jkm and ¢;jpmrs to obtain the following expression for the stress tensor:

(1.12) Tij = Vc,;qukpnq

R (%ququpkrnqns + %ciqunpnq + cimqujkpnmnq) .

The stress tensor is uniquely determined by the strain energy ® and the

shear. In (1.12) the terms of the order v3 have been neglected, since already ®

does not take into account the third powers of g;;. The stress vector ¢; acting on

a surface with unit normal n; equals the product of the stress tensor 7;; and the
vector n;

(1.13) tj = veijpgkpning
9 (1 1
+v iqmrskpkrnmqns + Eciqun,-npnq + kjcimpgkpninmng | .

In general this vector is neither perpendicular, nor collinear with k; or n;. The
component of ¢; in the shear direction £; equals ;k;. Define the vector b; as the
vector product of k; and n;
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(1.14) b; = €irskrng,

where €;r, is the permutation symbol. This unit vector is orthogonal to k; and n;.
Define three components sg, sp, 8p of the stress vector as the scalar products
of the stress vector and the unit vectors k;, n;, and b;

(1.15) sk =tjk;, Sp=1tjn;, sp=t;b;.

In accord with the above relations there hold the relations
sk = vsg1 + 17 (sk2 + sk3),

(1.16) $n = Usn1 + V*(8n2 + $n3),

sp = vsp + 1% (s62 + S3),

where
Sk1 = Cijpgkinjkphig,
3
(1.17) Sk2 = 5 CigpgkinKpna,
1
Sk3 = -iciqunkmjkpnqkrns.
Sn1 = c,'quninjkpnq,
(1.18) Sn2 = 3 CijpaTiNiTpNas
1
Sn3 = 3 CijpgrsTinjkpngkyng.
b1 = Cijpgbin;kpng,
3
(1.19) St2 = 3 CijpgbinjKpy,

1
Sp3 = :?- ngpq”binjkpnqkrns.

The projections of ¢; on n; and on b; , i.e. the scalar products t;n; and #;b; in
linear elasticity of isotropic material are equal to zero. In nonlinear elasticity the
projection of t; on n; is different from zero, even for isotropic material. In fact
this stress component for isotropic material is always negative. For anisotropic
material both projections are in general different from zero. The parameter s;
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introduced above is a measure of the projection of the stress vector on the di-
rection k;.

Each of the expressions for sk, s,,sp consists of a part proportional to the
amount of shear v and a part proportional to the squared amount of shear 2. The
parts Sg1, Sn1,Sp1 do not take into account the nonlinearity and are exactly the
same as in linear elasticity. The other parts take into account nonlinearity. More
exactly, the other parts express the second term of the Taylor expansion of stress
vector t;. For infinitesimal shear v the first terms sx1, Sn1, Sp1 in (1.17)—(1.19) are
the leading terms. For other v the second and third terms must be taken into
account. In the next chapter we analyze separately the terms of (1.16)—(1.18).

Shear stiffness s equals the ratio of the component of ¢; in the shear direction
k; and the measure of shear v. Stiffness is equal to the sum

(1.20) s = sk1 + v(sk2 + Sk3)-

2. Linear elasticity

Analysis of the present chapter is based on the principal terms of sk1, sn1, Sp1,
namely on the relations

Sk1 = Cijpgkinjkpnyg,
(2.1) Sp1 = ciqunmjkpnq,
Sp1 = cimbmjkpnq.

Since b; as the vector product of n; and k; may be expressed by n; and k;, the
above functions depend on n; and k; only. Note that sg; is an even function of
n; and k;; sp; is an odd function of n; and an odd function of &;; finally sp; is
an odd function of n; and even function of k;.

In the present paper we consider only one definite material symmetry, namely
the cubic symmetry. Other crystal symmetries may be treated in the same way.
In the linear theory there exist only three independent elastic constants of cubic
crystal. In abbreviated notation (g1 = €11, €2 = €92, ..., £4=2€33, etc.) they are
hi1,h12 and hgg , cf. [2]. All 81 components of the elastic constants tensor c;;pq
may be expressed by the three constants hi1, k12 and hyq, namely

C1111 = C2222 = 3333 = hi1,
(2.2) C1122 = C1133 = €2233 = C2211 = €3311 = €3322 = h12,
€323 = €2332 = €3223 = ... = C1212 = €1221 = h4a.

The remaining components of the tensor c¢;jp, (elastic constants of the second
order), e.g. the components €931, €1112, are equal zero.
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In order to gain better recognition of the stresses in this chapter we do not
consider any specified real material, but aim to analyze the influence of elastic
constants on stress in pure shear of cubic crystal. This fact suggests separate
consideration of three cases: i) h1; =1, hjg =0, hgg =0, ii) h1; =0, hys = 1,
h44 =0 and lll) hll = O, hlg = 0, h44 =l

Calculate the coefficients sks,sp2 and spp for three different shear planes
(1,0,0), (1,1,0) and (1,1,1). For each shear plane three shearing planes were se-
lected.

Consider first the shearing plane n;=(1,0,0) and three different shearing di-
rections

(2.3) kN =(0,1,0, &2 =(0,1,1), &® =(0,1,1+72).

The vector .’c( ) = = (0,1,1 + /2) bisects the angle between the first two.
Because of the symmetry of the problem, the values of sig, 5,2 and sy for the
directions kl(l) and kz@) take extreme values.

The shearing plane n;=(1,1,0) is equally inclined to the directions (1,0,0) and
(0,1,0) and parallel to the direction (0,0,1). Three shearing directions

(2.4) K9 =(1,-1,0, & =(0,01), & =(1,-1,42)

are orthogonal to (1,1,0). The shearing directions k(4) (1,-1,0) and k(s) =(0,0,1)
are the geometrical symmetry directions of the problem The shearmg direction
k(6) (1,-1,4/2) bisects the shearing directions k( ) and k(s)

The shearing plane n;=(1,1,1) is equally 1nchned to the three directions
(1,0,0), (0,1,0) and (0,0,1). The proposed shearing directions are

25) &7 =(2,-1,-1), ¥ =(1,-1,0), &® =(2+3,-1-43,-1).

The shearing directions k( ) =(2,-1,-1) and kgs):(l,—l,O) are the symmetry di-
rections of the problem. DII‘GCthIl (1, 2,1) is equivalent to the direction (2,-1,-1).
Since (1,-1,0) bisects the directions (1,-2,1) and (2,-1,-1), it is a symmetry direc-
tion of the problem. The direction k( ) = = (2++/3,-1-/3,-1) bisects the directions
ki =(1,-1,0) and k; =(2,-1,-1).

The vectors lcl(l), kzm ¥ sy kgg) and the corresponding shearing planes are listed
in the first two columns of Table 1. In calculation, one of the elastic constants
was assumed to be equal 1, the other two to be equal zero.The following values
Sk1,5n1 and s, were calculated.

The values given in the first two columns are the components of the vector
parallel to n; and the vector parallel to ;. In computations they must be nor-
malized to obtain the vectors n; and k; of unit length. For the shearing plane
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ni=(1,0,0) and shearing directions k;=(0,1,0), or k;=(0,0,1), or k;=(0,1,1), the
values of s,1, Sk1, Sp1 are extreme values. Similarly, values for shearing plane
n;=(1,1,0) and shearing directions k;=(1,-1,0), or k;=(0,0,1), the values of sn1,
Sk1, Sp1 are extreme values. For n;=(1,1,1) there exist six equivalent shearing di-
rections, one of them is k;=(2,-1,-1). Next to it is situated the direction k;=(1,-
2,1). The vector k;=(1,-1,0) bisects them. There exist six shearing directions
equivalent to k;=(1,-1,0). Because of the symmetry, the values of sk1, Sn1, Sp1
for n;=(1,1,1), k;=(2,-1,-1) or k;=(1,-1,0) are extreme values. Table 2 gives the
extreme values for copper.

3. Second order terms

For the cubic symmetry there exist six different elastic constants of the third
order. In the abbreviated notation they are hyy1, hi12, Ri23, Ri44, h1ss and hyse.
In the tensor notation the non-zero elastic constants are ¢i11111, C111122, €112233,
C112323, C113131, C233112. Other non-zero components are the result of the ten-
sor symmetries. The elastic constants of second order contribute stress of the
order 2. Here we calculate the stresses for the same n; and k; as above.

The geometrical nonlinearity is manifested in the non-zero values of k2, Sn2
and spp. For hj1=1, hj2=1 and hy44=1 they are given in the Table 2.

The values of sg3 , Sp3 and sp3 represent the material nonlinearity. For hy11=1,
hi12=1 and hj33=1 they are given in the Table 3.

Table 4 has exactly the same structure as Table 3. It gives the values of si3,
Sn3 and Sp3 for h144:1, h155 =1 and h455 =l1.

Note that the shearing plane n; and the shearing direction k; may be arbi-
trarily chosen. The vector b; is then uniquely defined as the vector product of n,
and k;. According to (1.16)—(1.18), the function sk3 is an odd function of k; and
an odd function of n;. In contrast s,3 is even function of k; and even function of
n;. And finally sp3 is an odd function of b;, even function of k; and odd function
of n;. Since b; as the vector product is an odd function of k; and an odd func-
tion of n;, the function sp3 is an odd function of k;, and an even function of n;.
For fixed shearing plane, a change of the shearing direction k; into the opposite
direction

(31) (klvk;?yk:}) = (—kla—kzr_ker)

changes the signs of coefficients s3 and sp3, and does not change the value of sp3.

With the cubic symmetry a physically more interesting, following invariance
is connected. Simultaneous reflections of the vectors n; and k; in the (2.3), (3.1)
and (1.2) coordinate planes
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(n1,ng,n3) = (—ny,n2n3) and (ki,ko,ks) = (—ki, ko, k3),
(32)  (n1,ng2,m3) = (n1,—ngn3) and (ki, k2, k3) = (k1,—ko, k3),
(n1,m2,n3) = (n1,ne, —n3) and (k1 ko, k3) = (ki, ka2, —ks).

do not change sg3 and s,3, and change the sign of sp3. The proof based on the
definitions of si3, sp3 and sp3 is elementary, but demands long calculations. It is
easy to check the invariance (2.7) numerically.

4. Extreme values

In the present chapter will be analyzed the shearing planes and shearing
directions for which the tractions reach extreme values. The coefficients s, sn1,
Sb1,, Sk2 ---, Sb3 and their sums, e.g. ska+ si3, will be considered separately. The
independent variables are the two vectors n; and k;. Three constraints expressing
the fact that they are unit, mutually orthogonal vectors must be taken into
account. In order to avoid the constraints in computations introduce three new,
real parameters (9, ¢, 1), which enable us to write the components of the unit
vectors n; and k; in the form

ny = sind cos ¢,
(4.1) ng = sind sin g,
ng = cosv;

k1 = cosp cos? cos ¢ — siny sin ¢,
(4.2) ko = cos cos ¥ sinp + sint cos ¢,
k3 = —cos ) sin yv.
The two angles ¢ and ¢ define the vector n;, namely its inclination to the
z3 axis and inclination of its projection on the z; 25 plane to the z; axis. These
two angles define the shearing plane. The additional angle 1, together with 9

and ¢ define the shearing direction k;, which is parallel to the shearing plane.
The vector b; is uniquely defined by the vectors n; and &;, as their vector product

by = —sin) cos ¥ cos ¢ — cos 1 sin ¢,
(4.3) by = — sin1) cos #sin o + cos P cos ¢,
b3 = sintsin .

The triad of three mutually orthogonal unit vectors (n;, k;, b;) possesses three
degrees of freedom. It is uniquely defined by the three parameters 9, ¢, 1). For
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arbitrary (9, ¢, ) the above three unit vectors n;, k; and b; are mutually
orthogonal. The functions s, s,, sp depend on n;, k; and b;. If it is taken into
account that b; may be expressed by n; and k;, then the functions sg, sn, sp
depend on n; and k; only.

Very useful for the description of material properties is the shearing plane
defined by n; and the shearing direction k;. From (4.1) it follows that replacement
of (9, ¢, 1) by other values results in reflection in the shearing planes and
shearing directions in the coordinate planes

(n1,n2,n3), (k1,k2,k3) = (—n1,n2,n3), (—k1, k2, k3)
if (J,0,9) =,7—p —y),

(4.4) (n1,m2,n3), (k1,ko, k3) = (n1, —na,n3), (k1, —ko, ks)
if (Ge) = 0,—p, ),

(n1,m2,n3), (k1,k2,k3) = (n1,n2, —na), (k1, k2, —ks3)
if (9,0,9) = (0,7—p —¥).

Substitution of (4.1)-(4.3) into the expression for sy given in (1.16) leads
to a sum of 225 products of trigonometric functions of ¥, ¢ and 1. Due to
symmetry some terms are equal zero. The same number of products appears
in the expressions for s,3 and sp3 given in (1.17) and (1.18). Purely analytical
approach leads to simple, but long expressions. Finding the roots would be very
tedious. In practice only the numerical approach is effective.

Confine our attention to one definite material, namely to copper. Copper has
the cubic symmetry of the type VIIb for which there exist only three different
elastic constants of the first order hji, hy2, h4s and six different elastic con-
stants of the second order h.111, h112, h123, h144, h155, h455, cf. [2,3] The elastic
constants of the second and third order for copper are

(4.5) h11 = 169 GPa, h12 =122 GPa, h44 =735 GPEL,

h111 = —1350 GP&, h1]2 = —800 GP&, h.123 =-120 GPa,

4.6
( ) h144 = —66 GP&, h155 =-720 GPa, h455 = —-32GPa.

In cubic crystals all three principal directions are equivalent. It is easy to
check that the following changes of the shearing plane (nj,n2,n3) and shearing
direction (k1, k2, k3)

(n1,n2,n3), (K1, k2, k3) = (n2,n1,n3), (k2, k1, k3),
(nlan‘21n3)1 (klak21k3) = (n11n37n2)) (k19k33k2)7

(n1,n2,n3), (k1, ke, k3) = (n3,no,n1), (k3, ko, k1),
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do not change the properties of the crystal, i.e. the values of sk, Sn1, Sp1 Sk1,---, Sb3-

The above discussed symmetry properties of functions sg, sp, sp allow us
to confine all calculations to shearing planes defined by the vector n; possessing
non-negative components n, ny and n3, n; >0. Such shearing planes are the most
natural planes. The values for other vectors n;, k; follow from the symmetries of
the considered problem.

Start with the values of sk, sp1, sp1. They express the linear part of the
stress-deformation function for pure shear.

Table 5. Extreme values of sii, sn1, sp1 for Cu.

Value J, 0, ¥ n; k;

Sk1 max | 75.30 (.393,0,1.571) (.383,0,.924) (0,1,0)

m/m | 36.45 (.785,.785,0) (.500,.500,.707) | (.500,.500,-.707)
min 23.50 (1.571,.785,1.571) | (.707,.707,0) (-.707,.707,0)

Sni max | 29.06 (1.261,.326,2.306) | (.902,.305,.305) | (—.431,.631,.646)
m/m |0 (1,0,0) (-.500,-.707,.500)
min | —29.06 | (1.263,1.245,.841) | (.305,.902,.305) | (-.638,431,-.638)

Sp1 max | 25.90 (-.785,3.142,.785) | (.707,0,.707) (-.500,-.707,.500)
m/m | 0* (1.571,0, 1.571) (1,0,0) (0,1,0)
min —25.90 | (1.571,.785,.785) | (.707,.707,0) (-.500,.500,~-.707)

Maximum value is marked by “max”, and minimum value by “min”. An extremum,
that is neither maximum, nor minimum (saddle point) is marked by “m/m”. The
value 0 marked by asterisk is an extremum for each . For ¢ = 7/2 the normal
to the shearing plane and the shearing direction coincide with the coordiate axes.

Pass now to the values of skg, sn2, Sp2. They express the geometrical non-
linearity of the deformation. Their values are given in Table 6. The value 84.50
marked by asterisk is an extremum for each .

Table 6. Extreme values of si2, s,2, sp2 for Cu.

Value 9, 0,1 n; ki
sk2 | max | 112.95 | (0,.785,0) (0,0,1) (.707.-.707,0)
m/m | 54.68 (.785,.785,0) (.500,.500,.707) | (.500,.500,~.707)
min | 35.25 (.785,0,0) (.707,0,.707) (.707,0,-.707)
Sp2 | max | 119.03 | (.955,.785,.732) (.577,.577,.577) | (-.169,.776,-.607)
m/m | 110.40 | (.785,0,0) (.707,0,.707) (.707,0,-.707)
min | 84.50* | (0,.785,0) (0,0,1) (.707,.707,0)
s;2 | max | 38.85 (.785,1.571,.785) | (0,.707,.707) (-.707,.500,~.500)
min | -38.85 | (1.571,.785,.785) | (.707,.707,0) (~.500,.500,-.707)

Similar calculations lead to the extreme values of sg3, sp3, sp3. Their values are
given in Table 7. Note that some of the directions in Table 6 and Table 7 do not
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coincide. The extreme directions for the geometrical nonlinearity are different
from that for the physical nonlinearity.

Table 7. Extreme values of sx3, S,3, sp3 for Cu.

value 9, @, n;
sk3 | max | 160.539 | (1.047,.615-.956) (.707,.500,.500) ( 707 .500,-.500)
max | 64.82 (.228,.785,0) (.159,.159,.974) | (.689,.689,-.226
min | -64.82 | (-.228,3.927,0) (.150,.150,.974) | (-.689,-.689,.225)
min | -160.59 | (.785,.785,0) (.500,.500,.707) | (.500,.500,-.707
Spz | max | —-68.75 | (.785,0,0) (.707,0,.707) (.707,0,~.707)
max | —109.69 | (.555,.785,0) (.372,.372,.850) | (.601,.601,-.527
min | -360.0 | (0,.785,0) (0,0,1) (.707,.707,0)
min | —-395.15 | (1.211,.385,.715) (.868,.352,.352) | (0,.707,-.707)
Ses | max | 125.24 | (.887,.952,.423) (.450,.632,.632) | (0,.707,-.707)
max | 73.75 (-.393,3.142,1.571) | (.383,0,.924) (0,-1,0)
min | -73.75 | (.393,0,1.571) (.383,0,.924) (0,1,0)
min | -125.24 | (1.104,.785,1.571) (.632,.632,.450) | (-.707,.707,0)

Since both sge and sg3 contribute to the stress proportionally to 1/

, imporant

for the analysis is their sum sgs + sk3. The same holds for the sums spo+ sp3
and s + sp3. Table 8 gives the corresponding extreme values.

Table 8. Extreme values of (sx2 + Sk3), (Sn2+ Sn3), (Sb2 + sb3).

value d0 9 n; k;

ska+sk3| max | 215.27 | (1.047,.615-.956) (.707,.500,.500) | (.707.-.500,-.500)
max | 167.72 | (.201,.785,0) (.141,.141,.980) | (.693,.693,-.200)
min (-.230,3.824,.125) | (.177,.144,.974) | (-.671,-.706,.225)
min | 35.45 (-.258,3.903,.026) | (.185,.176,.967) | (-.684,-.684,.25))
min | -105.92 | (.785,.785,0) (.500,.500,.707) | (.500,.500,-.707)

Sn2+Sp3| max | 41.65 (.785,0,0) (.707,0,.707) (.707,0,-.707)
max | —-2.05 (.569,.785,0) (.381,.381,.841) | (.596,.596,—.538)
max | -102.10 | (1.571,.785,0) (.707,.707,0) (0,0,-1.000)
min | -275.50 | (0,.785,0) (0,0,1) (.707,.707,0)
min | -291.9 | (1.264,.323,.731) (.904,.302,.302) | (0,.707,-.707)

Sp2+Sp3 | max | 126.35 | (.861,.938,.462) (1448,611,.652) | (—014,734,-.67)
max | 75.79 (—.401,3.202,1.435) | (.024,.921,.389) | (—.996,.054,-.065)
min | 53.2 | (~.291,4.137,-.785) | (.156,.611,.448) | (~.962,-.184,.203)
min | -75.79 | (.401,1.512,1.704) | (.023,.390,.921) | (-.997,-.064,.05)
min | -126.35 | (1.060,.753,1.553) | (.652,.611,.448) | (.678,.735,-.016

The angles (¥,¢,¢) make easier the computations. Obviously, instead of the
angles (9,p,1) the two vectors n;, k; may be used. Since for cubic symmetrr all
three directions in space are equivalent, some shearings are physically equivaknt.
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Note that some directions in the above tables coincide e.g. the direction
(-500,.500,.707) is a common extreme direction for sk and sg3 (Tables 6 and 7).
Such directions are in fact connected with the symmetry of the problem. Other
directions, e.g. (.652,.611,.448) in the last line of Table 8 is an extreme direc-
tion for one set of elastic constants only. Such directions are specific extreme
directions for one material only, namely copper.
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