WARSTWY FALOWODOWE Z POLIMETAKRYLANU METYLU I POLIIMIDU W PODZESPOŁACH Z FALĄ AKUSTYCZNĄ TYPU LOVE`A

Judyta Hechner¹

W artykule przedstawiono wyniki badań dotyczące zastosowania falowodów z polimetakrylanu i poliimidu w podzespołach piezoelektrycznych z akustyczną falą Love`a. Porównano efekty falowodowe wywoływane tymi polimerami z najczęściej stosowanym falowodem z dwutlenku krzemu. Ocenę własności falowodowych badanych substancji prowadzono na różnych podłożach piezoelektrycznych, takich jak.: niobian litu o orientacji 41°YX, tantalan litu o orientacji 36°YX i kwarc AT. Określono wpływ geometrii warstw falowodowych na parametry akustycznych fal generowanych w badanych podłożach piezoelektrycznych.

1.WSTĘP

Miniaturowe bioczujniki z falą akustyczną, dające odpowiedź w czasie rzeczywistym, stały się aktualnie podmiotem zainteresowania wielu ośrodków badawczych na świecie.

Struktury przetwornikowe na podłożach piezoelektrycznych, w których wzbudzane są horyzontalne, przypowierzchniowe fale objętościowe i pseudopowierzchniowe mogą być wykorzystane w tego typu czujnikach pod warunkiem uzyskania tzw. efektu Love'a.

Efekt Love'a polega na koncentracji energii fal akustycznych przy powierzchni podłoża poprzez osadzenie na strukturze przetwornikowej dodatkowej warstwy falowodowej. W powszechnie stosowanych i prezentowanych w literaturze rozwiązaniach wykorzystuje się w roli falowodu warstwę dwutlenku krzemu (SiO₂),

¹ Instytut Technologii Materiałów Elektronicznych, ul. Wólczyńska 133, 01-919 Warszawa, e-mail: Judyta.Hechner@itme.edu.pl

osadzanego metodą rozpylania katodowego. W przypadku SiO₂ optymalny efekt falowodowy uzyskuje się przy grubościach warstwy rzędu 4 μ m - 6 μ m. Taka grubość i hydrofilowość warstwy stwarzają szereg problemów technologicznych, szczególnie w procesie immobilizacji bioreceptorów na powierzchni podzespołu czujnikowego z SiO₂. W związku z intensyfikacją badań nad bioczujnikami z falą akustyczną pojawiły się nieliczne doniesienia literaturowe[1-2] dotyczące prób zastąpienia dwutlenku krzemu w funkcji falowodu innym materiałem. W artykule przedstawiono wyniki badań nad zastosowaniem polimetakrylanu metylu i polipiromelitimidu (poliimidu) oraz porównano własności falowodowe omawianych związków z dwutlenkiem krzemu. Określono również wpływ rodzaju i geometrii falowodu na parametry akustycznych modów typu Love'a, generowanych w podłożu piezoelektrycznym .

2. METODYKA EKSPERYMENTALNA, STOSOWANE PODZESPOŁY I MATERIAŁY

2.1. Stosowane podzespoły

Prace badawcze prowadzono na różnych podłożach piezoelektrycznych, takich jak: niobian litu o orientacji 41°YX, tantalan litu o orientacji 36°YX i kwarc AT, w celu możliwie najbardziej kompleksowej oceny własności falowodowych badanych substancji. W niobianie i tantalanie litu generowana jest fala pseudopowierzchniowa (AFPP), skrót angielski PSAW), natomiast w kwarcu horyzontalna, przypowierzchniowa fala objętościowa (.skrót angielski – SSBW). Podstawowym elementem wszystkich stosowanych podzespołów były linie opóźniające. Konstrukcje linii na poszczególnych podłożach przedstawiono na Rys. 1-2. W Tab. 1 podano parametry struktur przetwornikowych, a na Rys. 3-5 pokazano uzyskane charakterystyki amplitudowo – częstotliwościowe.

Rys. 1. Struktura linii opóźniającej na kwarcu AT. **Fig. 1.** Structure of the delay line on quartz AT.

Rys. 2. Struktura linii opóźniającej na 41°YX LiNbO₃ i 36°YX LiTaO₃. **Fig. 2.** Structure of the delay line on 41°YX LiNbO₃ and 36°YX LiTaO₃...

Tabela 1. Parametry struktur przetwornikowych.

 Table 1. The parameters of transducers.

Parametry	Kwarc AT	41º YX LiNbO ₃	36º YX LiTaO ₃
Liczba przetworników	2	2	2
Liczba elektrod w przetworniku nadaw- czym	254	294	294
Liczba elektrod w przetworniku odbior- czym	254	38	38
Szerokość elektrod	4 µm	6,93 µm	6,93 µm
Liczba reflektorów	2		
Liczba elektrod w reflektorze	20		
Częstotliwość- f	≈160 MHz	≈80 MHz	≈75 MHz
Tłumienność wtrącenia – A	≈ 32 dB	≈ 22 dB	≈ 24,5 dB
Długość fali - λ	32 µm	55,2 μm	55,2 μm

Rys. 3. Charakterystyka częstotliwościowo – amplitudowa linii opóźniającej z horyzontalną falą objętościową na kwarcu AT. Fig. 3. Amplitude response of SSBW delay line on quartz AT..

Rys. 4. Charakterystyka częstotliwościowo – amplitudowa linii opóźniającej z AFPP na 41° YX LiNbO₃

Fig. 4. Amplitude response of PSAW delay line on 41°YX LiNbO₃.

Fig. 5. Amplitude response of PSAW delay line on 36°YX LiTaO₃.

Rys. 6. Charakterystyka amplitudowa linii opóźniającej z AFPP na 41°YX LiNbO₃ z falowodem.

Fig. 6. Amplitude response of PSAW delay line on 41°YX LiNbO₃ with guiding layer.

Sumaryczne straty energii fal akustycznych rozchodzących się w podłożu piezoelektrycznym dla każdej z prezentowanych struktur przetwornikowych są znaczne. Wskaźnikiem tych strat jest wartość tłumienności wtrącenia – A (Tab. 1, Rys. 3-5.). Osadzenie falowodu na strukturę przetwornikową linii opóźniającej wywołuje koncentrację energii fal przy powierzchni podłoża, co skutkuje znaczną redukcją wartości tłumienności wtrącenia. Przykładowa charakterystyka amplitudowo-częstotliwościowa linii opóźniającej na 41°YXLiNbO₃ po osadzeniu falowodu pokazana jest na Rys. 6. Wartość tłumienności wtrącenia linii z warstwą falowodową wynosi A = 12,060 dB i jest o ponad 8 dB mniejsza od tłumienności linii bez falowodu: A = 20,729 dB (Rys. 4).

Montaż eksperymentalnej serii podzespołów: podłoże z naniesioną strukturą przetwornikową łączono z przepustem z niklowanej stali nierdzewnej. Wyprowadzenia kowarowe były selektywnie złocone. Substancją zespalającą przepust i podłoże piezoelektryczne była żywica epoksydowa. Pola kontaktowe linii opóźniającej łączono z wyprowadzeniami przepustów metodą ultrakompresji drutem AlSi (1%), φ - 25 µm.

2.2. Substancje wyjściowe warstw falowodowych

Funkcję falowodu mogą spełniać materiały w których prędkość propagacji fali jest mniejsza niż w podłożu [3]. Do badań wytypowano materiały powłokotwórcze (polimetakrylan metylu, polipiromelitimidy) w których prędkość fali akustycznej

jest niższa zarówno od prędkości w podłożu piezoelektrycznym jak i w warstwie SiO_2 . W Tab. 2 podano prędkości odpowiednich fal dla badanych podłoży i warstw pełniących rolę falowodowych.

Tabela 2. Prędkości fal akustycznych dla badanych podłoży i warstw falowodowych. **Table 2.** The acoustic wave velocity in the in the studied piezoelectric substrates and waveguide layers.

Materiał	Prędkość fali akustycznej V [m/s]
Podłoże- kwarc AT	≈ 5099 [4]
Podłoże - 41°YX LiNbO ₃	≈ 4751 [4]
Podłoże - 36ºYX LiTaO ₃	≈ 3544 [4]
Warstwa -SiO ₂	≈ 1944 [5]
Warstwa – poliimid	≈1270[5]
Warstwa - polimetakrylan metylu	≈1100 [6]

Polimetakrylan metylu (PMMA) jest tworzywem szeroko znanym pod nazwą "szkło organiczne". Monomerem polimetakrylanu metylu jest ester metylowy kwasu metaktylowego (metakrylan metylu).

Poliimidy – polipiromelitimidy należą do polikondensatów. Otrzymuje się je poprzez kondensację dwubezwodnika kwasu piromelitowego (czterokarboksylowego kwasu aromatycznego) z dwuaminami aromatycznymi. W wyniku reakcji tworzy się rozpuszczalny polikwas poliamidowy, a w podwyższonej temperaturze następuje zamknięcie pierścienia i powstaje nierozpuszczalny poliimid.

nierozpuszczalny poliimid

Do wytwarzania warstwy poliimidowej zastosowano produkt firmy HD Micro-System typ PI-2574. Poliimidy charakteryzują się wieloma unikalnymi własnościami niespotykanymi u większości znanych polimerów, m.in. są bardzo odporne termicznie i chemicznie, nie reagują na działanie rozpuszczalników organicznych.

Formowanie warstw falowodowych

Procesy osadzania falowodów prowadzono na zmontowanych uprzednio podzespołach, co determinowało warunki ich formowania .

Dwutlenek krzemu (SiO₂) osadzano na powierzchni testowanych podłoży (kwarc, niobian litu, tantalan litu), metodą rozpylania katodowego przy mocy 350 W i szybkości narastania warstwy – 0,25 μ m/h.

Falowody organiczne nanoszono na podłoże metodą wirowania.

Proces formowania warstw polimetakrylanu metylu prowadzony był dwuetapowo. Wstępnie pokrywano podłoże warstwą polimetakrylanu z rozcieńczonego roztworu, w którym największy udział ma lotny rozpuszczalnik, zwiększający rozlewność, a następnie osadzano warstwę właściwą. Stosowany skład wyjściowych roztworów pokazano w Tab. 3. Powyższe roztwory nakładano na wirówce przy szybkości 5000 obrotów/min w czasie 60 s, utwardzano w temperaturze 170°C w czasie ≈ 4 h.

Skład jakościowy	Roztwór wyjściowy warstwy buforowej zawartość składnika [%]	Roztwór wyjściowy war- stwy właściwej zawartość składnika [%]
Polimetakrylan metylu	2,5	10
Octan butylu	58	16,89
Eter monobutylowy glikolu etyleno wego <i>cellosolve</i>	30,5	56,43

Tabela 3. Skład roztworów polimetakrylanu metylu.**Table 3.** Composition of polymethylmethacrylate solutions.

Skład jakościowy	Roztwór wyjściowy warstwy buforowej zawartość składnika [%]	Roztwór wyjściowy war- stwy właściwej zawartość składnika [%]				
Ksylen	9	16,68				
Octan butylu - podstawowy rozpuszczalnik, eter monoetylowy glikolu etylenowego – roz cieńczalnik, ksylen - dodatek hydrofobowym						

Warstwy poliimidowe formowano z 4% roztworu prekursora polipiromelitimidu w metylopirrolidonie.

Osadzanie falowodu poliimidowego na podłoża piezoelektryczne polegało na nałożeniu roztworu na całą pokrywaną powierzchnię na nieruchomej wirówce, następnie rozwirowywaniu z najmniejszym możliwym przyspieszeniem do 5000 obrotów/min. Czas wirowania przy maksymalnych obrotach - 30 s. Warstwy utwardzano w temperaturze180°C przez 7 h.

3. WYNIKI

3.1. Efekt falowodowy

Wpływ rodzaju i geometrii warstw, pełniących rolę falowodów, na parametry fali generowanej w badanych podłożach fali oceniano rejestrując wartość tłumienności wtrącenia oraz zmianę częstotliwości środkowej w funkcji grubości osadzanych powłok i wywieranego na podłoże obciążenia masowego. Różnica tłumienności wtrącenia linii opóźniających przed i po osadzeniu badanych warstw jest miarą efektu falowodowego wywołanego tymi warstwami. Wyniki przedstawiono na Rys. 7-9.

Rys. 7. Zmiany tłumienności wtrącenia (ΔA) linii opóźniającej na **41°YX LiNbO**₃ w funkcji grubości (h) warstw falowodowych. Startowa tłumienność wtrącenia linii opóźniającej ≈ 22 dB; 1 (kółko)- polimetakrylan metylu; 2 (kwadrat)- poliimid; 3 (trójkąt)- SiO₂. **Fig. 7.** Change of insertion loss (ΔA) against thickness (h) of waveguide layer on 41°YX LiNbO₃. Initially insertion loss of delay line ≈ 22 dB; 1 (circle) – polymethylmethacrylate; 2 square) - polyimide; 3 (triangle) - SiO₂

Najwyższy stopień koncentracji energii fali na 41°YX LiNbO₃ uzyskano dla $\approx 4 \ \mu m$ warstwy SiO₂. Dalszy wzrost grubości nie zmieniał już wartości tłumienności wtrącenia. Porównywalną redukcję tłumienności uzyskano dla warstwy polimetakrylanu metylu, ale przy prawie trzykrotnie mniejszej grubości (wytwarzanie 4 μm warstw SiO₂ metodą rozpylania katodowego trwa kilkanaście godzin). Charakter przebiegu krzywych ΔA w funkcji grubości dla polimetakrylanu i poliimidu jest podobny. W obydwu przypadkach istnieje minimum, czyli grubość dla której efekt falowodowy jest maksymalny, a dalszy wzrost grubości skutkuje już wzrostem tłumienności wtrącenia. W obszarze grubości $\leq 1,25 \ \mu m$ redukcja strat energii fali akustycznej jest największa dla warstw z polimetakrylanu metylu, a najmniejsza dla dwutlenku krzemu. Dla podłoży z 36°YX LiTaO₃ (Rys. 8) porównywalny efekt falowodowy uzyskano dla polimetakrylanu metylu przy h - 1,5 μm i poliimidu przy h - 2 μm , natomiast w przypadku dwutlenku krzemu nawet przy warstwie o grubości 5 μm nie osiągnięto obszaru nasycenia ΔA . Standardowo stosowany falowód z dwutlenku krzemu zapewnia najlepszy efekt na podłożu kwarcowym (Rys. 9).

Rys. 8. Zmiany tłumienności wtrącenia (ΔA) linii opóźniającej na **36°YX LiTaO**₃ w funkcji grubości (h) warstw falowodowych. Startowa tłumienność wtrącenia - 24,5 dB; 1 (kółko) - polimetakrylan metylu; 2 (kwadrat) - polimid; 3 (trójkąt)- SiO₂.

Fig. 8. Change of insertion loss (ΔA) against thickness (h) of waveguide layer on 41°YX LiNbO₃. Initially insertion loss of delay line $\approx 24,5$ dB; 1 (circle) – polymethylmeth-acrylate; 2 (square) - polyimide; 3 (triangle) - SiO₂.

Rys. 9. Zmiany tłumienności wtrącenia (ΔA) linii opóźniającej na **kwarcu AT** w funkcji grubości (h) warstw falowodowych. Startowa tłumienność wtrącenia - 32 dB; 1 (kółko) - polimetakrylan metylu; 2 (kwadrat)- poliimid; 3 (trójkąt)- SiO₂.

Fig.9. Change of insertion loss (ΔA) against thickness (h) of waveguide layer on quartz AT. Initially insertion loss of delay line ≈ 32 dB; 1 (circle) – polymethylmethacrylate; 2 (square) – polyimide; 3 (triangle) – SiO₂.

Wpływ rodzaju podłoża piezoelektrycznego na uzyskiwany efekt falowodowy ilustrują wykresy (Rys. 10-12).

Rys. 10. Efekt falowodowy wywołany SiO₂ w funkcji h/ λ (λ - długość fali) dla badanych podłoży piezoelektrycznych; 1 (linia ciągła) - 41°YX LiNbO₃; 2 (linia kreskowana) - 36°YX LiTaO₄; 3 (linia kropkowana) - kwarc AT.

Fig. 10. Waveguide effect for the SiO₂ layer versus h/λ (λ -wavelength) for the investigated piezoelectric substrates; 1. (solid line) - 41°YX LiNbO₃; 2. (dashed line) - 36°YX LiTaO₃; 3. (dotted line) - quartz AT.

Rys. 11. Efekt falowodowy wywołany **polimetakrylanem metylu** w funkcji h/λ dla badanych podłoży piezoelektrycznych; 1. (linia ciągła) - 41°YX LiNbO₃; 2. (linia kreskowana) - 36°YX LiTaO₃; 3. (linia kropkowana) - kwarc AT.

Fig. 11. Waveguide effect for the **polymethylmethacrylate** layer versus h/λ (λ -wavelength) for the investigated piezoelectric substrates; 1. (solid line) - 41°YX LiNbO₃; 2. (dashed line) - 36°YX LiTaO₃; 3. (dotted line) - quartz AT.

Rys. 12. Efekt falowodowy wywołany **poliimidem** w funkcji - h/λ dla badanych podłoży piezoelektrycznych; 1 (linia kreskowana) - 36°YX LiTaO₃; 2 (linia ciągła) - 41°YX LiNbO₃; 3 (linia kropkowana) - kwarc AT

Fig. 12. Waveguide effect for the polyimide layer versus h/λ (λ -wavelength) for the investigated piezoelectric substrates; 1 (solid line) - 41°YX LiNbO₃; 2 (dashed line) - 36°YX LiTaO₃; 3 (dotted line) - quartz AT.

3.2. Efekt częstotliwościowy

Obciążanie masowe powierzchni linii opóźniającej przyczynia się do obniżenia prędkości fali akustycznej generowanej na tej powierzchni, w związku z czym wartość częstotliwości środkowej linii opóźniającej zmniejsza się. Rys. 13-15 przedstawiają zależność $|\Delta f|$ od obciążenia masowego badanymi warstwami falowodowymi. Na osi rzędnych podana jest bezwzględna wartość zmian częstotliwości $|\Delta f| = |f_x - f_0|$, gdzie: f_x – częstotliwość środkowa linii po osadzeniu warstwy, f_0 - częstotliwość środkowa linii z wolną ścieżką propagacji.

Rys. 13. Odpowiedź częstotliwościowa $|\Delta f|$ linii opóźniającej na **41°YX LiNbO**₃, wywołana obciążaniem powierzchni badanymi warstwami. Startowa częstotliwość środkowa - $f_0 \approx$ 80 MHz: 1 (linia ciągła) - polimetakrylanu metylu; 2 (linia kreskowana) - poliimid; 3-(linia kropkowana)- SiO₂ **Fig. 13.** The influence of waveguide mass loading on

delay line frequency response $|\Delta f|$ for 41°YX LiNbO₃. Initially frequency of delay line - $f_0 \approx 80$ MHz; 1 (solid line) - polymethylmethacrylate; 2 (dashed line) - polyimide; 3 (dotted line) - SiO₂

Rys. 14. Odpowiedź częstotliwościowa $|\Delta f|$ linii opóźniającej na **36°YX LiTaO**₃, wywołana obciążaniem powierzchni badanymi warstwami. Startowa częstotliwość środkowa $f_0 \approx 75$ MHz: 1 (linia ciągła) - polimetakrylan metylu; 2 (linia kreskowana) - poliimid; 3 (linia kropkowana) - SiO₂.

Fig. 14. The influence of waveguide mass loading on delay line frequency response $|\Delta f|$ for 36°YX LiTaO₃. Initially frequency of delay line- $f_0 \approx 75$ MHz; 1 (solid line) - polymethylmeth-acrylate; 2. (dashed line) - polyimide; 3. (dotted line) - SiO₂.

Rys. 15. Odpowiedź częstotliwościowa $|\Delta f|$ linii opóźniającej na **kwarcu AT**, wywołana obciążaniem powierzchni badanymi warstwami. Startowa częstotliwość środkowa - $f_0 \approx 160$ MHz: 1 (linia ciągła) - polimetakrylan metylu; 2 (linia kreskowana) - poliimid; 3 (linia kropkowana) - SiO₂.

Fig. 15. The influence of waveguide mass loading on delay line frequency response $|\Delta f|$ for quartz AT. Initially frequency of delay line- $f_0 \approx 160$ MHz: 1 (solid line) - polymethylmethacrylate; 2 (dashed line) - polyimide; 3 (dotted line) - SiO₂.

Zależność zmian częstotliwości od obciążenia jest liniowa w całym badanym zakresie. Wyniki zilustrowane na rysunkach wykazały, że przy tym samym obciążeniu masowym odpowiedź częstotliwościowa jest inna i zależy od rodzaju warstwy. Największe zmiany częstotliwości wywołuje polimetakrylan metylu, nieznacznie mniejsze poliimid, a najmniejsze dwutlenek krzemu. Obciążenie o wartości 10⁻⁴ g/cm² warstwą polimetakrylanu zmienia częstotliwość linii na 41°YX LiNbO₃ o 0, 69 MHz, a SiO₂ o 0,2 MHz, czyli ponad trzykrotnie mniej niż polimetakrylan.

4. DYSKUSJA WYNIKÓW

Ogólny charakter obserwowanych zmian parametrów akustycznych fal typu Love'a w wyniku obciążania struktur przetwornikowych omawianymi warstwami jest podobny. Efekt falowodowy, czyli znaczącą redukcję strat propagacji obserwuje się dla każdej z testowanych warstw.

Uzyskane eksperymentalnie wyniki, dotyczące grubości badanych warstw falowodowych, przy których zarejestrowano maksymalną redukcję tłumienności wtrącenia, wartość tej redukcji oraz efekt częstotliwościowy zebrano w Tab. 4.

Tabela nr 4. Dane dotyczące badanych podłoży i grubości warstw przy których uzyskano optymalny efekt falowodowy.

 Table 4. Data concerning investigated substrates and layers thickness which assure the best waveguide effect.

Podłoże c_m piezoelektryczne [kg/r		$c_m = f_o$	Rodzaj warstwy falowodowej / V_w								
	C _m		PMMA /1100 m/s			Poliimid /1270 m/s			SiO ₂ /1944 m/s		
	[kg/m ²] [[MHz]	h/λ	Δ <i>Α/Α</i> [%]	Δ <i>f/f_。</i> [%]	h/λ	Δ <i>Α/Α</i> [%]	Δ <i>f/f 。</i> [%]	h/λ	Δ <i>Α/Α</i> [%]	Δ <i>f/f _。</i> [%]
36ºYX LiTaO ₃	≈ 4,1	75	0,027	29	0,64	0,036	27	0,35	0,09*	22	0,1
41ºYX LiNbO ₃	≈ 6,0	80	0,023	32	0,4	0,027	23	0,6	0,072	33	0,2
Kware AT	≈ 1 4 ,7	160	0,016	24	1,25	0,019	22	0,75	0,047	35	0,4

Objaśnienia do tabeli:

 V_w - prędkość fali akustycznej w warstwie; PMMA – polimetakrylan metylu; c_m – współczynnik sprzężenia mechanicznego dla danego podłoża piezoelektrycznego; f_o – częstotliwość środkowa linii opóźniającej na prezentowanym podłożu; h/ λ -gdzie: h - grubość warstwy przy której uzyskano największą redukcję tłumienności, λ - długość fali akustycznej; ΔA – zmiana tłumienności wtrącenia po osadzeniu warstwy falowodowej dla grubości przy której zarejestrowano największą redukcję tłumienność wtrącenia linii nie pokrytej; Δf - zmiana częstotliwości środkowej przy 10⁻⁴g/cm² obciążeniu warstwą falowodową; *- w przypadku tantalanu litu nie uzyskano maksymalnej redukcji thumienności dla falowodu SiO, do grubości 5 µm (w jednostkach h/λ - 0,09).

Efekt falowodowy jest tym większy im większa jest różnica pomiędzy prędkością fali akustycznej w podłożu i w warstwie. Teoretycznie optymalny efekt uzyskuje się dla grubości falowodu określonej poniższym wyrażeniem: $h \approx V_w/4f$ [5], gdzie: V_w – prędkość fali w warstwie, f – częstotliwość środkowa linii opóźniającej na danym podłożu piezoelektrycznym. Eksperymentalnie uzyskane wartości jakościowo pokrywają się z założeniami teoretycznymi Konieczna do zapewnienia optymalnego efektu falowodowego grubość, dla każdej z omawianych warstw, była najmniejsza dla podłoża z kwarcu AT (Tab. 4). W przypadku kwarcu AT różnica prędkości fali akustycznej w podłożu i w poszczególnych falowodach jest największa (Tab. 2).

Porównując przebiegi krzywych ΔA w funkcji grubości warstw na Rys. 7–12 stwierdza się, że dla małych h/λ np. rzędu 0,01 najwyższy stopień koncentracji energii fali uzyskuje się w przypadku warstw z polimetakrylanu metylu (najmniejsza prędkość fali), następnie z poliimidu, a najniższy dla dwutlenku krzemu, niezależnie od rodzaju podłoża piezoelektrycznego. Jednak w przypadku powłok polimerowych po zapewnieniu optymalnego, charakterystycznego dla danej substancji efektu falowodowego dalszy wzrost grubości przyczynia się do wzrostu tłumienia, czego nie zarejestrowano w przypadku SiO₂ w całym badanym zakresie grubości. Zjawisko to związane jest z własnościami sprężysto-lepkościowymi warstw falowodowych. W Tab. 5 podano moduły sprężystości i gęstości omawianych warstw. Moduły sprężystości - E_w obliczono ze wzoru: $V_w = (E_w/d_w)^{0.5}$ [5], gdzie d_w – gęstość warstwy wyznaczona doświadczalnie, V_w prędkość fali akustycznej w warstwie.

Materiał falowodowy	$d_w \text{ [kg/m^3]}$	E_w [Gpa]			
Dwutlenek krzemu (SiO ₂)	2200	8,3134			
Poliimid	1420	2,3			
Polimetakrylan metylu	1180	1,43			
<i>Objaśnienia do tabeli:</i> d – gestość warstwy: E – moduł spreżystości warstwy.					

Tabela 5. Dane materiałowe warstw falowodowych.**Table 5.** Material data of waveguide layers.

Im mniejszy jest moduł sprężystości tym przy mniejszej grubości warstwy ujawnia się oddziaływanie lepkościowe, hamując efekt falowodowy.

Analiza wykresów, opisujących zmianę częstotliwości w zależności od obciążenia (Rys. 13-15) wykazuje, że im mniejszy jest moduł sprężystości materiału tym większe są zmiany częstotliwości przy tym samym obciążeniu masowym.

Największe zmiany w każdym przypadku zarejestrowano dla warstwy z polimetakrylanu metylu o module sprężystości E_w - 1,43 Gpa, nieznacznie mniejsze dla poliimidu, którego moduł E_w wynosi 2,3 Gpa i najmniejsze dla dwutlenku krzemu, którego moduł jest wyższy odpowiednio prawie 6 i 4 -krotnie od prezentowanych 48

polimerów. Różnica odpowiedzi jest więc wskaźnikiem oddziaływania lepkościowego .

Obciążenie masowe (Tab. 4) wywołuje największą zmianę odpowiedzi częstotliwościowej w przypadku kwarcu AT. Zmiana prędkości fali $\Delta V/V_0$ w wyniku oddziaływania mechanicznego jest proporcjonalna do $nc_m md$ [7], gdzie *n*- liczba molekuł na jednostkę objętości; *m* - masa molowa molekuł osadzonych; *d* – grubość warstwy; (czyli iloczyn *nmd* jest obciążeniem w gramach na jednostkę powierzchni); a C_m to współczynnik mechanicznego sprzężenia. Wartość C_m dla kwarcu jest ponad dwukrotnie wyższa niż dla niobianu litu i ponad trzykrotnie dla tantalanu litu (Tab. 4).

Im wyższa jest wartość współczynnika C_m tym większy jest efekt oddziaływania mechanicznego (masowego i lepkościowego) i tym wcześniej hamowane jest oddziaływanie falowodowe.

Rezultaty wykonanych badań sugerują, że czysto masowe efekty nie wpływają na wartość tłumienności wtrącenia, natomiast zmiana częstotliwości jest tylko funkcją masy w przypadku warstw o module sprężystości $E_w \ge 8,3134$ Gpa (Tab. 5, przytoczona wartość dotyczy dwutlenku krzemu). Prawidłowość tą ilustrują dobrze Rys. 16-17.

Fig. 16. Change of insertion loss (ΔA) against mass loading of SiO₂ layer on 36°YX LiTaO₃: 1 (square) – metallized line l; 2 (triangle) – free line..

Na Rys. 16 porównano zmiany tłumienności wtrącenia (ΔA) w funkcji osadzanej masy na jednostkę powierzchni dla dwóch linii opóźniających na 36°YX LiTaO₃ w trakcie formowania na ich powierzchni warstwy SiO₂. Jedna z linii przed procesem pokrywania miała wolną ścieżkę propagacji (startowa tłumienność – 24,5 dB), druga natomiast była metalizowana. Warstwa metalu (Al) zredukowała tłumienność wtrącenia linii, a uzyskany stopień koncentracji energii fali był optymalny (startowa

Rys. 17. Bezwzględna zmiana częstotliwości środkowej linii opóźniającej na **36°YX LiTaO**₃ w funkcji obciążenia warstwą SiO₂: znacznik trójkąt - struktura niemetalizowana; znacznik kwadrat - struktura metalizowana.

Fig. 17. Change frequency response $|\Delta f|$ against mass loading of SiO₂ layer on 36°YX LiTaO₃: 1 (square) – metallized line 1.; 2 (triangle) – free line.

tłumienność – 14,5 dB). Oddziaływanie masowe w przypadku gdy efekt falowodowy jest już zapewniony nie zmienia tłumienności wtrącenia. Natomiast osadzanie SiO_2 na linię z wolną ścieżką wywołuje efekt falowodowy, czyli zmniejszenie tłumienności wtrącenia. Zarejestrowane dla każdej z omawianych linii opóźniających zmiany częstotliwości były jednakowe (Rys. 17).

Reasumując, odpowiedź amplitudowa (zmiana tłumienności wtrącenia) podzespołów z akustyczną falą typu Love' jest tylko funkcją sprzężenia lepkościowego, gdy brak oddziaływań elektryczno - akustycznych, lub są one skompensowane. Natomiast odpowiedź częstotliwościowa jest efektem zarówno sprzężenia akustomasowego jak i akusto–lepkościowego. Natomiast odpowiedź częstotliwościowa jest efektem zarówno sprzężenia akusto-masowego jak i akusto-lepkościowego.Zmiana częstotliwości jest wyłącznie wynikiem oddziaływania masowego w przypadku materiałów o module sprężystości $E_w \ge 8,3134$ Gpa.

5. PODSUMOWANIE

Przedstawione w niniejszej pracy wyniki potwierdziły możliwość wykorzystania proponowanych warstw w funkcji falowodu. Wybór odpowiedniego falowodu uwarunkowany jest wymaganiami docelowej aplikacji i rodzajem podłoża piezoelektrycznego. Przeprowadzone eksperymenty pozwoliły określić badane zależności w sposób ilościowy, dzięki czemu możliwe będzie bardziej precyzyjne projektowanie dalszych prac, ustalenie najkorzystniejszego zestawu: podłoże piezoelektryczne;

materiał falowodowy oraz koniecznej do uzyskania optymalnego efektu falowodowego grubości warstwy.

Zastosowanie omawianych polimerów w roli warstw falowodowych bardzo upraszcza cykl technologiczny otrzymywania podzespołów czujnikowych z modami Love'a.

W rozwiązaniach aplikacyjnych wykorzystujących mody Love'a w detekcji substancji chemicznych, przy odpowiedniej konstrukcji czujnika i kalibracji możliwa będzie selektywna rejestracja oddziaływań gęstościowych, czyli czysto masowych i efektów lepkościowych.

LITERATURA

- Jeuter D., Jose F., Wenzel M., Hossenlopp J., Cernose R.: Design of portable guided SH-SAW chemical sensor system for liquid environments. *Proceedings IEEE*, (2005), 59-67
- [2] Ren-Chuan Chang, Sheng-Yuan Chu, Cheng-Shong Hong, Yu-Ting Chuang: A study of Love wave devices in ZnO/quartz and ZnO/LiTaO₃ structures. *Thin Solid Films*, 498, (2006), 146-151
- [3] Newton M.I., Hale G., Martin F.: Experimental study of Love wave devices with thick guiding layers. *Sensors and Actuators. A*, 109, (2004), 180-185
- [4] Pereira da Cunha M.: High velocity pseudo surface waves (HVPSAW): further insight. *Proceedings IEEE Ultrasonics Symposium*, (1996), 97-105
- [5] Turton A., Bhattacharyya D., Wood D.: Love-mode surface acoustic wave liquid sensors using a ployimide waveguide layer. *Proceedings IEEE International Frequency Control Symposium*, (2004), 250-255
- [6] Gizeli E.: Study of the sensitivity of the acoustic waveguide sensor. *Anal.Chem.*, 72, (2000), 5967-5972
- [7] Ricco A.I., Martin S.J., Zipperian T.E.: Surface acoustic wave gas sensors based on film conductivity changes. *Sensors and Actuators*, 8, (1985), 319 -326

SUMMARY

POLYMETHYLMETHACRYLATE AND POLYIMIDE AS A WAVEGU-IDE IN THE LOVE WAVE DEVICES

In this article the results of the investigations concerned of polymethylmethacrylate and polyimide application as a waveguide in the Love wave devices are presented.

The waveguide effects caused by above polymers and the mostly used SiO₂ waveguide are compared. The estimation of the waveguide properties of the studied substances was carried out on the several, different piezoelectric substrates such as: 41°YX LiNbO₃, 36°YX LiTaO₃, and quartz AT. The influence of the guiding layer geometry on the parameters of the acoustic waves, generated in the above piezoelectric substrates was examined.