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Body force effects on time-harmonic inhomogeneous waves 

G. CA VIGLIA and A. MORRO (GENOVA) 

THE EFFECTS of the body force on the propagation of time-harmonic waves in a viscoelastic 
(or viscous) fluid are examined. It turns out that inhomogeneous plane waves can exist subject 
to conditions on the complex-valued polarization and wavenumber. Such conditions are deter
mined by having recourse to thermodynamic inequalities via a detailed analysis of transverse 
and longitudinal waves. Quantitative effects are also assessed. 

Zbadano wplyw sil masowych na proces propagacji fal harmonicznych w plynie lepkospr~
zystym (lub lepkim). Okazuje si~, ze niejednorodne fale plaskie mog& istniee przy zaloi:eniu 
zespolonych wartosci polaryzacji i Iiczby falowej. Warunki takie okreslono opieraj&c si~ na 
nier6wnosciach termodynamicznych i analizuj~c szczeg6lowo propagacj~ fal poprzecznych 
i podlu:inych. Przeprowadzono r6wniei: ilosciow~ analiz~ zjawiska. 

McCJie~oBaHo smumHe MaccoB:biX CHJI Ha npouecc pacnpocrpmemm rapMoHwteCI<HX BOJIH 
B BH3KoynpyroH (HJIH B BH3KOH) ~OCTH. 0Ka3:biBaeTCH, tiTO HeO~OpO.AJibie nJIOCI<l{e 
BOJIHbi MoryT C~eCTBOBaTL npH npe~OJIO>Kemm KOMnJieKCHDIX 3HatleHlf.H DOJIHpH3al.{HH 
H BOJIHOBoro lflfcna. TaKHe ycnoBHH onpe~eneHDI, onHpaHcL Ha TepMo~aMHqecKHe He
paseHCTBa If mamtaHpyn no~po6Ho pacnpoCTPaHeHHe nonepetiHDIX lf npo~OJThHhiX BOJIH. 
flpoBe~eH TO>Ke KOJIHtleCTBeHHDIH aHaJIH3 HBJieHHH. 

1. Introduction 

USUALLY WAVE propagation problems, in solids and fluids, are investigated through
homogeneous systems of equations which result fromJ disregarding the body force in 
mechanical contexts or charge and current sources in electromagnetic contexts [1-6]. 
Meanwhile the literature shows that, when dealing with scattering problems, the body 
force is explicitly taken into account [7]. Apart from consistency requirements, it seems 
of interest to investigate the effect of the body force on wave propagation. 

Wave propagation induced (or affected) by the body force is considered in [8] in the 
case of discontinuity waves in elastic materials. A corresponding procedure would lead 
to analogous conclusions for time-harmonic waves. Motivated by the typical framework 
underlying scattering problems, we investigate in this paper time-harmonic wave propa
gation in dissipative fluids, namely viscoelastic or viscous fluids. Of course we examine 
in detail the effect of the body force and, eventually, we discuss whether and how the usual 
approximation of a vanishing body force is plausible. 

Time-harmonic waves in lossy media are usually inhomogeneous. Accordingly we let 
the waves be inhomogeneous and develop the analysis by taking into account the thermo
dynamic restrictions on the material parameters. It is shown that transverse and longi
tudinal waves may occur. While transverse waves merely have a polarization orthogonal 
to the body force, longitudinal waves show more involved effects. Really, to obtain de-

http://rcin.org.pl



338 G. CAVIGLIA AND A. MORRO 

tailed results we consider longitudinal waves with a wave-number orthogonal to the body 
force. 

As a general comment on body force effects, we say that the material symmetry asso
ciated with the stress tensor is broken, and then reduced, by the body force. This in turn 
amounts to a reduction of solutions (admissible waves). As we should have expected, 
though, quantitative effects prove to be negligible in standard conditions. 

2. Linearized form of the equation of motion 

Let 8 3 be the three-dimensional Euclidean space and 9l* c 8 3 a domain which is 
regarded as reference placement. The motion of the body is described by a function 
x' = x' (X, t), X Eat*, which is a diffeomorphism for any time t E R. The motion x' 
maps 9l* into the time-dependent region 9l'{t). Letting (!, T, b be the mass density, the 
Cauchy stress tensor and the body force (per unit mass) in 9l', we can write the balance 
of mass and linear momentum in the local forms 

(2.1) 

(2.2) 

e+eV' · i' = 0, 

ex'- V' · T- eb = o, 
where V' denotes the gradient operator with respect to x' and a superposed dot the ma
terial time derivative. In a purely mechanical context, b coincides with the gravity accele· 
ration g which may reasonably be regarded as a constant vector. 

Weassumethat&f'(t) is very close to a suitable region 9l for any timet. This is charac
terized by saying that the displacement 

u(x, t) = x'(x, t)-x, x E 9t 

and its derivatives can be regarded as "small" quantities at any place x E 9l and time 
t E R. This suggests that we linearize Eqs. (2.1) and (2.2) with respect to u. Though this 
can be done by paralleling a standard procedure for solids (cf., e. g., [9, 10]), it is con
venient to examine the equations in a direct way. 

Let 9l be an equilibrium configuration and assume that T = - p(e) 1 + -r with -r van
ishing at equilibrium. Denote by eo, p 0 = p(e0), b0 the values of (!, p, b at rJl and let 

(! = eo+e, b = bo+b. 

Letting V = (}j(}x and j = det(Vx'), we observe that Eq. (2.1) is equivalent to 

(2.1') 

Then multiplication of Eq. (2.2) by j gives 

(2.3) eoii+j[Vp(eo +e)]::, -jV' · -r-eo(bo+b) = 0. 

Hence follows the equilibrium condition 

(2.4) Vp(eo)-eobo = 0. 
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Within linear terms in u we have 

(2.5) j = l+V·u, e = eo(l-V·u), 

where Eq. (2.1') has been used. Substitution in Eq. (2.3) and accounting for Eq. (2.4) 
yields 

·· e~Pee --eou-eoVubo- ---- b o V · u- eoP(!V(V · u)- V · -r -eob = 0, 
Pe 

(2.6) 

where the derivatives Pe, Pe'l are evaluated at eo· Incidentally, if b depends on x', we can 

write the linear approximation b(x') = b(x) + (u · V)b(x). 
Henceforth we are dealing with dissipative fluids and we proceed by considering vis

coelastic and viscous fluids at the same time. In both cases p is identified with the pressure. 
As to the viscoelastic fluid we write T in terms of D = sym(8uf8x) as (cf. [11], 4.14.2) 

00 00 

(2.7) -r(t) = J 2p,(s)D(t-s)ds+ J {J(s)(trD)(t-s)ds 
0 0 

a superposed ring denoting the traceless part. Here p,(s) and {J(s) are the shear and bulk 
relaxation functions. The dependence on X, or x, is understood and not written. The 
viscous fluid model can be viewed as the limit case when p, and fJ are Dirac's delta func

tions, namely p,(s) = p,~(s), {J(s) = {J~(s) whence 

(2.8) -r = 2p,D + fJ(trD) 1. 

Let u, b, and (!, be time-harmonic; e. g., 

u(x, t) = ii(x)exp( -iwt), wE R, 

a twiddle denoting the complex-valued amplitude; of course the physical displacement is 
the real part of u. Then substitution in Eq. (2.6) yields 

(2.9) w2eoii +eo(Vu)b0 + e~P(!(l b 0 V · ii + ,UL1ii + (l+ ,U)V(V · ii) +eo bexp(iwt) = 0, 
Pe 

where 

(2.10) 

the subscripts c, s denoting the half-range cosine and sine transforms, namely, 

GO 00 

P.c(w) = J p,(~)cos(w~)d~, p,s(w) = J p,(~)sin(w~)d~. 
0 0 

The case of the viscous fluid is obtained by letting 

P,c(w)- p,, P.s(w)- 0, fJc(w)-+ {J, fJs(w)-+ 0. 

As a preliminary step toward the analysis of the wave propagation properties, associated 

with Eq. (2.9), it is worth considering the thermodynamic restrictions on the constitu

tive quantities P, , i 
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3. Thermodynamic restrictions 

As to the linearly viscous fluid, the thermodynamic restrictions are well-known (cf. 
[12], §1.3.2) and consists in the inequalities 

(3.1) "' > 0, fJ > 0 

for the shear and the bulk viscosity coefficients. By Eqs. (2.1 0) we can write 

(3.2) 11( ~) < 0, IJe;.u) < 0, wE R 

for any real y greater than 2/3. 
As to the viscoelastic fluid, the problem is a little more complicated. By paralleling 

the procedure developed in [13], we start from the statement of the second law whereby, 
for any rate-of-strain tensor function D(t) and density e(t) which are periodic, with 
period d > 0, the inequality 

d 

(3.3) J T(e(t), ot) · D(t)dt > o 
0 

holds at any point of the body. This means that, along a cycle, the body really dissipates. 
Observe that, by Eq. (2.1), we have 

t 

e(t) = e(t0)exp (- f trD(s)ds) 
to 

and then if D is periodic, then e as well is periodic. Moreover, 

d 
-p(e)trD = dt h(e), 

where h is the integral of p(e)/e. Hence, if e is periodic with period d, then the integr~l 
over [0, d] of p(e)trD vanishes. 

Choose the function D(t)· R-+ Sym as 

D(t) = Dwsinrot, w > 0, Dw E Sym. 

Since D(t) is periodic, it follows that 

d 

J T(e(t), Dt) · D(t)dt = P,c(w)Dw · Dw+ -} -fJc(w)(trDw) 2
• 

0 

By the arbitrariness of Dw and trOw the condition (3.3) yields 

(3.4) P-c(ro) > 0, fJc(w) > 0, w > 0. 

These results imply that the inequalities (3.2) hold for the viscoelastic fluid as well. As we 
expect it to be, when p,(s) = p,~(s), {J(s) = {J~(s) then the inequalities (3.4) reduce to the 
inequalities (3.1 ). 

Thermodynamics does not place any restriction on fts(w) and fJs(w) for viscoelastic 
fluids. However, if p,(s) is (positive and) monotone decreasing, then P,s(w) > 0 as w > 0. 
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Accordingly it is reasonable to take it that 

(3.5) \ll(~) > 0, \ll( 1:;.&) > 0, wE R, 

where y > 2/3. 

4. Propagation condition 

Return to Eq. (2.9) and search for plane wave solutions in the form 

u = pexp(ik · x). 

The wave-number k, as well as the polarization vector p, are allowed to be complex vec
tors. The subscripts 1 and 2 denote the real and the imaginary parts; i.e., k 1 = 9tk, k 2 = 
= ~k. Plane wave solutions are allowed only if b = 0, which requires the reasonable 
approximation that the gravity acceleration be uniform in the domain under considera
tion. Accordingly, upon substitution Eq. (2.9) yields the propagation condition 

(4.1) [eow2 -,Uk · k]p- [(~+,U)k · p-ieobo · p]k+i e5Pee (k · p)b0 = 0 
p(! 

which may be viewed as a relation between p and k. We look for solutions in the form 
p = p(k) which, of course, are affected by the body force b0 • For later convenience it is 
worth emphasizing that the linearity with respect to p makes the solution determined 
up to a complex factor. 

Strictly speaking, the polarization p and the wave-number k cannot depend on x and 
hence Eq. (4.1) rules out plane wave solutions in that eo is a function of x. Now, by Eq. 
(2.4) we have eo/IVeol = p(!/b0 • Then, in water, and similarly in solids and other fluids, 
eo/IVeol ~ 106 meters. This makes it highly plausible to regard the material quantities 
in Eq. (4.1) as constant. 

To determine solutions p = p(k) to Eq. (4.1), we examine separately the case when 
k · p vanishes and the one when k · p does not. 

I. k · p = 0 
It follows from Eq. (4.1) that 

(4.2) 

whence 

(4.3) 

(4.4) 

2 

k. k = eo;: ' 
fl 

b0 • p = 0. 

Quite naturally we can regard this solution as a transverse wave. 
The converse also holds, in the sense that any inhomogeneous wave satisfying Eq. 

(4.3) is necessarily transverse. In fact inner multiplication of Eq. (4.1) by p and use 
of Eq. (4.3) yield 

http://rcin.org.pl



342 G. CAVIGLIA AND A. MORRO 

whence it follows that either 

k·p = 0 

or 

~+it b0 • p = ------ - -- - k · p. 
· (1 Peg) l(!o + (!o -p; 

In the former case, substitution into Eq. ( 4.1) yields Eq. ( 4.4) again. In the latter case it 
is found that Eq. (4.1) reduces to 

-(i+")k+ieo (I +eo;: )bo = 0. 

Scalar multiplication by k and b0 , and comparison of the results leads to the requirement 

( 

\ 2 

1 +eo P(}(} 

in p(} ) b2 = (!oW2 
r:O 1+ jt 0 jt ' 

which generally does not hold. Then we conclude that only k · p = 0 is allowed and then 
the wave is transverse. 

Two possibilities occur according ask is parallel to b0 , or not. If k x b0 = 0, then any 
p orthogonal to b0 satisfies Eq. (4.4)- and (I) as well. If k x b0 # 0, then Eq. (4.4) 
and (I) yield 

p = Ckxbo 

where C is any complex number. 
As a comment to Eq. (4.3), we can say that, whenever k · p = 0, the wave-number 

k is unaffected by b0 • Yet, by Eq. (4.4) the wave exists only if p and b0 are orthogonal. 
II. k · p # 0 
Inner multiplication of Eq. (4.1) for k and b0 yields two equations which may be 

viewed as a linear homogeneous system in the unknowns k · p, b0 • p. The determinantal 
equation, which allows nontrivial solutions, is 

(4.5) 

In consistency with the general framework, we regard the unit vectors n1 , n2 of k 1 , k2 

as given and then Eq. ( 4. 5) becomes a system of two equations in the unknowns k 1 , k 2 • 

Once k1 and k 2 , and then k, are determined, we can find b0 ·pin terms of k · p, namely. 

b0 • p = Ak · p, 
where 

(!oW2 - (i+2,U)k. k+i p(!(! e~bo. k 
A=- -- p(} 

ie0 k · k 
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Substitution in Eq. (4.1) provides 

(4.6) 

Due to the arbitrariness in p we can always assume k · p = 1 and then Eq. (4.6) is the 
desired relation p = p(k). 

As motivated in the next section, we regard this solution as a longitudinal wave. 

5. Wave modes 

In this section we investigate the wave modes and show how they are related to the 
standard modes in nondissipative media and are affected by the body force. 

Transverse waves. Since the subscripts l and 2 denote the real and imaginary parts, 
by Eq. (4.3) we have 

(5.1) 

(5.2) 

If w > 0, by the inequality (3.2) 1 we conclude that the right-hand side of Eq. (5.2) is 
positive. Then k1 • k2 > 0 whereby the wave amplitude decays while propagating. This 
shows the direct connection between . thermodynamics and wave damping. If, instead, 
w < 0, then the same conclusion is reached by observing that the wave propagates along 

the direction - k1 • Accordingly, we consider the angle 0 between k 1 and k 2 , 0 E ( - ~· ~). 
and write Eq. (5.2) as 

(5.3) 

As to Eq. (5.1), observe that [1, 1 = 0 in viscous fluids; in such a case k 1 = k2. By the 
inequalities (3.5), for viscoelastic fluids p, 1 > 0 and then k1 > k 2 • In either case, the 
moduli k 1 , k 2 are expressed in terms of the parameter 0. This is a general feature of inho
mogeneous waves [14]. To determine the value of() ,we need information about how the 
waves are generated [15]. 

As to the polarization p, by definition it satisfies 

k·p = 0. 

Although this can be viewed as the orthogonality condition, it is worth recalling that in 
general k and pare complex-valued and then k and pare not orthogonal in the geometrical 
sense. 

Longitudinal waves. We expect that solutions exist as cosO :;?;: 0. However, to deter
mine analytically k 1 and k 2 from Eq. (4.5) and to show the compatibility of eosO ~ 0 
with k 1 , k 2 > 0 is a formidable task. Rather, to find explicit, analytical results we prefer 

http://rcin.org.pl



344 G. CAVIGUA AND A. MORRO 

to examine the particular case when k is orthogonal to the body force b0 (and then k1 , 

k 2 horizontal if b0 is the gravity acceleration). In such a case Eq. (4.5) yields 

(5.4) [e0 w2 -(i+2,U)k · k] [eow2 -,Uk · k]+ek · k = 0, 

where e = e~b5p(J(J/Pe· Incidentally, by the previous proof, we know that in general eow2
-

pk · k =1= 0 because k · p =1= 0. Then we look for solutions to Eq. (5.4) with two conditions· 

First, we require that the solution k · k to Eq. (5.4) reduce to e0w2 /(2/J, + i) as e = 0, 
namely the known solution for longitudinal waves when the body force is disregarded. 
Second, we let e be small enough so that the sign chosen for the root when e = 0 is main
tained for any e. Accordingly, by Eq. (5.4) we obtain 

(5.5) k·k = e~w2 
... [1+ iL+ ... i (1--. /I- 2(~:.i) •-~•' )] · 

2,u +;. 2p v (jt + i)2 
At the linear approximation in e we have 

k. k = eow2" [1 + 3,U + £ ej. 
2p +). 2,U(,Lt + J.)eow2 

Let w > 0. By the inequality (3.2h it follows that, as the contribution of e is small 
enough, cos () > 0 whereby the wave amplitude decreases while the wave propagates. 
The same conclusion follows when w < 0. 

The effect of the body force on the wave-number shows up only in connection with 

longitudinal waves. To have an estimate of such an effect we consider Eq. (5.5) and let i 
and ,U be of the same order of magnitude. We conclude that the effect is negligible if 

le/eow2#l ~ 1, namely 

(5.6) I e5~5P;g I ~ 1. 
pfl,uw 

To fix ideas look at water, viewed as a viscous fluid, at 1 atmosphere and 20°C. We have 

A 

,u = i !!_ = 10- 2 gfcm s. 
(.() 

As to the constitutive equation p = p(e) we consider the modified form of the Tait equa
tion along the adiabatic passing through 1 atmosphere and 20°C [16]. It follows that 

eoPee = 6 . 
Pe 

Let 

Then the inequality (5.6) holds for 
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This means that, quantitatively, in water the effect of the body force is negligible for any 
reasonable value of the angular frequency w in wave propagation experiments. The same 
conclusion holds for other common fluids. Of course the higher is the viscosity oce:fficient, 
the lower is the critical angular frequency we. 
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