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Selfgravitational instability analysis of a gas core liquid jet 
by using energy principle 

A. E. RADWAN (CAIRO) 

THE STABILITY of a self-gravitating gas jet surrounded by a self-gravitating liquid is discussed 
analytically, and the results are confirmed numerically. A general eigenvalue problem describing 
the characteristics of the gas-core liquid jet, based on the linear perturbation techniques, is 
derived by employing the energy principle. It is found that the fluids densities ratio S plays an 
important role in (de-)stabilizing of the present model. If 0 ~ S < 1 (S = s2/s1, where s2 
is the liquid density and s1 is the gas density), the model is unstable for certain values of the 
longitudinal wavenumber x (mainly 0 ~ x < 1.0668), and stable for other values of x. However 
with increasing values of S (provided 0 < S < 1), the instability domain decreases but never 
vanishes. As S > 1, unexpected results have been obtained: the model is gravitationally unstable 
not only for long wavelengths but also for very short wavelengths. These analytical results are 
interpreted physicaUy and confirmed numerically, and the disturbance wave-numbers at which 
stability as well as instability occurs are tabulated. For S = 0 the results known from literature 
are obtained. 

Problem statecznosci grawitacyjnej strumienia gazu otoczonego ciecZ4 przedyskutowano meto
dami analitycznyini, a uzyskane wyniki potwierdzono obliczeniami numerycznymi. Problem 
wartosci wlasnych opisuj(lcy zachowanie si~ strumienia cieczy z rdzeniem gazowym sformtilo
wano posluguj(lc si~ metodami perturbacji liniowych z wykorzystaniem zasad energetycznych. 
Stwierdzono, ze stosunek g~tosci plyn6w S spelnia istotn(l rol~ w (de-) stabilizacji omawianego 
modelu. Jesli 0 ~ S < 1 (S = s2 /s1 , gdzie s2 jest g~stoSci(l cieczy, a s1 - gazu), model staje si~ 
niestateczny dla pewnych wartosci liczby falowej x (przewa:lnie dla 0 ~ x < 1.0668). Jednak 
przy wzrastaj~cych wartosciach S Uesli tylko 0 < S < 1) obszar niestatecznosci szybko maleje, 
chot nigdy nie znika. Przy S > 1 otrzymano niespodziewany wniosek, ze model staje si~ grawi
tacyjnie niestateczny nawet dla fal bardzo kr6tkich. Wyniki analityczne poparto ana1iZ4 fizyczn(l 
i numeryczn(l zjawiska i stabelaryzowano wartoSci parametr6w fal w chwili utraty statecznosci. 
W przypadku S = 0 uzyskano potwierdzenie wynik6w znanych z Iiteratury. 

llpo6JieMa rpaBHTQUIIOIDIOH yCTOHqjfBOCTH llOTOI<a raaa, OI<py>«eHHOro >KHAJ{OCTLIO, o6cy>I<
AeHa auamrr~Neci<liMII MeToAaMII, a non~eHHbie peaynbTaTbi noATBep>I<AeHbi 'll{CJieHHbiMII 
pactfeTaMH. 3aAatla ua co6CTBeHHbie auat~eHIDI, onHcbiBaiOIUaR noBeAeHHe noToi<a ~I<OCTII 
c raaoBbiM cepAetDU{I<oM, c<l>opMynllposaua, nocny>I<HBaHch MeTOAaMH rume:H:HbiX nepTyp-
6auH:H, oiiHpaHcb Ha· :mepreT~NeCI<IIe npHHQHDbi. KouCTaTHposauo, liTo oTHoweHHe nJioT
HOCTII >I<IIAJ{OCTeH S RrpaeT CYJUeCTBelfiiYIO pOJib B (Ae-)cra6HJIH3aUH:H o6cy>I<AaeMOH MO
AeJIH:. ECJIH 0 ~ S < 1 (S = s2/s1, rAe s2 - nnoTHOCTb >I<HAI<OCTII, s1 - nJIOTHOCTL raaa), 
MOAeJIL CTaHOBHTCH Heycro:HtiiiBOH AJ1H Hei<OToporo 3HatleHI{H BOJIHOBOrO 'll{CJia X (B 6oJIL
WIIHCTBe C~aeB AJIH 0 ~ X < 1,0668). 0AUai<O npH B03paCTaiOIUHX 3HatleHIDIX S (eCJIH 
TOJI:bl<O 0 < S < 1) OOJiaCTL HeyCTo:HtiHBOCTH 6biCTpO y6hiBaeT, XOTH HHI<OPAa HeH:C'Ie3aeT. 
llpll S > 1 llOJiytleHO HeO>I<l{AaiDioe CJie,l:(CTBH:e, liTO MO,l:(eJIL CTaHOBHTCH rpaBH:Tal\KOHHO 
HeyCTOHtiiiBOH ,l:(a>I<e Ma otleHL ~OpOTI<IIX BOJIH. AuaJIHTINeCI<He peayJILTaTbi llO,l:(l<pCllJieHLI 
<l>H31NeCI<IIM II tiiiCJieHHbiM aHaJIII30M HBJieHWI II Ta6yJIH:poBaHbl 3HatleHH:H napaMeTpOB BOJIH 
B MoMeHT noTepH ycro:HtiHBOCTH. B cn~ae S = 0 non~euo no,l:(TBep>I<AeHHe peayJILTaToB, 
II3BeCTHblX 113 JIH:Teparypbi. 

1. Introduction 

THE STABILITY of a full liquid jet has been studied since a long time ago, owing to its im
portant applications in several domains of physics. It was PLATEAU [1] who for the first 
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time obtained the critical capillary wavelength, both experimentally and theoretically. 

RAYLEIGH [2] derived the dispersion relation and developed the important concept of 
maximum mode of instability based on the linear theory. By extending Rayleigh's theory, 

WEBER [3] studied the capillary instability of a viscous liquid jet. These and other exten

sions were summarized by RAYLEIGH [4]; see also CHANDRASEKHAR [5]. 
The effect of nonlinearities on the capillary instability of a full liquid jet was considered 

by YUEN [6], WANG [7], NAYFEH [8], NAYFEH and HASSAN [9] and a complete analysis 

was given by KAKUTANI eta/. [10]. 
The response of a self-gravitating incompressible cylinder to small axisymmetric 

disturbance was investigated by CHANDRASEKHAR and FERMI [11] by means of the energy 

principle. Soon afterwards, OGANESIAN [12] was the first to perform a detailed normal 

mode analysis for both axisymmetric and non-axisymmetric perturbations; see also 
CHANDRASEKHAR [5] (p. 516). Their pioneering analysis demonstrated that for dimension

less wavenumbers x which are less than the cut-off wavenumber Xc = 1.0668, the rota
tionally axisymmetric perturbations render the configuration gravitationally unstable, 

thus leading to the break-up of the fluid jet. This problem is of considerable interest in 
describing the appearance of condensation within celestial bodies. The effect of finite 
amplitude disturbances in a self-gravitating medium (fluid column) was first examined by 

T ASSOUL and AUBIN [ 13], see also MALIK and SINGH [ 14]. The latter authors, moreover, 
investigated the modulation instability in a self-gravitating fluid column [15], and later on 
its nonlinear break-up [16]. 

The problem of stability of an annular liquid jet is also attractive owing to its impor
tant applications in physics. The capillary instability of an annular liquid jet (a liquid 

jet having a gas-core jet) has recently been investigated experimentally by KENDALL [17]. 
The last author explained clearly the importance and possible applications of the annular 

jet in astronomy. Moreover, he [17] drew the attention to the problem ~f stability ~nd stud
ied of that model analytically. The capiliary instability of a gas jet surrounded by liquid 

(such that the liquid inertia force is greater than that of the gas) subject to different forces has 
recently been investigated [18, 19]. Indeed, the principle and basic physics of the new 
type of liquid-in-air jet are described by HERTZ and HERMANRUD [20]. The capillary insta

bility of a liquid jet with a thin shell is studied by PETRYANOV and SHUTOV [21], see also 
SHUTOV [22]. More recently MAYER and WEIHS [23] developed an analytical investigation 

of the stability of an annular jet moving in an inviscid medium. 
The main purpose of the present work is to investigate the self-gravitating instability 

of a gas-core liquid jet by employing the energy principle. The present results reduce to 

those of refs. [11, 12], if the inertia force of the gas is assumed to be greater than that of the 
liquid. 

2. Formulation and eigenvalue relation 

We shall consider an inviscid, incompressible self-gravitating gas-core liquid jet (with 

a gas jet of radius Rand density s 1 and the liquid jet density s2). The model is acted on by 
the gas inertia force, liquid inertia force and the variable gravitating force corresponding 
to each fluid. 
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To carry out the present theoretical approach based on the energy principle, one has 
to compute the change in the total kinetic energy E and that of the gravitational potential 
Q in order to write down the Lagrangian function L. It may be noted that the Lagrangian 
function L is constructed as 

(2.1) L= E-Q 

and the equation of motion is 

(2.2) _!!_(oL)- oL = 0 
dt oe oe ' 

where e is the Lagrangian variable and the dot over e means the derivative of e with res
pect to time. In a cylindrical coordinate (r, rp, z) system (with the z-axis coinciding with 
the axis of the annular liquid jet), the deformation of the (gas-liquid) interface can be describ
ed by 

(2.3) r = R+ eRcos(kz+mrp). 

The second term of the right-hand side of equation (2.3) is the distortion of the surface wave 
normalized with respect toR and measured from the unperturbed level, where k (any real 
number) is the longitudinal wavenumber, m (an integer) is the azimuthal wavenumber 
and e is the deformation amplitude at time t 

(2.4) e = e0 exp(nt). 

Here e0 is the initial amplitude and n is the growth rate of the perturbation; if n is imag
inary, n = iw, then w /2n is the oscillation frequency. 

The basic equations which govern the gravitational potentials V1 and V2 are 

(2.5) 

where G is the gravitational constant; from now on the quantities with subscript 1 mark 
the variables of the gas-core jet and those with 2 characterize the variables of the liquid. 
Solution of these equations referred to the deformed interface (2.3) is 

(2.6) 

(2.7) 

V1 = -nGs1 r
2 + eA1 Im(kr)cos(kz+ mrp), 

R 
V2 = -nGs2 r2 +2nGR2 (s1 -s2)ln-+eA2 Km(kr)cos(kz+mrp), 

r 

where Im and Km are, respectively, the modified first and second kind Bessel functions of 
order m; A1 and A 2 are arbitrary constants. A1 and A 2 are determined from the condition 
that the gravitational potential (under a suitably selected reference frame), and its deriv
atives are continuous at the interface (2.3); 

(2.8) 

and 

(2.9) 

It is worth noting that the solution obtained here for V1 and V2 reduces to that of ref
erence [11] if we put s2 = 0 and m = 0. 
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Now suppose that the amplitude of deformation e is increased by lJe; then, due to this 
infinitesimal increment in the amplitude of deformation, the change (JQ in the gravitational 
potential energy can be determined by evaluating the _work done during the displacement 
of the matter required to produce the change in e. To evaluate this work it is necessary to 
specify quantitatively the redistribution which does take place. 

Arbitrary deformation of an incompressible fluid can be thought of as resulting from 
the Lagrangian displacement !;1 (j = 1 and 2) applied to each point of the fluids. Follow
ing Kendall, we assume that the perturbed motion is irrotational; this is the result of the 
irrotational motion of an inviscid fluid, see DRAZIN and REID [24]. Therefore, the Lagrang
ian displacements of the gas and liquid can be expressed as 

(2.10) 

From Eq. (2.10) and the incompressibility condition it follows that the displacement 
potentials 4> 1 satisfy Laplace's equation 

(2.11) 

In view of equation (2.3), equation (2.11) takes the form of an ordinary differential equation, 
its solution being given in terms of Bessel functions of purely imaginary arguments. There
fore the non-singular solutions of ¢1 under the present circumstances must be 

(2.12) 

(2.13) 

4>t = B1 lm(kr)cos(kz+mq;), 

c/>2 = B2Km(kr)cos(kz+mq;). 

The constants B1 and B2 are determined by applying the condition that the radial compo
nents of !;1 are equal and reduce to Rcos(kz + mq;) at r = R; 

(2.14) 

Hence 

(2.15) 

(2.16) 

B1 = Rf(kl~(kR)) and B2 = R/(k K~(kR)). 

;. = ( eRfk(I~(kR))) grad( (Im(kr)cosf(kz+ mq;) ), 

; 2 = ( eRf(k(K~(kR))) grad(Km(kr) cos(kz+mq;)) 

and therefore the corresponding displacements l3!;1, which must be applied to each point 
of the fluids in order to increase the amplitude of deformation by lJe, are given by 

(2.17} 

(2.18) 

lJ;1 = (RlJef(kl~(kR))) grad(lm(kr)cos(kz+mq;)), 

lJ;2 = (RlJef(kK~(kR))) grad(Km(kr)cos(kz+mq;)). 

Now, due to that additional deformation lJe, the change in the total gravitational potential 
energies lJQ1 (per unit length) can be obtained by integrating the work done by the displace
ments l3!;1 in the gravitational potentials V1 . 

Thus for the gas-core jet we have 

(2.19) 
R(l +t:cos(kz+ m~p)) 

lJQ1 = 2ns1(( J (lJ;1 • gradV1)rdr)) 
0 
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where the angular brackets signify that the quantity enclosed should be averaged over fP 
and z. Combining equations (2.6), (2.8), (2.17) and (2.19), we find 

(2.20) ~Q1 = 2e ~e n 2GR4s1 [s1- 2(s1- s2) (Km(kR)/ (kRI~(kR) )Jm(y)], 

where y = kr and 
kR 

lm(Y) = J [ (I~(y))2 + (1 + m2y- 2)/~(y)]ydy. 
0 

Using the identity (which follows from Bessel's equations) 

(2.21) 

where Qm stands for the modified Bessel functions Im and Km; hence equation (2.20) yields 

(2.22) ~Q1 = 4n2Gs1 R
4 [ts1- (s1 -s2) lm(kR) Km(kR)]. 

By integrating equation (2.22) from zero to e we get 

(2.23) Qt = -2n2 Gs1 R4 [(s1 -s2)lm(kR)Km(kR)--!s1]e2. 

In a similar manner, the change in the total gravitational potentional energy Q 2 of the 
liquid (per unit length) is obtained, 

(2.24) Q 2 = 2n2 Gs2 R4 [(s1 -s2)Im(kR)Km(kR)--!s1]e2. 

Henceforth the change in the total gravitational potential energy (per unit length) of the 
gas-core liquid jet is given by 

(2.25) Q = Qt+Q2 

= -2n2Gst(S1 -s2)R4 [(s1 -s2)Im(kR)Km(kR)--!st]e2. 

Now we have to evaluate the change in the total kinetic energy of the gas-core liquid jet. 
Since the Lagrangian coordinate e is a function of time, each element of the fluids will 
move. This can be derived from the Lagrangian displacements 

u1 = o~J at, j = 1, 2, 

so that the velocity vectors of the gas-core and liquid jet, respectively, are 

(2.26) u1 = (R/(kl~(kR))) ~: grad(Im(kr)cos(kz+mqJ)) 

and 

(2.27) 

The change in the total kinetic energy E1 (per unit length) of the gas-core jet associated 
with the motions specified by (2.26) is 

m kz=m R 

(2.28) E1 = ~ s1 J J J ui rdr ~~ dqJ 
0 0 0 

= ns1R2 /(2k'l;i(kR))( ~; rJm(Y) = ns1R3 (lm(kR)/(2kJ,;.(kR))( ~; r, 
where the identity (2.21) has been used. 

3* 
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In a similar way the change in the total kinetic energy £ 2 (per unit length) of the liq
uid associated with the motions specified by (2.27) is obtained and given by 

(2.29) E2 = -ns2 R3(Km(kR)/(2kK~(kR))) ( ~; r 
Therefore the change in the total kinetic energy E of the gas-core liquid jet is 

(2.30) E = E1 +E2 = (nR3 /(2k))( ~; r [(s1 lm(kR)jl.;,(kR))- (s1 K.(kR)jK.;,(kR))]. 

By applying relations (2.30), (2.25) and (2.1), Eq. (2.2) istransformed into the equation 
of motion for e and, hence, the use of Eq. (2.4) yields the following relation: 

(2.31) n2 = 4nG[(s1 -s2)2 Im(x) Km(x)-!s1(s1 -s2)]Nm(x), 

where 

(2.31') 

and where x( = kR) is the longitudinal dimensionless wavenumber. 

3. Discussions of the results 

Equation (2.31) is the eigenvalue relation of a gravitating liquid having a gravitating 

gas-core jet. By means of this relation the characteristics of the present model can be de

termined: one can identify the regions of instability (in particular their critical wavenum

bers, maximum growth rate values and the corresponding wavenumbers) and those of 

stability as well. 
The eigenvalue relation (2.31) ralates the growth rate n (or rather the oscillation fre-

quency ro) with the densities s1 and s2 of the two fluids, the value of (4nGs1)-! as unit 

of time, the characteristic length R, the azimuthal and dimensionless longitudinal wave
numbers m, x, and the cylindrical functions appropriate to the problem at hand. 

Since this problem is somewhat more general, one can recover other dispersion relations 
as limiting cases from the present relation (2.31) with suitable assumptions. 

If we assume s2 = 0, Eq. (2.31) gives 

(3.1) 

The dispersion relation (3.1) was established by OGANESIAN [12], see also reference [11] 

as m = 0. 
If we set s2 = 0 and at the same time m = 0; Eq. (2.31) reduces (since /~ = / 1) to 

(3.2) 

Equation (3.2) is the dispersion relation of a gravitating full fluid cylinder in vacuum for 

the rotationally axisymmetric perturbations m = 0 (nowadays this kind of perturbations 

is called "sausage mode"). It was CHANDRASEKHAR and FERMI . [11] who first derived that 

relation by means of the energy principle. For the stability discussions of Eqs. (3.1) and 

(3.2) we may refer to OGANESIAN (12]. 
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If we impose s1 = 0, Eq. (2.31) yields 

(3.3) n2 = 4nGs2 {- xlm(x)K~(x) ). 

This is the eigenvalue relation of a hollow jet (i.e. a liquid jet having a vacuum-core cylin
der which is a mirror case of the full liquid jet) subjected to the gravitation force. One can 
show (see the recurrence relation (3.6)) that the right-hand side of Eq. (3.3) is always posi
tive for each non-zero real value of x. This means that the gravitating hollow jet model, 
if it exists, is unstable for all (axisymmetric m = 0 and· non-axisymmetric m ~ 1) modes 
of perturbation. 

Now, for investigating the (in-)stability of the present model, it is convenient to rewrite 
the eigenvalue relation (2.31) in a dimensionless form, 

where S and Fm(x) are defined as 

(3.4h 

and 

(3.4h 

This eigenvalue relation is valid for all modes of perturbations: sausage mode m = 0 and 
non-axisymmetric modes m ~ 1. 

Consider now the recurrence relations (see ABRAMOWITZ and STEGUN [25]) 

(3.5) 

(3.6) 

2/~(x) = lm_ 1(x)+lm+1(x), 

2K~(x) = -Km-1(x)-Km+1(x). 

It is known that Im(x) is always positive and monotonic increasing and that Km(x) is monot
onic decreasing but never negative for each non-zero real value of x; hence one can ob
serve that /,~(x) is positive while K~(x) is always negative. On the basis of these arguments, 
one can show that 

(3.7) 

for each non-zero real value of x, all S values and all modes of perturbations m ~ 0; 
and that Fm(x) never changes its sign. Now we have to distinguish between the two differ
ent kinds of perturbations: the sausage mode m = 0 and the non-axisymmetric modes 
m~l. 

3.1. Non-axisymmetric perturbations m ~ 1 

lt is worthwhile to mention here that, due the properties of the modified Bessel functions 

(3.8) 

and is never negative. 
Now to find out whether the problem at hand is gravitationally stable or not we should 

consider the different cases when Sis greater than, equal to, and less than unity, the ine
quality (3. 7) being taken into account. 
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If S > 1, Eq. (3.4) 1 shows that the dimensionless growth rate n/(4nGs1)t is real. This 
means that a liquid having a gas-core jet is gravitationally unstable in the non-axisymmetric 
modes m ~ 1 if the liquid is more dense than the gas-core jet. 

If S = 1, Eq. (3.4)1 shows that the growth rate is zero. This means that we have neutral 
stability and there is no dispersion. This is intuitively clear since in such a case we have 
a gravitational homogeneous medium of uniform density. 

If 0 < S < 1, Eq. (3.4)1 shows (taking into account Eq. (3.8)) that n/(4nGs1)l is 
purely imaginary. This means that the model is gravitationally stable in the non-axisymmet
ric modes m ~ 1 as long as the gas-core jet is more dense than the liquid. 

Let us mention here (as a special case) that if S = 0, Eq. (3.4)1 shows that the model 
is stable for all purely-axisymmetric perturbations m ~ 1. This coincides with the pre
viously reported results (see OGANESIAN [12] and also CHANDRASEKHAR and FERMI [11]). 

3.2. Sausage perturbations m = 0 

For such a case the inequality (3.8) does not hold for all x. Equations (3.4) 1 and (3.4h 
yield (since l 0 (x) = / 1 (x) and K~(x) = - K1 (x)) 

(3.9)1 n2 /4nGs1 = (1-S)[(1-S)/0 (x)Ko(x)-f]F0 (x) 

and 

(3.9h 

In a similar manner as for the non-axisymmetric modes m ~ 1, Eq. (3.9) 1 has been 
studied analytically and the obtained results are exactly the same as those of the non
axisymmetric perturbations. In order to be sure about the correctness of these results 
(since form = 0, the inequality (3.8) does not hold for all x), the dispersion relation (3.9) 1 

has been studied numerically by computer simulation and then the numerical results are 
illustrated in Figs. (1-3). It is seen, what confirms the analytical results, that the values of 

the dimensionless growth rate n/(4nGs1)t and those of the critical wavenumber x decrease 
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with increasing density ratio 0 < S < 1. For S equal to 0, 0.2, 0.3, 0.5, 0.7, 0.8 and 0.9 

we get 0.2455, 0.1650, 0.1289, 0.06614, 0.0196,0.0056 and 0.0002 for n/(4nGs1)t at x = 

= 0.580, 0.469, 0.411, 0.282, 0.133, 0.057 and 0.005, respectively; and the corresponding 
values of the critical wavenumbers x are 1.066, 0.847, 0.732, 0.489, 0.223, 0.093 and 0.007, 
respectively. Indeed, this indicates how fast the domain of instability shrinks with increasing 
values of S (0 ~ S < 1). In the case when the model is subjected to the gas and liquid 
inertia forces and acted upon by pressure, RADWAN [19] and experimentally KENDALL [17] 
proved that the model is stable in the sausage mode m = 0 with wavelength longer than 
the circumference of the gas-core jet and is also stable in the nonaxisymmetric modes 
m ~ 1 for all wavelengths. It could be expected that the model is stable as Sis greater than 
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unity. But it is found that the model is absolutely unstable for S greater than unity (see 
also the numerical results for S = 1.1, 1.3, 1.5, 2.0, and 3.0) not only for very long wave
lengths but also for short wavelengths. This maybe is logical, since in such a case the liquid 
is much more dense than the gas and the acting force is self-gravitational; and it is known 
that the gravitational force is a long range force in contrast to the capillary force. 

4. Conclusions 

The (in-)stability of a self-gravitating gas cylinder surrounded by a self-gravitating 
liquid is investigated on the basis of the energy principle. It is found that the densities of 
the liquid to the gas ratio S plays an essential role in identifying the (in-)stability features 
or the gas-core liquid cylinder. That is true not only for the symmetric mode m = 0 but 
also for asymmetric modes m =1= 0. 

i) When the gas cylinder is more dense than the surrounding liquid, the model is 
unstable if 2Slm(x)Km(x) is greater than unity (and vice versa). 

ii) When the density of the gas cylinder is equal to the density of the surrounding 
liquid, the model is stable. Note also that in the case if S < I and simultaneously 
Slm(x)Km(x) = 1/2 in all modes m ~ 0 of perturbations for all wavelengths. 

iii) When the gas cylinder is less dense than surrounding liquid, it is found that the 
gas-core liquid cylinder is unstable in all symmetric and asymmetric modes. This instability 
is true not only for long wavelengths but also for short wavelengths, what is surprising. 
However, it has a good interpretation in the process of destruction of interstellar clouds 
and also in the break-up or spiral arms of galaxies (cf. reg. [11)). These analytical results 
are confirmed numerically, see Figs. 1- 3. 
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