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The laminar boundary layer on a moving cylindrical rod 

A. ZACHARA (WARSZAWA) 

THE suBJECr of this paper is a laminar boundary layer on a cylindrical rod moving in axial 
direction through a fluid at rest. Boundary layer equations have been reduced to one partial 
differential equation using the Mangler and Falkner-8kan transformations, with a nondimen
sional stream function as an unknown function. The equation was solved numerically. The 
results obtained have been presented in the form of integral boundary layer parameters as well 
as a skin friction coefficient and have been compared with the theoretical and experimental 
results obtained by other authors. 

Przedmiotem pracy jest laminarna warstwa przy8cienna na cylindrycmym pr~ie poruszaj~cym 
si~ w kierunku osiowym przez nieruchomy <>Srodek ciekly. R6wnania warstwy przySciennej 
zostaly przy u:iyciu transformacji Ma.nglera i Falknera-8kana sprowadzone do jednego r6w
nania c74stkowego typu parabolicznego, zawieraj~cego funkcj~ pJlldu jako niewiado~. R6w
nanie to zostalo rozwi~zane numerycznie. Otrzymane wyniki zostaly przedstawione w formie 
calkowych parametr6w warstwy przySciennej oraz wsp61czynnika tarcia powierzchniowego 
i por6wnane z wynikami obliczeniowymi i eksperymentalnymi innych autor6w. 

llpeAMeTOM pa6on.1 HBIDICTCH JiaMJmapHbW norpamttUU.rH CJIOH Ha lU~Jl~UmPH'ICCl<OM CTep>f<He, 
~H>I<~C.Jl B OCCBOM Hanpasnemm qepe3 HCUO~IDI<JIYIO >I<HAI<YIO cpe,ey. YpasHeHJUI 
norp&HH'IIIoro CJios:, npH ucnoJID3osamm npeo6p830Bamti MaHrnepa H <l>oJil<Hepa-Cl<aHa, 
cse~ellbl 1< o~oMy ypaBHeHHIO B llaCTBhiX npoHSBo~IX napa6oJIH'IecHoro TBIIa, co~ep
>KasmeMY, 1<81< HCH3BCCTHYJO, <l>ym<QHIO TOl<8. 3To ypaBHeHHe peWCHO llHCJICHHblM o6pa30M. 
llonyqeBHble pesym.TaThl npeACTaBJiem.I s <l>opMe HHTerpam.HbiX napaMeTpOB norp3HH'IHoro 
CJIOR, 8 Tal<>KC l<03cPcP~CHT8 UOBepXHOCTHOro TpCHHJI H CpaBHCHbl C p8C11eTHbiMH H 3l<Cne
pBMCHT8JILHhiMM pesym.T&TaMH .npyi'HX 8BTOpOB. 

1. Introduction 

THE SUBJECT of this paper is a steady laminar flow induced by the motion of a cylindrical 
rod issuing from an orifice into a fluid at rest. Due to hydrodynamic friction, the 
fluid adjacent to the rod's surface is carried in the axial direction. At a short distance 
from the orifice, the flow takes the form of an axisymmetric boundary layer on the sur
face of the cylinder. The flow will be considered in frames of the laboratory reference 
system in which the velocity of the fluid on the rod's surface, equal to the velocity of the 
rod, decreases in normal direction to zero. The problem set here takes its origin in the 
field of man-made fibre spinning. The moving cylinder corresponds to the filament extru
ded from the spinneret and drawn in the axial direction through the fluid. The ambient 
fluid motion has a great influence on the process of fibre formation but not much atten
tion has been paid to it in fluid dynamics research. 

Papers on axisymmetric boundary layers are much less numerous than those on the 
boundary layers in plane geometry. The first meaningful works in this field of GLAUERT 

and LIGHTHILL [1] and STEWARTSON [2] are dated as late as the nineteen fifties and con
cern the flow past a stationary cylinder. SAKIADIS [3] was the first who calculated a flow 
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past a moving continuous cylindrical surface, making use of Pohlhausen's integral 
method with the Glauert-Lighthill logarithmic velocity profile. A similar approach has 
been applied recently by MAY [4] and Kuso [5] to a boundary layer on a filament with 
a velocity and diameter variable in the axial direction. 

Apart from the Pohlhausen approach, methods of direct integration of boundary 
layer differential equations have also been used. CRANE [6] and KUIKEN [7] calculated 
a flow past a moving cylinder using series expansions and the obtained asymptotic solu
tions valid near the orifice (x = 0) and far down the cylinder (x --+- oo ). The first numeri
cal computations of axisymmetric boundary layer differential equations were made by 
JAFFE and OKAMURA [8]. Their computations, which concerned the case of a stationary 
cylinder, were carried out in the full range of x, without limitations involved in the papers 
[6] and [7]. 

The present paper, like the work [8], also contains numerical computations of axi
symmetric boundary layer equations but these computations concern here a moving 
cylinder. The results obtained, presented in the form of integral boundary layer par
ameters, as well as a shear stress coefficient are compared with the results of SAKIADIS [3] 
and CRANE [6). 

2. Governing equations and boundary conditions 

We consider the steady, axisymmetric laminar boundary layer of an incompressible 
fluid on a continuous cylinder moving from an orifice in an axial direction at constant 
velocity through a fluid at rest. The radius of the cylinder and its velocity are denoted 
as a and U, respectively (Fig. 1). The flow is considered in frames of the boundary layer 
coordinate system in which the x-axis, parallel to the axis of symmetry, is posed along 
the solid surface and the y-axis is normal to it. The origin of the coordinate system is 
put in the plane of the orifice. The velocity components in the x- and y-directions are 
denoted by u and v, respectively. 

We shall start with the general two-dimensional boundary layer equations [9] 

(2.1) 

l
u ~ +v !!!_ = _! _ _!____I r". ~) 

ax ay r" ay \ ay ' 
a a 

- (r" · u)+- (r" · v) = 0, ax ay 
where r(y) = a+y. 

These equations describe fluid flow in a plane as well as in axisymmetric geometry 
according to the value of the exponent 

(2.2) k = {0, 
1, 

The boundary conditions are as follows: 

plane case, 
axisymmetric case. 

(2.3) u(x, 0) = U, v(x, 0) = 0, lim u(x, y) = 0. 
y-...oo 
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FIG. 1. 

Now we shall put the system of Eqs. (2.1) into a nondimensional form using the com
bination of the Mangler and Falkner-Skan transformation [9]. To this aim we introduce 

the nondimensional normal coordinate 'YJ and nondimensional stream function J(x, 'YJ) 
defined as 

(2.4) 'YJ = -- ·y· I+__L ' ( u )1/2 ( )k 
v· x 2a 

(2.5) f{x, 'Y}) = 1p(x, y) · (Uvx)- 112 • a-k. 

The velocity components read then as follows 

u = _I 01f' = u. of 
rt oy O'YJ ' 

v = - _I . ~ = - (!!_)k . ( Uv )1/2 . [t+ 2x at - 'YJ . at]. 
rk ox r 4x ox O'YJ 

(2.6) 

Inserting the components (2.6) into Eq. (2.1), we obtain, after differentiation and some 

rearrangements, one partial differential equation (2.7) with!{x, 'YJ) as an unknown function: 

where the primes (') denote differentiation with respect to 'YJ· This equation is valid for 
both plane and axisymmetric geometry. It is seen that its form for an axisymmetrical flow 
differs from that for a plane flow by the presence of the transverse-curvature term in 
square brackets. If a boundary layer thickness is much smaller than a body radius, this 
term may be neglected. However, in our case the boundary layer thickness may exceed 
many times the cylinder radius and the transverse-curvature term must be accounted 
for in Eq. (2. 7). It is also worth noting that the boundary layer equation (2. 7) in its axi~ 
symmetric version (k = 1) cannot be transformed to the self-similar form by taking 
x-derivatives equal to zero since the transverse curvature term will still be dependent 
on x. 
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We shall from now on limit ourselves to the axisymmetric version of Eq. (2. 7). It is 
convenient to introduce a nondimensional variable in the axial direction 

(2.8) = (~)1/2 
~ Ua 2 ' 

and a new nondimensional stream function f(~, 'Y)), which is equivalent to the stream 

function f(x, 'YJ) provided ~ and x satisfy Eq. (2.8). In these terms the velocity compo
nents u and v (2.6) can be expressed as follows 

~ = f'(~, 'YJ), 

va = 1 - . [-!_ (f'. 'Y}-/)- of] 
v yl +~. 'YJ ~ a~ 

(2.9) 

and Eq. (2.7) takes its final form 

(2.10) r (I + ~ . 'YJ) • f "1' + _!_ f. f, = _L ~ . (!, . of, - f, of) 
2 2 a~ a~ · 

The boundary conditions (2.3) now read 

(2.11) /(~, 0) = 0, !'(~, 0) = 1, lim/'(~, 'Y}) = 0. 

The governing equation (2.1 0) with ~ as an independent variable in axial direction is 
convenient in the region near the orifice (~ ~ I); however, far downstream (~ ~ I) it is 
advantageous to introduce a new ordinate [I] 

(2.12) {J = In ( :;;,~) = In(;'). 

The alternative form of Eq. (2.1 0) reads as follows 

(2.13) [(I+ e1112. 'YJ). f"l' + --~- . 1. 1 , = 1, of' _ 1, of 
2 ap ap 

with the boundary conditions the same as before Eqs. (2.11 ). 
It should be noticed that Eq. (2.10) as well as Eq. (2.13) are given in a universal 

form and do not contain either the Reynolds number or any other free parameter. 

3. Method of solution 

Equation (2.10) is in fact a partial differential equation. However, if we replace deri
vatives with respect to ~ on the right hand side of this equation by suitable algebraic 
formulae, we may consider Eq. (2.10) as an ordinary differential equation with the 'Y}-Coor
dinate as an independent variable. This approach was previously used by some authors 
for boundary layer calculations on a stationary body [8-11]. 

A fairly good approximation of the ~-derivatives may be obtained with the use of the 
three-point backward difference relation derived from the Lagrange interpolation for-
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mula for an unequally spaced mesh points. This approximation contains the new value 
fn and two previously calculatedfn- 1 andfn- 2 : 

(3.1) 

where 

of I 1 arln ~ iJ~ . [Ao(s) ·.fn+A1(s) ·fn-1 +A2(s) ·fn-2], 

%'/. ~ 1~ · [Ao(s) ·J:.+A.(s) · J:_, +A2(s) ·J:_ 2 ), 

A _ s+2 
0- S+l' 

1 
A2= - - -

(1 +s) · s · 

In the same way we shall approximate the derivatives ofjof3 and of' /8{3 from Eq. (2.13). 
Both forms of the governing equation are given below 

(3.2) [(I+~~~ ·11) • f:'J' + ~ fn · f:' = -r.~:1~ · [f: · (Ao · f:; + A1 · J,;_l 

+A2 ·J,;_2)-f:' · (Ao ·fn+At ·fn-1 +A2 ·fn-2)], 

(3.3) [(1 Pn12. ) ·/,"]' 
1 J, ·J,'' - -~ [J,' · (A ·J,' A ·J,' +e 1] n + 2 n n - iJ{3 n o 11 + 1 n-1 

+A2 ·f:_2)-f:' ·(Ao ·Jn+A1 ·J,,_t +A2 ·J,,_2)]. 

Equations (3.2) and (3.3) form an infinite set of ordinary differential equations, each 
of them corresponding to a given ordinate ~~~ or f3n. They are solved successively by 
a downstream-marching process starting from n = 0 (~0 = 0) where Eq. (3.2) redu
ces to the Blasius equation. In the next mesh point n = 1 (~ = ~ 1) the derivatives of' jo~ 
and of/8~ in Eq. (2.10) are approximated by two-point backward difference quotients. 
The form of Eq. (3.2) and (3.3) works for the mesh points n ~ 2 (~n ~ ~2) downstream on. 

Equation (3.2) was integrated in the ~ -direction at subsequent net points ~~~ until 
~~~ = 1, which is equivalent to f3n = 0 (2.12). From this point Eq. (3.2) was replaced by 
Eq. (3.3) and the process continued until f3n = 10, which corresponds to ~ ~ 148.4. The 
process was stable and could be continued farther on. 

The resulting ordinary differential equations were solved numerically by the Runge
Kutta-Gill algorithm adopted from [11]. While the boundary conditions at 11 = 0 could 
be directly introduced to the algorithm, the condition at infinity could be fulfilled by 
a shooting method in some approximation. A tentative value of f:'(O) was introduced 
and the equation was integrated up to the value 1] 1 at which the velocity profile f'(~, 1]1) 

had its minimum. The magnitude of this minimum was checked by the condition 

(3.4) 

If this condition was not satisfied, a corrected value off:' (0) was put into calculations 
and the iteration continued. The Runge-Kutta algorithm was used with an increasing 
step size, starting from the value h0 = 0.025. As a result of testing calculations, it was 
found that taking L1~ = 0.1 and iJ{3 = 0.5 leads to final results of good accuracy. 

5* 
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4. Results of calculations 

Equations (3.2) and (3.3) were solved and velocity and shear stress profiles were ob
tained at each station ~,. and {1,.. In this section these results will be presented not in their 
detailed form but, for the sake of clarity, in the form of some commonly used boundary 
layer parameters, such as characteristic integral areae and shear stress coefficient. It will 
also make the comparison of our results with the results of other authors easier since 
they used the same type of presentation. 

We shall first direct our attention to the integral parameters of a boundary layer, 
which are the displacement area L1 (4.1) and the momentum area e (4.2). In our notation 
they read 

00 

(4. I) 
L1 2 

-na 2 = U· a2 r r. udr = ~. lim/(~, 'Yj), 
d '1'}-+00 

00 00 

(4.2) e 2 " J .. - · J r·u2dr=~· f' 2 (~,?1)·d'YJ. 
na2 - U 2 • a2 

L ., 

a 0 

These parameters are presented as functions of the streamwise coordinates ~ and f1 in 
Figs. 2 and 3, respectively. The present results are compared here with those of SAKIADIS 
[3] and CRANE [6]. The Crane data presented in Fig. 2 are calculated from the formulae 
given in [6] 

(4.3) 

L1 
- 2 = ~·(1.62+1.16~)+0(~3), 
na 

e 
- 2 = ~ ·(0.888+0.190~)+0(~3), 
na 

derived on the basis of the asymptotic approximation valid for ~ ~ I. A good agreement 
between the Crane results and ours is evident, even for ~ close to l, which is outside the 
range of the adopted approximation. The same refers to the results in Fig. 3, where the 
data of Crane were calculated from the velocity profiles derived within frames of asymp
totic approximation valid for ~ ~ 1 [6]. Here the Crane data start with f1 = 4.29 which 
corresponds to ~ ~ 8.5. 

The results of SAKIADIS [3] obtained from an integral boundary layer equation cover 
the whole range of the streamwise coordinate ~ from 0 to infinity. They are also plotted 
in Figs. 2 and . 3. The momentum area evaluated using of the Sakiadis method is in satis
factory agreement with the present results but his displacement area is highly under
estimated in Fig. 2 as well as in Fig. 3. The discrepancy grows from about 30% near the 
orifice to over 60% at large axial distance. This rather surprising effect needs detailed 
examination. To this aim we shall compare the velocity profiles calculated by our method 
and by that of Sakiadis and deduce their influence on the integral boundary layer par
ameters. 

Both profiles are plotted in Fig. 4, for the chosen axial coordinate f1 = 4.29. It is seen 
that while in the region close to the surface of the rod both profiles nearly coincide, in the 
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FIG. 4. 

outer part the Sakiadis profile strongly deviates from ours. It does not fulfil the boundary 
condition at infinity, taking the value zero in finite distance from the surface. It is due to 
the logarithmic character of the adopted Glauert-Lighthill velocity profile. 

The influence of the velocity profile on the integral boundary layer parameters L1 
and e can be detected in Fig. 5 where the integrands from Eqs. (4.1)-(4.2) are presented. 

u r rra 
(ut·&- --- present results 

2 ·-·-· Sakiadi.s [3] 

\ 
\ 
\ 

1 \ 
\ 
\ 

"· 
\ 

10 100 r/a 

FIG. 5. 

We can see that multiplication of the velocity profile by the normal ordinate, (ufU) · rfa 
makes the difference between our case and Sakiadis case even more pronounced. This 
explains why the displacement area in the Sakiadis case is so strongly underestimated. 
On the other hand, the square of the velocity profile in the integrand (ufU) 2 • rfa makes 
the difference between the two cases decrease, especially in the outer part of the layer 

http://rcin.org.pl



THE LAMINAR BOUNDARY LAYER ON A MOVING CYLINDRICAL ROD 335 

where u I U ~ 1. This is the reason for good agreement between our results and Sakiadis 
results in the case of the momentum area calculations. 

We also calculated a wall friction coefficient which is defined as 

(4.4) 
-a· r(x, a) 

CJ = ---- - ---
p,·U 

-}·f"(O), 

10 
--- present results 

----- Crone [6] 

·-·-· Sakiadis [3] 

5 

0 1.0 ~ 

FIG. 6. 
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-·-·-· theory of Sakiadts [3] 

x x x x x experiment of Koldenhof [12] 

0.5 

~ 
X X 

0 5 10 

FIG. 7. 
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where T(x, a) denotes shear stress at the rod surface. It has been plotted in Figs. 6 and 7 
vs. the coordinates~ and {1, respectively, together with the corresponding results of SAKIA

DIS [3] and CRANE [6] as well as the experimental data of KoLDENHOFF [12]. It is seen 
that the agreement of all the results is very good. It indicates that all the methods compa
red here predict well the velocity profile near the surface of the cylinder. 

The computational method presented in this paper appears to be a useful tool in cal
culations of axial boundary layers. It has helped to display the advantages and limitations 
of the existing approximate methods. We may expect that it will also work in more com
plex axisymmetric boundary layers involved in fibre manufacturing. 
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