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Impulsive impact of nonlinear elastic rods-similarity solutions 

Notations 

R. SESHADRI (REGINA) and T. Y. NA (DEARBORN) 

SIMILARI1Y solutions are determined for the problem of impulsive imapct of semi-infinite non· 
linear elastic rods. By invoking invariance under a group of transformations, the governing 
nonlinear partial differential equation and the auxiliary conditions are transformed to an ordi­
nary differential equation with appropriate auxiliary conditions. The resulting similarity represen­
tation is solved for both characteristic and shockwave propagation. For the general similarity 
representation, numerical solutions are obtained using the method of collocation. A closed· form 
solution is obtained for a special case. 

x coordinate along the axis of the rod (Lagrangian coordinate system), where 
x denotes the position of the particle in the initial unstrained state, 

t time, 
u(x, t) displacement, 
a(x, t) nominal compressive stress; compressive stress is assumed to be positive, 
e(x, t) nominal compressive strain, 
v(x, t) particle velocity, 

e mass density of the material in the intially unstrained state, 
X(t) distance from origin of the moving boundary, 

X,(t) shock front distanced from origin, 
C similarity variable, 

Cc similarity variable at the wavefront for characteristic propagation, 
[ similarity variable at · the wavefront for · shock-propagation~ 

~} material parameters in the constitutive relationship, 

I strength of the impulse. 

1. Introduction 

THE PROBLEM of the impact of rods with nonlinear constitutive relationships has been the 
topic of research for quite some time. A useful technique for analyzing nonlinear partial 
differential models pertaining to the problem oft impact and wave-propagation is the 
similarity analysis [1]. Similarity analysis is essentially a method of determining trans­
formations of variables in the original problem description that converts the partial 
differential system to an ordinary differential system. TAULBEE, CozzARELLI and DYM 
[2] used the separation of the variables technique to obtain similarity solutions for the 
impact problem of nonlinear elastic and viscous rods. SESHADRI and SINGH [3] developed 
a technique for obtaining a relationship between the characteristics and the similarity 
coordinate at the moving boundary. The so-called "s- c relation ship" is the condition 
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at the moving boundary necessary to solve the similarity representation. A classification 
of wave-propagation problems based on in variance of governing equations under a group 
of transformations was presented by SESHADRI and SINGH [4]. 

In this paper the problem of impulsive impact of long nonlinear elasttc rods is con­
sidered. Similarity solutions have been obtained from both characteristic and shock- wave 
propagation. The general similarity representation is solved numerically using the method 
of collocation. For the linear constitutive relationship, the closed form solution is obtained. 

2. Governing equations and auxiliary conditions for impulsive impact 

Within the framework of the uniaxial theory of thin rods, the governing equations of 
motion for small deformation are 

oCJ av 
ax= -eat' 

(1) 
oe Ov 
Tt =-ox' 

1 

CJ = p(efi, 

where x is the Lagrangian coordinate, t is time, and the strain e = - ;; . Nominal com­

pressive stresses and strain are considered positive. Equation (1) can be combined to give 

l-q 

(2) __!!__ (-~}-q- olu - o2u = 0. 
eq ox ox2 ot 2 

Equation (2) is quasi-linear hyperbolic. The auxiliary condition at the impacted end of 
the rod can be written as 

I 

(3) ( au} q 
C1(X = 0, t) = P, --ax -Ib(t). 

where b(t) is the Dirac delta-function. Since the displacement immediately ahead of the 
wavefront is zero, 

(4) 

The initial conditions are given by 

(5) 

3. Simllarity analysis 

u(x = X(t); t) = 0. 

u(x, t = 0) = 0, 

C1(X, t = 0) = 0. 

The dependent and independent variables appearing in the problem description are 
rendered nondimensional by introducing arbitrary reference quantities as follows [1]: 
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(6) 
- X 
X=-, 

Xo 

t 
t= ­

to 
and - u 

U= - , 
Uo 

255 

where x0 , t0 and u0 are reference quantities that are determined such that a "minimum 
parametric" description results. 

Invoking the invariance of Eq. (2) and Eq. (3) under transformations, Eq. (6), the 
following parameters can be extracted: 

1-q 

(7) 

p (u0)_q_t~ 

ne = -;;-q . x(l+q)fq ' 
>:: 0 

1 

n, = }!_ · (_!!_c!_-)lit0 • 
I x 0 

The subscripts e and b indicate that the parameters are obtained from equation and bound­
ary conditions, respectively. Other boundary conditions do not contribute any additional 
parameters. The mathematical description of the problem can now be expressed as 

(8) - (- - ( X t ) u X, t) = F -,-;ne,nb . 
x 0 to 

Minimum parametric description leads to the similarity transformation for the boundary 
value problem, Eqs. (2) to (5). This is achieved by setting ne = I and n, = I. Recognizing 
that x0 , t0 and u0 do not appear in the original description, the similarity transformation 
can be obtained as [I] 

(9) 

where 

and 

u(x, t) = {lt"F(C), 

- ,, )-~(!_) q; 1 

k- - ' 
'~q p, 

q+l 

P=V :q (;)-2' 
I+q 

m=--
2 

I-q 
n =-2-. 

Substituting Eq. (9) into Eq. (2) and simplifying, the resulting nonlinear ordinary differ­
ential equation can be written as 

1-q 

(10) [( -F')_2_ -m2C2]F" -m(m-2n+ I)CF' -n(n-I)F = 0. 
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4. Characteristic propagation 

For this case, the discontinuity or the wave propagates along the characteristics. The 
auxiliary condition, Eq. (3), can be written in the similarity coordinate as 

(11) F'(O) = 0 

since tb'(t) = 0 for t > 0. At the moving boundary x = X(t), Eq. (4) can be transformed 
as 

(12) 

where Cc satisfies the "similarity-characteristic" relationship [1], 

1-q 

(13) 
(-F')2fl 

Cc = · m 

The similarity solutions for the problem of characteristic propagation can be obtained by 
solving Eq. (10) in conjunction with Eqs. (11) to (13). Once the variation ofF with C is 
obtained, the particle displacement can be determined using Eq. (9). 

5. SJaod[-wave propagation 

When the magnitude of the impulsive impact is large or the constitutive relationship 
is of a specific form, shock-wave formation could occur [5]. The moving boundary now 
satisfies the so-called "jump conditions" instead of the similarity- characteristic relationship 
which can be written as 

(14) 
(v) = c(e), 

(a) = ec(v). 

The symbol ( ) means the difference between variables on either side of the shock-front. 
We now use the variable G(C) instead of F(C) f~r shock propagation. Substituting Eq. (9) 

into the first part of Eq. (14) and recognizing thatf e = - ~: and v = ~~ , 

(15) G(C) = 0. 

(Note that u(x, t) = {Jt"G(C) for shock propagation.) 
At the shock-front, C: the stresses and strains are discontinuous whereas the displace­

ment, while zero, is continuous. The second part of Eq. (14) can be expressed as 

(16) 

Equation (16) can be further simplified to give 

(17) C = 2 yq (-G'/~q 
(1 +q) . 
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In terms of the distance to the shock-front 

l-q 

(18) 
2C ( I )-2- t-q l+q 

X (t) = 0 
- (- G'flil t-2-

s (l+q) ft ' 

where C0 is the elastic wave-speed. 
In order to obtain similarity solutions for the shock-wave propagation problem, Eq. 

(10) is solved along with Eqs. (11), (15) and (18). 

6. Analytical and numerical solutions 

When q = I the constitutive relationship corresponds to the linear elastic material. 
The solution can be written as 

(19) F(l;) = G(l;) = n(t- ~.). 
where H() is the Heaviside function. In terms of the original variables, 

(20) Col ( x ) u(x, t) = --y- H t- Co . 

The solution compares with that reported elsewhere [5]. The stress-wave can therefore be 
written as 

(21) u(x, t) = -1+- ~J 
For the linear case, the characteristics and the shock-front would coincide. 

For the general nonlinear problem, Eq. (10) together with Eqs. (11), (12) and (13) 
are used for characteristic propagation, while Eq. (10) is used in conjunction with Eqs. 
(11), (15) and (18) for shock-wave propagation. Numerical solutions are obtained using 
the method of collocation. The method of collocation, as it applies to characteristic propa­
gation, is discussed here. However, the procedure is similar for the propagation problem 
involving shock-waves. 

It is assumed that at C = 0, F(O) = F0 , where F0 is as yet to be determined. The initial 
value problem, Eq. (10) along with Eqs. (11) and (21), is now considered. Furthermore, 
the solution is assumed to be 

(22) 

where F0 , oc1 , oc2 , ... are unknowns. F(C) in Eq. (21) satisfies the conditions Eq. (11) and 
F(O) = F0 • Substitution of Eq. (21) into Eq. (10) wouid give a remainder term which can 
be written as 

(23) 

since the assumed form, Eq. (21), is not the solution. Collocation can be performed by 
stipulating that the remainder vanishes at certain values of C. This would lead to several 
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.equations which can be solved to determine the unknowns. We assume here that cx2 = cx3 = 
... = 0, so that there are only two unknowns, i.e., cx 1 and F0 • If the remainder is allowed 
to vanish at c = c• = 0.5, then 

(24) R(Fo, at; C*) = 0. 

Using Eq. (12) in conjunction with Eq. (21), 

(25) 

Additionally, at the wave-front, the similarity-characteristic relationship, Eq. (13) needs 
to be satisfied. Therefore, 

(26) 
1-q 

mCc = [-2Cce'~Fo-2cxtCcl2q. 

Equations (24), (25) and (26) contain three unknowns F0 , cx1 and Cc, which can be solved 
using the Newton-Raphson approximations. 

The procedure is similar for the numerical solution of the shock-wave propagation 
problem. 

The solutions have been obtained for both characteristic and shock-wave propagation 
for several values of the nonlinear exponent, q. Figure 1 is a plot of F(C) and G(C) versus C. 
Figure 2 is a plot of similarity variable at the wavefront as a function of the nonlinear 
exponent, q. It can be seen that for q < 1, similarity solutions of the "first kind" [1] are 
obtained, i.e, the shock-front lies behind the leading discontinuity or the characteristics. 
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Fro. 1. F(C) and G(C) versus similarity variable, C. 
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FIG. 2. Similarity variable at the wavefront versus q. 

7. Conclusions 

Similarity solutions for the problem of the impulsive impact of nonlinear elastic rods 
have been obtained. Similarity transformations are derived using the concept of invariance 
of the governing equations and auxiliary conditions under a group of transformations. 
The resulting ordinary differential equation is subjected to auxiliary conditions including 
some specific conditions at the wavefront. These conditions have been obtained using 
the "similarity-characteristic relationship" and the "jump conditions". The technique 
presented in the paper can be extended to propagation problems in acoustics and continuum 
mechanics. 
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