BRIEF NOTES

A note on the linear stabilities of the solitary and cnoidal wave solutions to the two-dimensional KdV equation

DAXIN WU and SHIH-LIANG WEN (OHIO)

Abstract

IT is Shown that the solitary and cnoidal traveling wave solutions of the two-dimensional kdV equation are linearly stable with respect to a class of traveling wave perturbations, the results of Jeffrey and Kakutani, and of Drazin are used.

1. Introduction

Jeffrey and Kakutani [1] have shown that the solitary traveling wave solutions of the one-dimensional KdV equation are linearly stable. Drazin [2] demonstrated that the cnoidal traveling wave solutions to the one-dimensional KdV equation are also linearly stable. We are not aware of the corresponding two-dimensional results in the literature. In this note, we shall show that the perturbation equations involved in the two-dimensional case can be converted into a form which is identical to that of Jeffrey and Kakutani, and of Drazin, by considering infinitesimal perturbations of the wave in a class of traveling waves described by Eqs. (2.5) and (3.2). Therefore, we claim that both the twodimensional solitary traveling wave solutions and cnoidal traveling wave solutions are linearly stable with respect to this class of perturbations.

2. Solitary traveling wave solution

Consider the two-dimensional KdV equation

$$
\begin{equation*}
\left(u_{t}+6 u u_{x}+u_{x x x}\right)_{x}+3 u_{y y}=0 \tag{2.1}
\end{equation*}
$$

It is well known that (see, for example Chen and Wen [1]).

$$
u_{0}(Z)=\left(a^{2} / 2\right) \operatorname{sech}^{2} Z
$$

is a solitary traveling wave solution to Eq. (2.1), where $Z=1 / 2(a x+b y-\omega t), a$ and b are wave numbers, ω is the frequency and satisfies the equation

$$
\begin{equation*}
\omega=a^{3}+3 b^{2} / a \tag{2.2}
\end{equation*}
$$

We note that $u_{0}(Z) \rightarrow 0$ as $|Z| \rightarrow \infty$.

Now, we superimpose a small disturbance $v(x, y, t)$ upon this solution

$$
\begin{equation*}
u=u_{0}(Z)+v(x, y, t) \tag{2.3}
\end{equation*}
$$

We make an assumption on v (call it assumption C) that

$$
|v| \ll\left|u_{0}\right|, \quad\left|v_{x}\right| \rightarrow 0 \quad \text { as } \quad|Z| \rightarrow \infty,
$$

and $\left|v_{x x}\right|$ is bounded for all $x, y, t \geqslant 0$. Substituting Eq. (2.3) into Eq. (2.1), and using assumption C and the fact that u_{0} is a solution of Eq. (2.1), we obtain

$$
\begin{equation*}
v_{x t}+12 u_{0 x} v_{x}+6 u_{0} v_{x x}+6 u_{0 x x} v+v_{x x x x}+3 v_{y y}=0 \tag{2.4}
\end{equation*}
$$

Let

$$
\begin{equation*}
v(x, y, t)=v(Z, t)=f(Z) e^{\sigma t} \tag{2.5}
\end{equation*}
$$

where σ is a constant and $f \in C^{4}$. Then we get

$$
\begin{align*}
\left\{-a \omega / 4 f^{\prime \prime}(Z)+\sigma a / 2 f^{\prime}(Z)+a^{4} / 16\right. & f^{(4)}(Z) \tag{2.6}\\
& \left.+3 b^{2} / 4 f^{\prime \prime}(Z)+a^{2} / 4\left[3 a^{2} \operatorname{sech}^{2} Z f(Z)\right]_{z Z}\right\} e^{\sigma t}=0
\end{align*}
$$

where the assumption C is applied. Integrating Eq. (2.6) with respect to Z, we have the following equation

$$
\begin{align*}
f^{\prime \prime \prime}(Z)+\left(3 / 4 a^{4} \operatorname{sech}^{2} Z-a \omega / 4+3 b^{2} / 4\right) & 16 / a^{4} f^{\prime}(Z) \tag{2.7}\\
& +\left(\sigma a / 2-3 / 2 a^{4} \operatorname{sech}^{2} Z \tanh Z\right) 16 / 4 f(Z)=0
\end{align*}
$$

where we have assumed that $f, f^{\prime}, f^{\prime \prime \prime} \rightarrow 0$ as $|Z| \rightarrow \infty$.
By Eq. (2.2) we note

$$
\frac{-a \omega+3 b^{2}}{4}=-\frac{a^{4}}{4}
$$

and let $\alpha=-8 \sigma / a^{3}$; Eq. (2.7) then can be transformed into

$$
f^{\prime \prime \prime}-4\left(1-3 \operatorname{sech}^{2} Z\right) f^{\prime}-\left(24 \operatorname{sech}^{2} Z \tanh Z+\alpha\right) f=0
$$

which is identical with Eq. (3.2.13) on p. 624 of Jeffrey and Kakutani paper [1].

3. Cnoidal traveling wave solution

The cnoidal traveling wave solution of Eq. (2.1) is of the form [3]:

$$
u_{0}(Z)=u_{3}+\left(u_{1}-u_{2}\right) d n^{2}\left[1 / a \sqrt{12\left(u_{1}-u_{3}\right)}\left(Z_{1}-Z_{2}\right), K\right],
$$

where

$$
u_{2} \leqslant u_{0} \leqslant u_{1}, \quad u_{0}\left(Z_{1}\right)=u_{1}, \quad K^{2}=\frac{u_{1}-u_{2}}{u_{1}-u_{3}}, \quad u_{1}>u_{2}>u_{3}
$$

and

$$
Z=a x+b y-\omega t
$$

Let

$$
u=u_{0}(Z)+v(x, y, t)
$$

Then the corresponding linearized equation for v is

$$
v_{x t}+12 u_{0 x} v_{x}+6 u_{0} v_{x x}+6 u_{0 x x} v+v_{x x x x}+3 v_{y y}=0
$$

Integrating the above equation with respect to x, we get

$$
\begin{equation*}
v_{t}+6\left(u_{0} v\right)_{x}+v_{x x x}+3 \int v_{y y} d x=A \tag{3.1}
\end{equation*}
$$

where A is an integration constant. Assuming that

$$
\begin{equation*}
v(x, y, t)=e^{-i \sigma t} \psi(Z) \tag{3.2}
\end{equation*}
$$

choosing A to be zero and substituting Eq. (3.2) into Eq. (3.1) and using Eq. (2.2), we obtain

$$
\begin{equation*}
\frac{d^{3} \psi}{d Z^{3}}+\left(\frac{6}{a^{2}} u_{0}-1\right) \frac{d \psi}{d Z}+\left(\frac{6}{a^{2}} \frac{d u_{0}}{d Z}-\frac{i \sigma}{a^{3}}\right) \psi=0 . \tag{3.3}
\end{equation*}
$$

Notice

$$
6 / a^{2} u_{0}-1=1-U+\left(6 / a^{2} u_{0}-2+U\right)
$$

where U is the constant in Drazin paper [2]. If we let

$$
S=\frac{6}{a^{3}} u_{0}-2+U,
$$

then Eq. (3.3) becomes

$$
\begin{equation*}
\frac{d^{3} \psi}{d Z^{3}}+(1-U+S) \frac{d \psi}{d Z}+\left(\frac{d S}{d Z}-\frac{i \sigma}{a^{3}}\right) \psi=0 \tag{3.4}
\end{equation*}
$$

Since $c n \psi=\sqrt{1-s n^{2} \psi}, d n \psi=\sqrt{1-k^{2} n^{2} \psi}$ for some constant k, the functions $c n^{2} \psi$ and $d n^{2} \psi$ have the same properties, namely, they are both even and periodic. Hence Eq. (3.4) is identical with Eq. (12) on page 94 of Drazin paper [2]. Eq. (3.4) is a linear homogeneous ordinary differential equation for ψ. It is a Floquet system whose general properties have been intensitvely studied for a long time. Eq. (3.4) has been thoroughly analyzed by Drazin [2]. Therefore we conclude, by applying Drazin's result, that the cnoidal traveling wave solutions to the two-dimensional kdV equation is linearly stable with respect to infinitesimal perturbations of the form described in Eq. (3.2).

References

1. A. Jeffrey and T. Kakutani, SIAM Review, 14, 4, 582-643, 1972.
2. P.G. Drazin, Quart. J. Mech. Appl. Math., 30, 91-105, 1977.
3. Y. Chen and S. Wen, J. Math. Anal. and Appl., 127, 1, 226-236, 1987.

MATHEMATICS DEPARTMENT
 OHIO UNIVERSITY, OHIO, USA.

Received April 14, 1990.

