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On a constitutive theory for materials 
undergoing microstructural changes 

A. S. WINEMAN (ANN ARBOR) and K. R. RAJAGOPAL (PITTSBURGH) 

A CONSTITUTIVE theory is discussed for materials which undergo microstructural changes, and 
thus have different micromechanisms for the generation of stress in different regimes of response. 
Of particular interest is a two-network, theory of polymer response in which, at some state of 
deformation, molecular cross-links are broken and then reformed in a new reference state. The 
mechanical response then depends on the deformation of both the remaining portion of the 
original material and newly formed one. A particular constitutive equation is introduced in 
order to develop the methodology for performing calculations, and to study material behavior. 
The original and newly formed material are both treated as incompressible isotropic nonlinear 
neo-Hookean elastic materials, but with different ·reference configurations. Several homogeneous 
deformations are analyzed, and permanent set on release of load is calculated. Nonhomogeneous 
deformations are studied by means of the problem of the combined .extension and torsion of 
a circular cylinder. Unloading and loading response is determined, as well as permanent set on 
release of load. 

Przedyskutowano teori~ r6wnan konstytutywnych dla materiaJ6w podlegaj~cych zmianom 
mikrostrukturalnym, a zatem charakteryzuj(\cych si~ r6mymi mechanizmami powstawania 
napr~ien w r6Zilych zakresach pracy. Szczeg6lnie interesujctcajest dwusieciowa teoria zachowania 
si~ polimer6w, zgodnie z kt6rct w pewnych stanach deformacji usieciowanie mi~zycZ(\stecz
kowe ulega zalamaniu, prowadZ(\c do nowego stanu odniesienia. Deformacja takiego ciaJa 
zaleiy wtedy od odksztalcenia obu jego skladnik6w w stanie oryginalnym i po przemianie. 
Wprowadzono szczeg61ne r6wnanie konstytutywne pozwalajctce opracowa.C metodologi~ o bli
czen oraz badac zachowanie si~ materiaJu, kt6ry w obu stanach oryginalnym i przeksztalconym 
traktowany jest jako nie5cisliwy, izotropowy i nieliniowy material sprC(i:ysty (tzw. neo-Hookean) 
charakteryzuj(\cy siC( jednak innymi konfiguracjami odniesienia. Przeanalizowano szereg przy
padk6w deformacji jednorodnych oraz niejednorodnych wywolanych rozcictganiem i skre(Caniem 
walca kolowego, ze zwr6ceniem uwagi na procesy obcictiania i odcictiania. 

06cym~aeTcH Teopi!H onpe~emnoiiUfX ypasHemm WIH MaTepaanos no~epraroiiUfXCH MHI<po
crpyi<TypHbiM 1{3MeHeHIDIM, a aaTeM xapai<Tepn:ayro~ecH pa3HbiMI{ MexaHn:aMaMU: o6paao
BaHI{H HanpH>KeiDIH B pa3JIHtiHbiX pa6oqmc ~ana3oHax. Oco6bm mrrepec npe~CTaBJIHeT 
~yceTeBaH Teopi{H nose~eHH:H noJUlMepoB, COrJiaCHO I<OTOpOH npl{ Hei<OTOpbiX COCTOHHWIX 
~e<flopMarum B Me>KMoJiei<YJlHPHOM CTpYJ<TYP~OBaHI{H: HaCTyiiaeT nepenoM, se.zzynulli I< Ho
BoMy COCTOHHIDO OTHeCeHI{H. ,Ile<flopMaui{H Tai<OrO TeJia 3aBU:CI{T Tor~a OT ~e<flopMili.Unf o6eU:X 
COCTaBJIHIOIUU:X (B llOWJHHHOM COCTOHHWI I{ nOCJie npeo6pa30B3HH:H). BbiJIO BBe~eHO qaCTHoe 
onpe~enmomee ypaBHeHHe, noasonmomee pa3pa6oTaTb MeTo~onormo pacqeToB, a TaiOKe 
n:ccne~oBaTb noBe~eHHe MaTepl{ana, I<oTopbm B o6ou:x cocrommmc (noWII{HHoM a npeo6pa
aosaHHoM) paccMaTpU:SaeTcH I<ai< Hec>KHMaeMbm, H30Tpoinlbm u: HeJIHHeiiHbm ynpyri!H Ma
TepHan (Tai< uaabiBaeMbm neo-Hookean), xapai<Tepn:ayrouudfcH, o~ai<o, .zq>yrHMH I<OH
$H:rypaui!HMH oTHeCeHI{H. Bbm npoaHaJIH3HpoBaH PM c.nyqaes o~opo~IX I! Heo~opo~IX 
~e<flopMartmi, Bbi3BaHHbiX pacrH>KeHHeM H I<pyqeHHeM I<pyrosoro ~JIH:H.zq>a c yqeToM npo
uecca HarpymaHI!H H pa3rpymaHI{H. 

1. Introduction 

MANY OF THE CONSTITUTIVE equations which have been developed in continuum mechanics 
are based on assumptions which imply that the generation of stress is due to the response 
of a single material micromechanism which does not change as the body is being deformed. 
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In nonlinear elasticity, the current value of the Cauchy stress depends only on the gradient 
of the current configuration with respect to the reference configuration, and this dependence 
is expressed in terms of a Helmholtz free energy function. Such a constitutive assumption 
can be motivated by a single molecular mechanism if one considers the kinetic theory of 
rubber elasticity, where the form of the Helmholtz free energy is related to configurational 
changes in macromolecules. 

However, in many applications, the mechanical response of most materials, whether 
polymer or metal, requires consideration of more than one micromechanism. The theory 
of plasticity for metals is an example of this kind of behavior. Within a certain range of 
response, the mechanical response is due to the elastic distortion of the underlying crystal 
structure and is modeled by linear or non-linear elasticity theory. However, at some stage 
the mechanical response also becomes affected by the action of dislocations at grain boun
daries between crystals. When this second mechanism is induced, and the stress is released, 
there is permanent deformation. The amount of permanent deformation depends on the 
amount of deformation prior to the removal of the stress. The subsequent mechanical 
properties also depend on the amount of deformation prior to the release of stress. For 
example, an isotropic cylinder· subjected to a sufficiently large uniaxial extension will 
remain cylindrical upon removal of stress, but will have new dimensions. Relative to the 
new state, the material will be anisotropic. 

In this paper, we consider a large class of materials which undergo microstructural 
changes when deformed. That is, a second micromechanism arises in the mechanical 
response of these materials which leads to permanent set on release of load and induces 
anisotropy. One such micromechanism in polymers is provided by the two network theory 
of TOBOLSKY and co-workers [1, 2]. In this theory, a certain number of cross-links are . 
present in the initial stress-free state, and additional cross-links are introduced in a later 
state. The initial system of cross-links produces one network or micromechanism. The 
second micromechanism is produced by the appearance of the new cross-links. TosoLSKY, 
PRETTYMAN and DILLON [3] postulated another example of materials undergoing micro
structural changes in which molecular cross-links are broken and reformed in a new refer
ence state. A two-network theory was used by LODGE [4] to discuss permanent set in 
rubbers caused by uniaxial and biaxial extensional deformation. FoNG and ZAPAS [5] 
used both two network theory and the molecular model of Tobolsky, Prettyman and 
Dillon to discuss chemical stress relaxation and permanent set in rubber. They also discussed 
aspects of the development of anisotropy associated with permanent set. A third example 
of material responses in which a second micromechanism occurs might be that of strain
induced crystallization. PETERLIN [6] suggested that this mechanism d_evelops when anum
ber of macromolecular chain segments associate together to form a bundle-like cluster 
with fairly good orientation. The remaining segments may be in an amorphous region. 
Thus, a new constituent or micromechanism is formed which contributes to the mechanical 
response. A discussion of various aspects of anisotropic mechanical behavior due to such 
microstructural changes is presented in the book by WARD [7]. 

Thus, in these materials, there are different constitutive expressions for the stress tensor 
in different regimes of response of the material. We shall focus our attention on such a class 
in our discussions. We hasten to add that we discuss a specific example in order to elucidate 
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our point. However, the ideas proposed herein are applicable whenever there is more 
than one micromechanism responsible for the development of stresses in a continuum. 
In an earlier paper [8], we have discussed a possible method for modeling changes from 
one manner of response to another, based on the ideas of bifurcation and the selection of 
the appropriate branch. 

2. Theoretical preliminaries 

Let x0 denote the reference configuration of a solid body in its unstrained, unstressed 
state. Let X0 denote the position of a particle in x 0 , i.e., positions of particles in x 0 will 
have the suffix 0. Let x(t) denote the current configuration ·of the body and x0 (t) denote 
the current coordinates of the particle which was initially at X0 • Let the deformation 
gradient with regard to the reference configuration be denoted as F"o(t) = ox(t)foX0 • 

The constitutive equation for the Cauchy stress for elastic materials (TRUESDELL [9]) 
has the form 

(2.1) 

Now, suppose that at some later state of deformation there is a change in the microstruc
ture of the material. The precise change depends on the situation under consideration. 
There may be a conversion of a portion or all of the material to a new microstructure, 
while the rest of the material retains the original microstructure. The changes could occur 
gradually with changes in deformation or time, or they could take place very quickly. 
After the change has occurred, it is assumed that a point in space is occupied simultaneously 
by two particles, or material elements. One represents the remaining portion of the material 
with the original microstructure, and the other represents the portion of the material with 
the new microstructure. Such an assumption that two particles occupy the same point 
in space is not entirely new to continuum mechanics. The theory of interacting continua 
(cf. TRUESDELL [10], BOWEN [II], ATKIN and CRAINE [12]) is founded on the basis of such 
an assumption. 

We shall regard x1 to be the reference configuration for particles which represent the 
portion of the material comprising the new microstructure. Henceforth, we shall refer 
to such particles as the "newly formed material". As we shall see in a later section, it is 
possible that the spatial formation of the new material due to nonhomogeneous deforma
tions requires the consideration of an infinite sequence of new reference configurations. 

Let X1 denote the position of a particle of the new material in configuration " 1 • Also, 
let x(t) denote the position of the same particle in the current configuration which is 
achieved by deforming x1 further. Denote the deformation gradient with respect to the 
new material configuration x1 as F"

1
(t) = ox(t)foX1 • We shall assume that the consti

tutive equation for the stress depends on the deformation of both the remaining portion 
of the original microstructure and the newly formed microstructure, and is given by 

(2.2) 

If a second microstructure is to affect the generation of stress in the material, then it 
is necessary to introduce a criterion which determines when exactly the change in the 
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material microstructure occurs. In general, this criterion, which we shall refer to as an 
'activation' criterion, depends on the .history of the deformation of the original material. 
For instance, it could be denoted by a functional of the history of the deformation gradient: 

(2.3) 

Thus, when the functional reaches a certain value, the new microstructure emerges. 
The constitutive equations must be subjected to the restrictions of material symmetry 

and frame indifference. We discuss these briefly here. A detailed discussion of the conse
quences of material symmetry will be discussed in a separate work. 

Let G0 denote the set of material symmetry transformations (cf. Peer group, TRUESDELL 
[9]) for the original material whose reference configuration is "o· Let G1 denote the ma
terial symmetry transformation for the newly formed material whose reference configu
ration is· " 1 • Then, the material symmetry restriction on the constitutive equation (2.2) is 

(2.4) §"!F"o(t); F"1(t)] = §"[F"o(t)H; F"
1
(t)M], 

H eG0 , M eG1 • 

Note that the newly formed material need not have the same material symmetry prop
erties as the original material. An example of such a situation might arise during the 
process of strain-induced crystallization in polymers. Due to the orientation of macromo
lecular segments into lamellae, the crystallized portion would be transversely isotropic, 
while the remaining portion is randomly coiled, and hence considered isotropic. 

In order to consider the restrictions of material frame indifference, consider a motion 
of the material, x(t) = x(X, t), t ~ 0, where X e "o· Then F"

0
(t) = ox(t)/oX. Suppose 

that the activation " 1 criterion is satisfied at time t 1 • The configuration " 1 is defined by 
the mapping 

(2.5) 

For times t ~ t 1 : 

(2.6) F"
1 
(t) = (ax(t)/oX1) = F"o(t)(oX0 / oX1) = F"o(t)[F"o(t1)]-

1
. 

Now consider a second motion of the form 

(2.7) x(t) = Q(t) x(X, t) + d(t), t ~ 0, 

where x(X, t) is the first motion, d(t) is independent of X and Q(t) is an orthogonal trans
formation, i.e., 

(2.8) Q(t) Q(t)T = Q(t)TQ(t) = I, t ~ 0. 

In this second motion, the deformation gradient for the material with the original 
microstructure is 

A 

(2.9) F"
0
(1) = Q(t)F"

0
(1). 

The activation criterion should also be satisfied at time t 1 for the second motion. The 
reference configuration for the material with the newly formed microstructure xl' is 
defined as in (2.5) by the mapping 

(2.10) 
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For times t ~ t 1 , the deformation gradient is given by: 

(2.11) 
" ai(t) 
F~ (t) = - ,.. - = Q(t)F"

1
(t)Q{t1Y· 

1 axl 
In virtue of Eqs. (2.2), (2.9) and (2.11 ), the requirement of frame indifference implies 

that: 

(2.12) ~[Q(t)F"o(t); Q(t)F"
1
(t)Q{tl)T] = Q(t)~[F"0(t); F"

1
(t)]Q(t)T. 

The relevant forms of the polar decompostions of F"o and F"
1 

are denoted by 

(2.13) 

Let Q(s), 0 ~ s ~ t be defined so that Q(t) = I and Q{t1) = R1 (t). It follows from 
Eqs. (2.12) and (2.13) that 

(2.14) ~[F"o(t); F"1 (t)] = ~[F"o(t); Vt{t)]. 

It follows from the polar decomposition of F;
1
(t), (2.11) and (2.13), that 

(2.15) Q(t)F"
1
(t) Q{t1Y = Q(t)Vl{t)Q(t)TQ(t)R1(t)Q(t1)T. 

The statement of frame indifference in Eq. (2.12) reduces to 

(2.16) ~[Q(t)F"0(t); Q(t)Vl(t)Q(t)T] = Q(t)~[F"0 (t); Vl(t)]Q(t)T. 

Now let Q(s), 0 ~ s ~ t be such that Q(t) = R0 (t)r. In view of Eq. (2.13), we find 
that 

(2.17) ~[F"o(t); V1 (t)] = Ro(t)~[Uo(t); Rl;(t) V1 (t)R0 (t)]R{;(t). 

By Eqs. (2.2), (2.14) and (2.17), and without loss in generality, the constitutive equation 
can finally be written as: 

(2.18) 

where 

(2.19) 
C"o{t) = F"o{t)TF~o(t) = U 0 (t)2

, 

B"
1
(1) = F"

1
(t)F",(t)T = V1{t)2

• 

3. A specific microstructural change - two-network theory 

In order to illustrate the application of our theory, we introduce the following specific 
model. Both the original and newly formed material are assumed to be incompressible, 
isotropic and neo-Hookean nonlinear elastic solids. The form of the constitutive equation 
in (2.1) for the original material, before new material comes into play, is: 

(3.1) 

where p, is a constant. The activation criterion (2.3), which determines when the new 
material forms, is given by: 

(3.2) 
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where / 1 and / 2 are the invariants of B"o. The constitutive equation (2.2), which applies 
once Eq. (3.2) is satisfied, has the form 

(3.3) 

where B~ = F" F;. We have also assumed that the shear modulus of the newly formed 
ftl 1 1 

material is different from that for the original network. The parmeter C 1 denotes the mass 
fraction of the original network which remains and I - C 1 is the mass fraction of the 
newly formed material. 

Equation (3.3) represents the special case of (2.I8) in which!/ is given by: 

(3.4) 

Notice that when the activation criterion is satisfied, there is an instantaneous change 
from a continuum consisting of the original material to one consisting of the remainder 
of the original material and the newly formed material. It is assumed that no further 
change occurs. 

Although this model is very simple, it incorporates the essential features of the ideas 
being considered here. It is also very convenient for presenting examples. As will be seen 
in later sections, analytical solutions to several important problems can be obtained within 
the context of such a theory. The model also provides valuable insight for situations in 
which features such as compressibility and stress relaxation are incorporated. 

4. Homogeneous deformation - triaxial extension 

Let the components of X0 with respect to a Cartesian coordinate system be given by 
X1<

0 >. Consider a cube of material which undergoes the following triaxial deformation 
from reference configuration x0 : 

(4.1) 

with 

Then 

(4.2) 

x1(t) = .A.1(t) Xf0 >, i = I, 2, 3, no sum over i 

Suppose the activation criterion (3.2) is satisfied at time t 1 . Since the triaxial deformation 
(4.I) is homogeneous, the activation criterion will be satisfied simultaneously at all particles 
of the cube. Then the coordinates of a newly formed material particle, denoted by xp>, 
are related to coordinates xt<0> by: 

(4.3) 

The mapping in Eq. (4.3) defines the reference configuration x1 of the newly formed ma
terial. 
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For times t > t 1 , the mapping of the original material from reference configuration 
"o to current configuration x(t) is still given by Eq. (4.1). For the newly formed material, 
the mapping from reference configuration x1 to the current configuration x(t) is found 
from Eqs. ( 4.1) and ( 4.3) to be: 

(4.4) 

Then 

(4.5) 

The stress, by (3.3), has the following form for all further triaxial deformations: 

(4.6) Tu = - p + C1 ,uA.,(t)2 + (1- C1) it [A.,(t)/ A.,(t1)]2, 
i = 1,2,3, no sum over i. 

Suppose that the stress reduces to zero at time t = t. If C 1 # 1 or C 1 # 0, the stress-free 
configuration will coincide with neither x 0 nor x1. The stress-free configuration is found 

by solving Eq. (4.6) for strech ratios A.li) = ~and then using these in Eq. (4.1). 
In order to solve for these stretch ratios, let (4.6) be rewritten as: 

(4.7) -p+C1,ul/>i[f,"fA.,(t1)]2 = 0, i = 1, 2, 3, no sum over i, 

l/> 1 = (A.,(tt))2+[}t(l-Ct)/,uCtl· 

Equation ( 4. 7) implies that 

(4.8) 4>tt1t/A.1(t1)]2 = l/>2[I2/A.2(t1)]2 = 4>3[I3/A.3(tt)]2. 

This, together with the condition that the deformation be isochoric, leads to the following 
relations, 

(4.9) 

I1 = {4>24>314>~P16A.tCtt), 

I2 = {4>t4>314>~P 16 J.2(t1), 

IJ = {4>t4>214>~P 16 A.3(t1). 

Thus, each of the stretch ratios which define the stress-free configuration depends on 
the ratio of the moduli, [t I ,u, the ratio of the mass fraction of newly formed material to the 
mass fraction of the original network which remains, and the corresponding stretch ratio 
at time t 1 when the activation condition is satisfied. 

5. Simple shear deformation 

Suppose that a cube of material in reference configuration x0 undergoes the simple 
shearing motion: 

(5.1) 

x1(t) = Xf0>+K(t)X!0 >, 

x2(t) = X!0 >, 

x3(t) = X1°>. 
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As is well known for simple shear, / 1 (1) = 12.(1) = 3+K(t)2
• At some time t 1 , the amount 

of shear K(t1) is such that 

(5.2) 

and the activation criterion (3.2) is satisfied. Letting K = K(t 1), the coordinates of the 
newly formed material particles, Xfl) are related to coordinates Xf0 > by 

(5.3) 

xp> = Xf0>+KX~0>, 

x~l) = X~0>, 

x~1) = x~o>. 

For times t > t1 , the mapping of the original material particles from reference config
uration x 0 to current configuration x(t) is still given by Eq. (5.1). The mapping from 
reference configuration x1 of the newly formed material particles to the current configu
ration x(t) is found from Eqs. (5.1) and (5.3) to be 

(5.4) 

x 1 (t) = Xt1>+ [K(t)-K]X~l)' 
x2(t) = X~ 1 >, 

x3(t) = X~0• 

The stress, by Eq. (3.3), has the following form for further simple shear deformati<?n 

[
1 + (K(t))

2 
K(t) 0] "[1 + (K(t)-K)

2 
K(t)-K OJ 

{5.5) T = -pi+C1 p, K(t) 1 0 +(1-C1),u K(t)-K 1 0 . 
0 0 0 0 0 1 

According to this model, the shear stress-shear strain relation is initially 

(5.6) T12 = p,K(t). 

After the newly formed material appears, (5.5) gives 

(5.6') T 12 = C1 p,K(t)+(1-C1)jt(K(t)-K) = {C.[p,-jt]+jt}K(t)-(1-Ct)ftK. 

For K(t) < K, the shear stress-strain graph is linear with slope p. At K the graph has 
a jump discontinuity downward by amount p,(l- C 1) K. For K(t) > K, the graph is again 
linear with slope C 1 (p,- jt) + jt. The jump discontinuity downward occurs because the 
newly formed material is assumed to be in a stress-free state. 

Now suppose that we wish to determine the new traction-free configuration. Becus~ 
of the presence of distinct normal stresses in Eq. (5.5), the stres·s-free configuration cannot 
be related to x0 or x1 by a simple shear deformation. In [13], RAJAGOPAL and WINEMAN 

considered the shearing of a cube of a nonlinear elastic isotropic material in the absence 
of normal tractions. They showed that the corresponding deformation consisted of shear 
superposed on unequal triaxial extension, and determined the extensions. 

Although the total traction on the material is to vanish, the terms in Eq. (5.5) associated 
with B~o and B~1 will not equal zero. The newly formed material can be thought of as 
exerting normal and shear tractions on the remaining material. As in [13], these will not 
be what is necessary to maintain simple shear deformations from x0 ~nd x1 to the traction
free configuration. Guided by the work in [13], we now let the deformation from x 0 to 
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the traction-free configuration be given by shear superposed on unequal triaxial extensions. 
Let the deformation from configuration " 1 to the traction-free configuration be given by 

x1 = IlxP>+i)~-;x! 1 >, 

(5.7) x2 = I2X!l), 
x3 = I3X~0. 

In view of Eq. (5.3), the deformation from configuration "o to the traction-free configu
ration is given by 

x1 = I 1 Xf0>+(I1 K+KI2)X1°>, 

(5.8) x2 = I 2 X1°>, 
X3 = I3Xi0 >. 

If the tractions of the cube are to vanish, then T = 0. By Eq. (3.3), I 1 , I2 , x;, K, and 
p must be chosen to satisfy 

[
1 o OJ [Ii + (K*)

2 
K* I 2 o ] [1~ + (Ki2)

2 
Kii o ·1 

(5.9) :_P o 1 o +Ct.u K*I2 Ii .!! +(1-Ct),U xi~ x~ 5! = o 
0 0 1 0 0 J.i 0 0 J.i 

where K* = I 1 K + KI2. According to Eqs. (5.8), K* represents the residual shear dis
placement of the surface X2 = constant. The condition that T12 = 0 implies 

KJ.2 = [- KJ.1 /(I+ D)], 

(5.10) D = [(1-Ct)P!Ct,ul, 

K* = [D/(1 +D)]K~. 

Moreover, the conditions T22 = 0 and T33 = 0 imply that 

(5.11) 

On setting T11 = 0 and using Eqs. (5.10) and (5.11), we find that 

(5.12) 

The condition that there is no volume change, I 1 I; I 3 = 1, together with Eqs. (5.11) 
and (5.12), leads to the result that 

"It= {1+ [D/(1+D)2]K2
}-

113 < 1, 

l2 = f3 = {1 + [D/(l +D)2]K2 pt6 > 1. 
(5.13) 

Finally, the residual shear displacement is 

(5.14) K* = [D/(l+D)]K/{1+[D/(l+D)2]K2 p13 < K, 

since D > 0. 
Equations (5.13) and (5.14) show how the traction-free deformed state of the cube 

depends on the amount of new material and the shear deformation when it forms. 
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6. Shear superposed on triaxial extension 

Suppose that a cube of material in reference configuration x0 is subjected to a motion 
consisting of shear superposed on triaxial extension 

Xt (t) = ;.! (t)X1°> + K(t) A2(t)X~0>, 

(6.1) x2(t) = l 2(t)X1°>, 

x 3 (t) = l 3 (t)Xi0 >, 

where A1 (t) A2(t) l 3(t) = 1. Let A1 , .1.2 , .1.3, K denote the values of the stretch ratio and 
shear when activation criterion (3.2) is satisfied. The coordinates of the newly formed 
material particles in reference configuration x 1 are given by 

X~ 1 > = l1Xf0>+Kl2X~0>, 

(6.2) x~l> = ;.2x~o>, 

x~l) = l3X~0>. 

For any subsequent deformation, the mapping of the original material particles from 
reference configuration "o to current configuration x(t) is still given by Eqs. (6.1). The 
mapping of the newly formed material from reference configuration " 1 to current con
figuration x(t) is found from Eqs. (6.1) and (6.2) to be 

x1 (t) = [.!.1 (t)/ ldXfl> + { K(t) [l2(t)/ .!.2]- K[l1 (t)/ l1]}X~ t.>, 

(6.3) x2(t) = [l2(t)j l2]X~l)' 

x3(t) = [l3(t)/ A3]X~ 1 >. 

The stress, by Eq. (3.3), is given by 

(6.4) 

where 

[

;.1 (t)2 + (K(t) l 2 (t) ) 2 K(t) A2(t)2 

T = -pi+ ~1 p, K(t) l2(t)2 J.2(t)2 

0 0 

f 
(.1.1 (t)/ .1.1)2 + K2 

+(1-C,)j. i(A2~)/A2) 

.. 3LJ 
K(l2(t)/l2) 

(l2(t)/ .1.2)2 

0 

Consider now the problem of determining the traction-free residual shape of the original 
cube. Recalling the discussion in Sect. 5, we can expect it to be related to x 0 by a deforma
tion of form Eqs. (6.1). Let the value of the parameters for the traction-free state be 

;.1 (t) = 11' ).2(t) = 12, A3(t) = 13, K(t) = K. Expressions for x1, x2, x3' K in terms 
of~ 1, A1, A2 , .1.3, K can be obtained by solving Eq. (6.4) with T = 0, i.e., 

[

I o o] [1i + (Ki2)
2 .Ki~ _oo ·] 

(6.5) 0 = -p 0 1 0 +~1 p, ki~ ~~ 
0 0 1 0 0 .~.~ 
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f
(~1 /At)2 +K2 

K(iz/Az) 0 J 
+(1-Ct),U K(iz/A2) (iz/Az)2 0 , 

0 0 (X3; AJ)2 

(6.5) 
(cont.] 

where K = K[~2 /l2]-K[i1 /ld. This system of equations can be solved by a procedure 
similar to that in Sect. 5. The details are quite tedious and are omitted for purposes of 
brevity. The results are 

(6.6) 

where 

(6.7) 

j 1 = (A~I2A~16jA113)J.1 , 

Xz = (Ati6A~I6fAi'2)J.z, 

13 = (Atf6jA~I3)J.J, 

Ki2 = (A~'6Ai'2/A 1f3)[J.2 D/(li+D)] K, 

Ai = ).f+D, i= 1,2,3, 

A= AtAz+liDK2, 

D = (1- Ct) .U!Ct p,. 

7. Nonhomogeneous deformations 

We consider nonhomogeneous deformations of an incompressible homogeneous solid 
circular cylinder. Each material element of the cylinder undergoes a different local homo
geneous deformation. The activation criterion will be satisfied at different elements at 
different stages of the global deformation. In this and the next section, we provide examples 
which illustrate how such problems can be treated and the physical consequences of two
network material response. 

The examples to be considered involve uniaxial extension and torsion of the cylinder. 
In the present section, we consider the following deformation history. The cylinder is 
first subjected to a uniaxial extension which is sufficiently large that the activation criterion 
is satisfied at all material elements simultaneously. The cylinder is then stretched further 
and twisted. This causes local extension and shear of material elements of both the remain
ing original and the newly formed material. 

The initial radius and length of the cylinder are R0 and L0 • Let the Z-axis of a cylin
drical coordinate system coincide with the centerline of the cylinder. Denote the coordi
nates of a material particle in reference configuration x 0 by (R, e, Z) and let (r, fJ, z) 
denote its coordinates in current configuration x(t). The extension of the cylinder in x 0 

to a cylinder in x(t) is described by the mapping 

r = r(R), 

(7.1) e = e, 
z = ).Z. 
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The physical components with respect to cylindrical coordinates of deformation gradient 
F No are given by 

(7.2) 
[

drfdR 0 OJ 
F"o = 0 r/R 0 . 

0 0 A 

According to the incompressibility condition, det IF xol = 1, 

(7.3) r = (1/yi)R. 

Let the value of A, when activation criterion (3.2) is satisfied, by denoted by I Let the 

coordinates of a newly formed material particle in " 1 be denoted by (r, 0, z). By Eqs. (7.1) 
and (7.3) these are related to the coordinates in "o by 

(7.4) 

r = (1/v'l)R, 

0=8, 
:z = rz. 

In the second phase of deformation, the cylinder is subjected to additional extension and 
torsion. The deformation from " 1 to the current configuration "(t) is given by 

r = r{r), 

(7.5) o = 0+1p£z, 
" z = AZ, 

where i is the stretch ratio of the centerline in configuration "(t) with respect to that in 
configuration " 1 , and ~ is the angle of twist per unit length of the cylinder in configura
tion "(t). 

The deformation from configuration "o to configuration "(t) is obtained as the com
position of the mappings in Eqs. (7.4) and (7.5), 

r = r(r(R)), 

(7.6) o = e+w~Iz, 

z = ifz. 
The physical components of the deformation gradients with respect to cylindrical coordi
nates are given by 

(7.7) 
[

drfdR 0 0 J 
Fx0 = 0 r/R r(d~/~Z) , 

0 0 AA 

r
drfdr 0 0 ] 

F"1 = 0 r/r r(dOjdi) . 

0 0 A 
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Incompressibility conditions det IF"ol = 1, det 1Fx
1
1 = l imply that 

(7.8) 
r = (1/Vl)r, 

r = (1/Vtt)R, 

and thus, by Eqs. (7.7), 

(7.9) 

[(1;v'i~) 0 0 l 
Fx0 = 0 (l/VlJ:) r~~~ ' 

0 0 ;.;. 

[

(1;v'I) o o l 
Fx 1 = 0 (1/Vl) r~i · 

0 0 J. 

The stress, by Eq. (3.3), has the form 

(7.10) 

The individual components of Eq. (7.10) have the form 

Tz() = r~LuCt(ii)2 +(1-C1),Ui2], 
Tu = -p+uu(i,i:r~), ii=rr,OO,zz. 

(7.11) 

In view of Eqs. (7.11), the equilibrium equations reduce to 

(7.12) 

It is easily shown that 

(7.13) 

dTrr/dr+ (Trr- TtJo)/r = 0, 

p = p(r). 

r 
p(r) = <Yrr+ J [(arr-<Too)/r']dr', 

ro 

65 

where the outer surface of the cylinder in configuration "(t), with radius r0 , is assumed 
to be free of traction, i.e. T,(r0 ) = 0. ... 

In the remainder of this section, we confine attention to small angles of twist, i.e., 
1~1 ~ 1. Then, by Eqs. (7.10), (7.11) and (7.13), we find 

5 Arch. Mech. Stos. 1/90 
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(7.14) 

a,, = 'l,u(l/~l)+(l-Cl)#(l/i), 
Goo = 0' rr + 0( ~2), 

Gzz = '1,u(ii}2+(1-Cl)Jli2, 
p(r) = a,,+0(~2), 

A. s. WINEMAN AND K. R. RAJAGOPAL 

Tzz = '1,u[(ii)2 -(1/~l)]+(1-,1)p[1/i)]+0(~2). 
The axial force N and twisting moment M required to maintain the deformation are given 
by 

(7.15) 

ro 

N = 2n J rTzzdr, 
0 

ro 

M = 2n J r2 Tzodr. 
0 

Upon substituting Tzo in Eqs. (7.ll), Tzz in Eqs. (7.14), and making use of Eqs. (7.8), 
it is found that, to within terms of 0(~2), 

(7.16) N = (nRM~l) {C1 ,u[(ii}2 -(lfii}]+(l-,1)#[,U[i2 -(1/i)]}12 -(1/l)]}, . 

M/~ = (nR~/2) [1/(ii)21{C1 ,u(ii)2 +(1-,1)#i2
}. 

The ratio of the torsional stiffness for small angles of twist, M /~, to the axial force can be 
written as 

(7.17) (M/~)/N = (R~/2)[1 +D/ il]/ {[(ii}-1f(iA)2
] + (D/~l) [i2 -1/i]}, 

· where 

If C1 = 1, so that no new material forms, Eq. (7.17) reduces to Rivlin's global universal 
relation for the torsional stiffness in terms of axial force (cf. [14]). If cl = 0, so that there 
is total conversion of the original material, Eq. (7.17) again reduces to a global universal 
relation. Otherwise, if 0 < ' 1 < 1, the ratio (M/~)/N depends on C1 and no universal 
relation is possible. 

In concluding this section, we wish to point out that this analysis has been carried out 
using a more general constitutive equation. The original and the newly formed material 
have different constitutive expressions for incompressible isotropic nonlinear elastic 
response. In the present section both materials are taken to be neo-Hookean for purposes 
of simplicity. 

8. Extension and torsion of a cylinder ~II 

In this problem, the cylinder is first subjected to a uniaxial extension of an amount 
less than is needed to cause the activation criterion to be satisfied. The bar is then twisted. 
At some angle of twist, the additional strain, and its radial dependence, causes the activ
ation criterion to be satisfied initially at the outermost material elements of the cylinder. 
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As twisting increases, the interior material elements become further deformed. At any 

angle of twist, there is an interior radius at which the activation criterion is satisfied. 
Inside this radius, the material elements consist only of the original material. Outside this 

radius, there are material elements of both the original and newly formed material. 
Let (R, e, Z) denote the coordinates of a particle in ~0 • Let~, denote the configuration 

of the cylinder at the end of the uniaxial extension portion of the deformation. Let r denote 
the corresponding axial stretch ratio. If the particle coordinates in ~' are denoted by 
(r', ()', z'), then the mapping from x0 to x' can be written as 

r' = (1 jVA} R, 

(8.1) O' = e, 
z' = Xz, 

where we have incorporated the restriction of incompressibility which led to Eq. (7.3). 
Now let the cylinder be twisted to configuration x(t), in which particle coordinates 

are denoted by (r, (), z). The deformation from x' to x(t) is given by 

r = r', 

(8.2) () = ()' + 1pZ', 

z = z'. 

and from x 0 to x(t) is given by 

(8.3) 

r = (i;v'~)R, 
() = 8+1piZ, 

z = Xz. 

The physical components of the deformation gradient F "o with respect to cylindrical 
coordinates are given by 

(8.4) 
[

drfdR o o l [I/Yf o o l 
F,o = o r/R r(d8~dZ) . = o 1/Y~ '"P! · 

0 0 A 0 0 A 

Clearly, det IF,
0

1 = 1. The strain tensor B,
0 

= F"
0
F,!'

0 
is given by 

0 

(8.5) 
[ 

(1/i) 

B,
0 

= 0 (I I I)+ (r1pi)2 

r1pi2 

and its invariants are given by 

(8.6) 

0 

!1 = 2/I+ .fl + (np)2 i 2
, 

/2 = i~+l/l2 +(np)2 i. 
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When "'' = 0, / 1 and / 2 have the same value at all material elements of the cylinder, 
that for uniaxial extension. Consider the material element at a typical radius r. As np 

increases, both / 1 and / 2 increase. At some value of r1p, say K*, the activation criterion 
will be satisfied at that material element. By Eqs. (8.6), the dependence of / 1 and / 2 on 
'"''is the same for all material elements of the cylinder. Since all material elements have 
the same activation criterion, this criterion will be satisfied whenever 

(8.7) np = K*. 

Let "''* be the angle of twist when Eq. (3.2) is satisfied at the outermost element. Then, 
by Eqs. (8.3) and (8.7), 

(8.8) 

Now consider values of "P > "''*. By Eqs. (8. 7) and (8.8), the relation between the 
radius of a material element r a and the angle of twist 1p when the activation criterion is 
met at that element is given by 

(8.9) 

or 

Accordingly, given the angle of twist "'' > 1p*, the material elements with r < ( 1p* I"'') r 0 

consist solely of the original material, while for r > (1p* f'IJ') r 0 there are elements of both 
the original and the newly formed material. We will refer to ra = ("''* /"P) r0 as the activation 
radius. 

Now consider a typical radius r between the current activation radius ra and the outer 
radius. The deformation gradient for the original material is given by Eq. (8.4). The defor
mation gradient of the newly formed material element relates its current configuration in 
x(t) to its configuration when it was formed. However, the latter configuration varies with 
the material element because the activation criterion is satisfied at different radii at different 
angles of twist. Let x1(r) denote the local configuration of material element when it is 
formed, and let F "

1 
<r> denote the deformation gradient relating " 1 (r) to the current config

uration in x(t). 
Denote the deformation gradient for the local homogeneous deformation of a material 

element from its state in x0 to x 1(r) by Fl(
0

,.e
1

<r>· This is given by Eq. (8.4) with r1p = K*, 
by (8.7). Making use of Eq. (8.8), we see that 

(8.10) 

Recalling Eq. (2.6), the deformation gradient FK
1

<r> is given by 

(8.11) 
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Since 

(F"o ·"•<r>)- 1 = [~;: /;: -r0::v~], 
. 0 0 1/A. -

(8.12) 

it follows from Eqs. (8.4), (8.11) and (8.12) that 

(8.13) F.,,,, J ~ ~ np-~ow•]. 
lo o 1 

The form of the matrix in Eq. (8.13) represents the fact that there has only been shear 
and no extension since the new material element was formed, and the amount of shear 
is rtp-r0 1p*. The local homogeneous deformation represented by F"•<r> is analogous to 
that in Eqs. (5.4). 

The stress distribution for 0 ~ r ~ ra is given by 

(8.14) T = -pl+,uB"o = -pl+p,[l~X (ljl):~npi)l ''1'__~2], 
0 rtpJ.2 ).2 

where B~o = F"oF~o and F,
0 

is given by Eq. (8.4). The stress distribution for ra ~ r ~ ro 
is given by 

(8.15) T = -pi+ cl p,B"o + (1- Ct)P,B"• (r) 

where B"•<r> = F"•<r>F~.<r> and F"•<r> is given by Eq. (8.13). 
A discussion similar to that leading up to Eq. (7.13) shows that the equilibrium equa-

tions are satisfied when p = p(r ), and 

ro 

(8.16) p(r) =a,+ I [(aoo-a,)/r']dr', 

where Tii = -p+aii, ii = rr, 00, zz. Using Eqs. (8.14), (8.15) and (8.16) the scalar field 
is found to be given by following expressions for 0 ~ r ~ ra, 

r 11 ro 

(8.17) p(r)/.u ={a,+ J [(aoo- a,,)/r']dr' + I [(aoo- a,)/r']dr'}!.u 

= (1 /I)+ [(tpi)2 /2](r;- r2
) + [C1 (tpi)2 f2](r5- r,D 

+ (1- C1)[(1p2 /2) (r5- r;)- 21ptp*r0 (r0 - ra) + (ro 1p*)2 ln(ro/ra)], 
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ro 

(8.18) p(r)fp, ={a,,+ J [(a,,-aoo)/r']dr'}!,u = Cl{l/1)+(1-C1)+[C1 (VJ1)2 /2](r5-r2
) 

+ (1- C1) [(VJ2 /2) (r5- r 2
)-2'f'VJ*r0 (r0 -r)+ {r0 VJ*)2 ln(r0 /r)]. 

The twisting moment on the cylinder is given by 

(8.19) 

ro 

M = 2n J r 2 T:6dr. 
0 

When V' ~ 'f'*, T:o is givenby Eq. (8.14) and 

{8 ~20) M = p,J0 'f', 

where J0 = n~/2. When V' > 1p*, Eq. (8.19), T%6 from Eq. (8.14) for 0 ~ r ~ r,, and 
. Eq. (8.15) for r0 ~ r ~ r0 , and Eqs. (8.9) give 

(8.21) Mf(pJo'f') = ('P*/VJ)4 + Cd1- (VJ* /VJ)4
] 

+[(I- Cl)/12
] { [1- (11.'* /VJ)4

]- (4/3) (VJ* /VJ)[1- (VJ* /VJ) 3
] }. 

A plot of M/(pJ0 ) versus V' is shown in Fig. 1 for the case in which A > 1. When V' = V'*, 

(jj q; 

F10. ,1. Torque-twist curve; OP1 -loading portion, P1P2 - unloading portion, during which l = 1. 

the activation criterion is met at the outermost material elements. As was discussed follow
ing Eq. (5.6), there is a sudden decrease in the stress transmitted by these elements. As 
'f' increases there is a stress drop at material elements in the interior of the cylinder, and the 
stress in the outer material elements begins again to increase. This accounts for the decrease 
in slope. · · 

The axial force on the cylinder is given by 

(8.22) 
ro 

N = 2n J rTudr, 
0 

in which Tu is found from Eqs. (8.14), (8.15), (8.16) and (8.17). For purposes of brevity, 
this calculation will be omitted. 
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9. Untwisting and axial recovery of the cylinder 

We now consider the response of the cylinder as the twisting is reversed and axial 

extension is reduced. Let 1p denote the maximum angle of twist and x denote the corre-

sponding configuration. If (r, 0, :Z} are particle coordinates in x, then by Eq. (8.3}, 

(9.1) 

r = (1/V~)R, 
0 = fJ+1piZ, .. 
z = AZ. 

By Eqs. (8.9) the interaction radius is given by Ra = (tp* /ifJ) R0 • 

Configuration "(t) at any state of deformation reversal is related to configuration x by 

r = (1 tV'I)r, 
(9.2) o = O+~~:z, 

A 

z = Az, 

where 1 < 1 and ~ < 0. The composite mapping which relates "o to "(t) is found from 

Eqs. (9.1) and (9.2) to be 

(9.3) 

r = (1tJI'l1)R, 
o = e +(Vii+ ~il) z, 
z = irz. 

For notational convenience, let 

(9.4) 

By Eq. (8.4) 

(9.5) 
[ 

1/V~i 0 0 I 
FKo = 0 1/V~l :~ . • 

0 0 AA 

The corresponding strain tensor and its invariants are 

BHo = FKoF!o = ['/:X (1/iX);.~K)l ,;~).~, 
0 rKAA (AA}2 

(9.6) 

/ 1 = 2/(~l)+(Al}2 +r2i2(1p+~~}2 , 
12 = 2ii+ 1/(Al)2 +r2 i(ip+~l)2 • 

(9.7) 

Let I? and/~ denote the first two terms in the expressions for / 1 and / 2 , respectively. These 
correspond to pure uniaxial extension, and are monotonically increasing functions of the 

axial stretch ratio. Since 1 < 1, the values of If and /~ in Eqs. (9. 7) are smaller than the 

http://rcin.org.pl



72 A. s. WINEMAN ANP K. R. RAJAGOPAL 

corresponding values in Eqs. (8.6). Since ~ < 0, the value of the last terms in / 1 and / 2 

in Eqs. (9.7) are smaller than the corresponding terms in Eqs. (8.6). It follows that the 
values of / 1 and / 2 decrease during the reversal of deformation, as might have been expected. 

In the configuration at maximum angle of twist fJ, the activation radius, by Eqs. (8.9), 
is RD = (fp* f1p)R0 • The preceding discussion shows that for the elements of the original 
material in the ·inner core, 0 ~ R ~ RD = ( 1p* f1jj)R0 , the activation criterion will not be 
satisfied during deformation reversal. As it was assumed as a part of the constitutive 
model, the elements in the outer layer, RD ~ R ~ R0 , undergo no further change. We con
clude that the activation radius RD does not change during deformation reversal. 

Equation (9.5) represents the deformation gradient for the original material in the 
inner core and for the remaining portion of the inner material in the outer layer. In order 
to calculate the deformation gradient for the newly formed material elements in the outer 

layer, recall the discussion preceding Eq. (8.10). By Eqs. (8.11), (8.12) in which r0 = R0j~11, 
and Eq. (9.5), 

(9.8) 

In Eq. (9.8), 

(9.9) 

the latter following by Eqs. (9.3). 
The stress distribution for 0 ~ r ~ ra is, by Eq. (9.5), 

(9.10) T = -pi+#B"o = -pi+#[I/::X (I/J.I~~~2i2 r~J.]. 
0 rK).). (AA) 2 

The stress distribution for ra ~ r ~ r0 is, by Eqs. (9.5) and (9.8), 

[I ill. 0 

(9.11) T = -pi+ CtpB., + (1- Ct)pB.,,, = -pi+ Ctl' ~ (ljl1)+(rK) 2 

-"-rK).). 

1/l 0 

+(l-C1)# 0 (lfl) + Y2 

A 

0 y). 

0 l rk~X 
(ii)2 

;+ 
).2 

As discussed earlier, the stress field given by Eqs. (9.10) and (9.11) will satisfy the 
equilibrium equations if the scalar field p is given by Eq. (8.16). This is found to be, for 
0 ~ r ~ rD, 

(9.12) p(r)/# = (1 ~~~)+(I /2) K2 [A 2r~- r 2
] + (1/2) C1 K2r~[l- A 2

] 

+ (1- C1) [(I j2f (K/ A)2r~(l- A 2
)- (2K ;j*r5/ ).) (1- A)- (r0 1p*)2 ln A], 
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where A = 1.p* j1p. For ra ~ r ~ r0, 

(9.13) p(r)/p, = C1 (1 t1I) + (1- C1) (I/~)+ (1 /2) C1 K2(r~- r2
) 

+ (1- C1) [(1/2) (K(i) 2 (r5- r2
)- (2KVJ*r0 (i) (r0 - r) + (r0 1p*)2 ln(r0 /r)]. 

The axial force on the cylinder is given by 

ro r., ro 

(9.14) N = 2n J rTzzdr = 2n [J rTzzdr+ J rTzzdr], 
0 0 ~ 

in which 

(9.15) 

with p given by Eq. (9 .12) and 

(9.16) 1 zz = -p+Ctp,(11)2 +0-Ct)P,~2, ra ~ r ~ ro, 

with p given by Eq. (9.13). 
Upon combining Eqs. (9.12)-(9.16) we find 

(9.17) [N(~I)]/(p,nR5) 
= [(11) 2 -(Ifii)]A 2 + {C1 [(iX)2 -(l/~~)]+(l-C1 ) [~2 -(1/~)]} (l-A2

) 

- [(Kro)2 /4] [A 4 + (Ct + (1- Ct)/ i 2
) (1- A4

)] 

+ (1- C1) { (K(i) (2/3)A(l- A3)tji- (I /2)A 2 (1- A 2)tji2 }r5. 

The shear stress distribution is, from Eqs. (9.10) and (9.11), 

(9.18) Tzo = p,rk)1, 0 ~ r ~ Y0 , 

= C1 p,rk11+(1-Ct)P,y~, ra ~ r ~ ro. 

Upon substituting into the twisting moment 

r, ro 

(9.19) M = 2n J r2 Tzo+2n J r2 Tz0 dr, 
0 '• 

and integrating, it is found that 

(9.20) [M(~~)2]/{p,J0) = (~~+V')iX2 {A4 +(1-A4) [C1 +(1-Ct)/X2
]} 

-;pi(4/3) (1- C1)A(l- A3
). 

There are many possible sequences of untwisting and axial stretch recovery that can 
be considered. We will consider the case in which the cylinder is allowed to untwist while 

at maximum axial stretch, ~ = 1. The M-1p relation during deformation recovery is then 

(9.21) M/(p,/0) = (~+'P) {A4 + (1- A4
) [C1 + (1- C1)/ i 2

]}- (4/3) [(1- Ct)/12](1- A 3)Aip. 

The linear relation between M and ~ is a consequence of both the original and newly 
formed material being neo-Hookean in response. 

The loading and unloading curves are shown in Fig. 1. The point at maximum deform-

ation is denoted as P 1 • It has coordinates (M-; 1p) which are related by 

(9.22) 
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where 

(9.23) 
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/1 = A4 +(1-A4
) [C1+(1-C1)/I2

], 

!2 = (4/3) [(1- C1)/ ,[2] (1- A3)AVJ. 

Note that since A < I, C1 < I, then / 1 > 0,/2 > 0. It can be shown that if A. > I, then 

/1 < I. 
Equation (9.2I) can be written in terms of Eqs. (9.23) in the form 

(9.24) 

According to Eq. (8.20) the loading portion of the curve in Fig. I has a slope whose value 
is one. It is seen from Eq. (9.24) that the slope of the unloading· portion of the curve is 

/ 1 < 1 and is thus less than that of the loading portion. 
According to Eqs. (9.3) the angle of twist of the cylinder at any stage of deformation 

reversal is @+.Y,~)I From Eq. (9.20) the residual angle of twist when M = 0, for any 

axial elongation recovery ~' is given by 

(9.25) 

which is positive since A < I, C 1 < I. The recovered angle of twist from the configuration 

of maximum deformation is .Y,~, by Eqs. (9.2). This can be calculated from Eq. (9.25) to be 

(9.26) 
A~-- [(1-C1)/l2

] [I-(4/3)A+(l/3)A4]+[C1+(1-C1)A4
] -

'P - A4 +(I- A4) [C1 + (1- C1)/ .P] 'P· 

It is straightforward to show that .Y,1 < 0 and 1~i1 < ~· . 
When M = 0, the axial force is calculated by recalling that i = 1(1p+~1), and then 

substituting from Eq. (9.25) into Eq. (9.I7). The result is 

(9.27) [N(l~)]/{,u/0) = (11)2 {A2 + [C1 + [(1- C1)/I2]](I-A2
)} 

- [1/(1I)]{A2 + [C1 + I(l- C1)](l-A2)+ oc}, 

where oc is defined by the expression, 

(9.28) oc = [1p2 R~A2 /2] 

[(I- C1)/j]2 [(I- A 2
)- (8/9) (1- A3) 2] + (1- C1) (1- A2) [C1 + A4 (1- Ct)1 

X A4 + (1-A4) [C1 +(I- C1)/ ).l] 

The expression oc, which depends on C 1 , 1, 1p, A can be shown to be positive when A < 1. 
When N = 0, the residual axial stretch ratio is given by 

(9.29) 
1I = { [A

2
+(C1+f(1-C1))(1-A2)+oc]\1'3 

A2 +[C1+(I-C1)/).2](1-A2
) f . 

When 1 > I, it is seen that 11 > I. 
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