BRIEF NOTES

A note on the linear stabilities of the solitary and cnoidal wave solutions to the two-dimensional KdV equation

DAXIN WU and SHIH-LIANG WEN (OHIO)

IT IS SHOWN that the solitary and cnoidal traveling wave solutions of the two-dimensional kdV equation are linearly stable with respect to a class of traveling wave perturbations, the results of Jeffrey and Kakutani, and of Drazin are used.

1. Introduction

JEFFREY and KAKUTANI [1] have shown that the solitary traveling wave solutions of the one-dimensional KdV equation are linearly stable. DRAZIN [2] demonstrated that the cnoidal traveling wave solutions to the one-dimensional KdV equation are also linearly stable. We are not aware of the corresponding two-dimensional results in the literature. In this note, we shall show that the perturbation equations involved in the two-dimensional case can be converted into a form which is identical to that of Jeffrey and Kakutani, and of Drazin, by considering infinitesimal perturbations of the wave in a class of traveling waves described by Eqs. (2.5) and (3.2). Therefore, we claim that both the two-dimensional solitary traveling wave solutions and cnoidal traveling wave solutions are linearly stable with respect to this class of perturbations.

2. Solitary traveling wave solution

Consider the two-dimensional KdV equation

(2.1)
$$(u_t + 6uu_x + u_{xxx})_x + 3u_{yy} = 0.$$

It is well known that (see, for example CHEN and WEN [1]).

$$u_0(Z) = (a^2/2) \operatorname{sech}^2 Z$$

is a solitary traveling wave solution to Eq. (2.1), where Z = 1/2 $(ax+by-\omega t)$, a and b are wave numbers, ω is the frequency and satisfies the equation

$$(2.2) \qquad \qquad \omega = a^3 + 3b^2/a.$$

We note that $u_0(Z) \to 0$ as $|Z| \to \infty$.

Now, we superimpose a small disturbance v(x, y, t) upon this solution

(2.3)
$$u = u_0(Z) + v(x, y, t)$$

We make an assumption on v (call it assumption C) that

$$|v| \ll |u_0|, \quad |v_x| \to 0 \quad \text{as} \quad |Z| \to \infty,$$

and $|v_{xx}|$ is bounded for all x, y, $t \ge 0$. Substituting Eq. (2.3) into Eq. (2.1), and using assumption C and the fact that u_0 is a solution of Eq. (2.1), we obtain

(2.4)
$$v_{xt} + 12u_{0x}v_x + 6u_0v_{xx} + 6u_{0xx}v + v_{xxxx} + 3v_{yy} = 0.$$

Let

(2.5)
$$v(x, y, t) = v(Z, t) = f(Z)e^{\sigma t}$$

where σ is a constant and $f \in C^4$. Then we get

(2.6) $\{-a\omega/4f''(Z) + \sigma a/2f'(Z) + a^4/16f^{(4)}(Z) + 3b^2/4f''(Z) + a^2/4[3a^2\operatorname{sech}^2 Zf(Z)]_{zz} \} e^{\sigma t} = 0,$

where the assumption C is applied. Integrating Eq. (2.6) with respect to Z, we have the following equation

(2.7)
$$f'''(Z) + (3/4a^{4}\operatorname{sech}^{2}Z - a\omega/4 + 3b^{2}/4) \frac{16}{a^{4}f'(Z)} + (\sigma a/2 - 3/2a^{4}\operatorname{sech}^{2}Z \tanh Z) \frac{16}{4f(Z)} = 0,$$

where we have assumed that $f, f', f''' \to 0$ as $|Z| \to \infty$.

By Eq. (2.2) we note

$$\frac{-a\omega+3b^2}{4} = -\frac{a^4}{4},$$

and let $\alpha = -8\sigma/a^3$; Eq. (2.7) then can be transformed into

$$f^{\prime\prime\prime\prime} - 4(1 - 3\operatorname{sech}^2 Z)f^{\prime} - (24\operatorname{sech}^2 Z \tanh Z + \alpha)f = 0,$$

which is identical with Eq. (3.2.13) on p. 624 of JEFFREY and KAKUTANI paper [1].

3. Cnoidal traveling wave solution

The cnoidal traveling wave solution of Eq. (2.1) is of the form [3]:

$$u_0(Z) = u_3 + (u_1 - u_2) dn^2 [1/a \sqrt{12(u_1 - u_3)} (Z_1 - Z_2), K],$$

where

$$u_2 \leq u_0 \leq u_1, \quad u_0(Z_1) = u_1, \quad K^2 = \frac{u_1 - u_2}{u_1 - u_3}, \quad u_1 > u_2 > u_3,$$

and

$$Z = ax + by - \omega t.$$

Let

$$u = u_0(Z) + v(x, y, t).$$

http://rcin.org.pl

Then the corresponding linearized equation for v is

$$v_{xt} + 12u_{0x}v_x + 6u_0v_{xx} + 6u_{0xx}v + v_{xxxx} + 3v_{yy} = 0.$$

Integrating the above equation with respect to x, we get

(3.1)
$$v_t + 6(u_0 v)_x + v_{xxx} + 3 \int v_{yy} dx = A,$$

where A is an integration constant. Assuming that

(3.2)
$$v(x, y, t) = e^{-i\sigma t} \psi(Z),$$

choosing A to be zero and substituting Eq. (3.2) into Eq. (3.1) and using Eq. (2.2), we obtain

(3.3)
$$\frac{d^3\psi}{dZ^3} + \left(\frac{6}{a^2}u_0 - 1\right)\frac{d\psi}{dZ} + \left(\frac{6}{a^2}\frac{du_0}{dZ} - \frac{i\sigma}{a^3}\right)\psi = 0.$$

Notice

$$6/a^2u_0-1 = 1 - U + (6/a^2u_0 - 2 + U),$$

where U is the constant in DRAZIN paper [2]. If we let

$$S=\frac{6}{a^3}u_0-2+U,$$

then Eq. (3.3) becomes

(3.4)
$$\frac{d^3\psi}{dZ^3} + (1-U+S)\frac{d\psi}{dZ} + \left(\frac{dS}{dZ} - \frac{i\sigma}{a^3}\right)\psi = 0.$$

Since $cn\psi = \sqrt{1-sn^2\psi}$, $dn\psi = \sqrt{1-k^2sn^2\psi}$ for some constant k, the functions $cn^2\psi$ and $dn^2\psi$ have the same properties, namely, they are both even and periodic. Hence Eq. (3.4) is identical with Eq. (12) on page 94 of DRAZIN paper [2]. Eq. (3.4) is a linear homogeneous ordinary differential equation for ψ . It is a Floquet system whose general properties have been intensitvely studied for a long time. Eq. (3.4) has been thoroughly analyzed by DRAZIN [2]. Therefore we conclude, by applying Drazin's result, that the cnoidal traveling wave solutions to the two-dimensional kdV equation is linearly stable with respect to infinitesimal perturbations of the form described in Eq. (3.2).

References

1. A. JEFFREY and T. KAKUTANI, SIAM Review, 14, 4, 582-643, 1972.

2. P.G. DRAZIN, Quart. J. Mech. Appl. Math., 30, 91-105, 1977.

3. Y. CHEN and S. WEN, J. Math. Anal. and Appl., 127, 1, 226-236, 1987.

MATHEMATICS DEPARTMENT OHIO UNIVERSITY, OHIO, USA.

Received April 14, 1990.