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Creep rupture of metals under multi-axial state of stress (*) 

A. LITEWKA (POZNAN) 

THE AIM of the paper is to derive the constitutive equations of creep damage for solids subjected 
to a multi-axial state of stress. The set of equations proposed consists of the damage evolution 
equation, the yield criterion for the damaging solid and the equation specifying the additional 
strain due to damage growth. It was assumed that creep rupture occurs at critical values of the 
damage tensor components Q i lower than 1. The validity of the approach proposed was con
firmed experimentally. To this end, the creep rupture test results obtained by various re
searchers for several metals were employed. 

Celem pracy jest wyprowadzenie r6wnan opisuj'lcych zniszczenie materialu uszkodzonego 
w warunkach pelza.nia w zloi:onym stanie napr~i:enia. W sklad zaproponowanego zestawu 
r6wnan wchodzi r6wnanie ewolucji uszkodzenia, warunek plastycznosci dla materialu uszka
dzaj'lcego si~ oraz r6wnanie okreslaj'lce dodatkowe odksztalcenia spowodowane wzrostem 
uszkodzenia. Przyj~to, ze zniszczenie przy pelzaniu nast~puje przy krytycznej kombinacji wsp6l
rz~dnych tensora uszkodzenia Q ~, rnniejszych nii: 1. Poprawnosc zaproponowanego podejscia 
do problemu sprawdzono doswiadczalnie. W tym celu wykorzystano wyniki badan zniszczenia 
przy pelzaniu uzyskane dla kilku metali przez r6i:nych badaczy. 

Uenhro pa6oThi HBJIHeTcH BbiBO~ ypasHemrii onHCbiBaiO~l{X pa3pymeHHe nospem~eHHoro 
MaTepHana B yCJIOBHHX llOJI3y"t.JeCTH B CJIO>KHOM HanpH>KeHHOM COCTOHHHlf. B COCTaB npe~
JIO>KeHHOH CHCTeMbl ypaBHeHHH BXO~HT ypaBHeHHe 3BOJIIOI.(HH llOBpem~eHHH, YCJIOBHe nnac
TH"t.JHOCTH ~JIH nospem~aro~erocH MaTepnana H ypaBHeHHe, onpe~eJIHIO~ee ~onoJIHHTeJib
Hbie ~e<t>opMaQHH Bbi3BaHHbie pOCTOM llOBpem~eHHH. TipHHHTO, liTO pa3pymeHHe npH llOJI-
3y"t.JeCTH HaCTynaeT npH I<pHTHl!eCI<OH l<OM6HHal(HH COCTaBJIHIO~HX TeH30pa llOBpem~eHHH Q 1, 

MeHbllll{X tieM 1. TipaBHJibHOCTb npe~nomeHHoro no~xo~a I< npo6neMe nposepeHa 3I<cnepH
MeHTaJibHO. C 3TOH QeJibiO HCllOJib30BaHbl pe3yJibTaTbl HCCJie~OBaHHH pa3pymeHHH npH 
IIOJI3Yl!eCTH llOJIY"t.IeHHbie, ~JIH HeCI<OJibl<HX MeTaJIJIOB, pa3HbiMH HCCJie~oBaTeJIHMH . 

1. Introduction 

CREEP PROCESSES, well-recognized at room temperature, are still scientific and technical 
problems when the structural elements are designed to operate at elevated temperature. 
It is known from the numerous experiments that the time during which the material can 
sustain stress is finite and this is the result of a growth of microdefects observed in the 
material structure. Metallographical inspection reveals that such a microstructural damage 
normally occurs in the form of fissures and voids which may coincide with grain bound
aries. It is usualJy observed that the damage in the metal subjected to the constant load 
is accompanied by an increase of the strain rate and it is the so-called tertiary region of 
creep which can easily be detected when creep curves for the material tested are construc
ted. A similar process of material structure deterioration is observed not only in a creep 
at elevated temperature. As pointed out by LEMAITRE [1}, three different phenomena 
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4 A. LITEWKA 

should be distinguished: plastic damage associated with large plastic deformation, fatigue 
damage being the result of small irreversibilities in each cycle of loading and creep damage 
due to time exposure to constant load. The final result observed as a microstructural 
damage is similar in each of the processes mentioned above; however, the physical 
background of the damage evolution is different and therefore each type of damage is 
usually considered separately. 

Since the pioneering papers by KAcHANOV [2] and RABOTNOV [3] appeared, a great 
number of valuable theoretical and experimental results concerning, in particular, creep 
damage has been obtained. The detailed evaluation of those results can be found in survey 
papers like those of LEMAITRE [4], KRAJCINOVIC [5], BASISTA [6] or ZUCHOWSKI [7]; how
ever, the general concJusion which can be drawn from those papers is that the problem 
of a consistent description of the mechanical behaviour of damaging sol~ds has not been 
exhausted yet. Particularly, great discrepancies are observed in an approach to the defini
tion of the damage variable describing the internal state of the deteriorating material. 
The earliest definition based on a scalar representation of damage proposed by KAci:IANOV 
[2] is still used and recommended by LEMAITRE [4, 8], while KRAJCINOVIC [5, 9] is of the 
opinion that the vector damage variable is the most suitable one, as it is a logical gene
ralization of the original scalar measure. However, it is undeniable that a tensor damage 
variable, proposed by VAKULENKO and KACHANOV [10] and developed by MURAKAMI and 
OHNO [11], BETTEN [12, 13] and LECKIE and 0NAT [14], can store more information than 
the scalar or vector 'one and makes possible a rational description of the mechanical 
behaviour of the damaging material. The tensor damage variable and the theory of ten
sor function representations . seem to be promising tools in obtaining a c~nsistent de
scription of the creep damage of a material subjected to a multi-axial state of stress. This 
line is followed by MuRAKAMI and SANOMURA [15, 16], who formulated the constitutive 
equations of tertiary creep. Their theory was successfully used to describe the creep 
damage of copper and Nimonic 80A. However, the approach presented by Murakami 
and Sanomura is strongly affected by the classical concept where the power law of the 
damage evolution equation proposed by KACHANOV [2] and RABOTNOV [3] is used to
gether with the notion of so-called net-or effective stresses. This results in a great 
number of material constants to be identified by fitting their numerical values to the 
experiment results obtained from several creep curves. 

The aim of this paper is to derive the constitutive equations of creep damage for a solid 
subjected to a multi-axial state of stress. The set of the equations proposed consists of the 
damage evolution equation, the yield criterion for the damaging solid and the equation 
specifying the additional strain due to damage growth. All these equations are formulated 
by employing the theory of.tensor function representations and contain the damage and 
stress tensors as independent variables. Instead of the concept of the net-stress tensor, 
being the modification of the Cauchy stress tensor accounting for the net area reduction, 
homogenization of the macroscopic material properties was performed. /t was also as
sumed that creep rupture occurs at a critical value of the damage tensor components, not 
necessarily equal to unity as it is usually suggested. The approach presented in this paper 
is verified experimentally by employing the creep rupture test results available in the 
literature for various metals under uniaxial tension, pure shear and equal biaxial tension. 
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CREEP RUP11JRES OF METALS 5 

2. Mechanical behaviour of damage solid 

The metallographical analysis of the microstructural damage that occurs in metals 
during creep performed by HAYHURST [17], DYSON, LOVEDAY and RODGERS [18], and 
DYSON and McLEAN [19] revealed an oriented character of the microdefects of the ma
terial structure. This means that the overall mechanical response of the damaged material 
is anisotropic and the constitutitve equations of elasticity and plasticity should account 
for the specific damage-induced anisotropy. The formulation of such equations is discussed 
by the author in his previous papers [20, 21]. However, these equations are the starting 
point for the theory proposed in this paper, that is why the final form of the formulae 
derived in [20, 21] will be shown here. 

It is assumed that the current state of the damaged material is described by the symme
tric, second-order damage tensor D, similar to the one proposed by V AKULENKO and 
KACHANOV [10] and dev\!loped by MURAKAMI and 0HNO [11]. However, the principal 
values Db D 2 and D 3 of the tensor proposed are different from those usually assumed and 
they are expressed by the relation 

Q . 
(2.1) D. · = ~-' -- i = 1, 2, 3. D; E (0, oo), 

' 1-Qi' 

where Qi are the principal values of the damage tensor Q defined by MURAKAMI and 
OHNo [11]. It is necessary to explain that two different forms of the damage tensor D 
and n will be used in this paper. As pointed out by MuRAKAMI and SANOMURA [15], the 
damage tensor n is a suitable damage measure only when the damage evolution is con
sidered. They also stated that when calculating strains in a damaged solid, the so-called 
damage effect tensor ·should be used. It should be noted that this problem is not finally 
solved as the form of the damage effect tensor described in [15] is the modification of 
that proposed by MURAKAMI and OHNO [11]. In his previous paper [20] the another also 
looked for an appropriate damage variable which could describe strength and stiffness 
reduction of anisotropically damaged solids. Finally it was found that the tensor D defined 
in [20, 21] is a suitable damage measure to be used for this purpose. This means that in 
this paper the damage tensor D will appear in the equations of elasticity and plasticity 
of damaged solids, whereas in the damaged evolution law the more convenient damage 
tensor n will be used. 

The final form of the equation of elasticity for the damaged material derived in [20] is 

(2.2) 
v 1 +v D1 

E = - E I tra + -----:e- a+ 2(1 + D
1

) E (aD+ Da), 

where E, a and I are the strain, stress and unit tensors, respectively, E is the Young modulus 
and v the Poisson ratio of the matrix material. 

It should be noted that Eq. (2.2) is linear with respect to D but, as pointed out in [20], 
- such a simple form of the constitutive equation described very accurately the elastic behav
iour of the cracked solids. The effective elastic constants of orthotropically-damaged 
material can be calculated by employing the well-known representation for the fourth
order tensor function. The appropriate linear, with respect to D, relation derived in [20] 
has the form 
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6 A. LITEWKA 

(2.3) 
v l+v 

Aijkl = - E ~t} ~kl + 2£ ( ~ik ~Jl + ~il ~Jk) 

Dt 
+ 4(1 +Dt)E (~'"DJr+ ~JrDt~c+ ~uDJtc+ ~1tcDu), 

where ~il is the Kronecker delta and A11~c1 is a well-known fourth-order elastic anisotropy 
tensor. The validity of the equations (2.2) and (2.3) was verified experimentally by using 
the models simulating the damaged material [20]. 

Taking into account Eq. (2.2), the elastic strain energy calculated for a homogenized 
equivalent material, possessing the same elastic properties as the damaged solid, has the 
form 

(2.4) n. _ l-2v 2 1 +v S2 D1 2 
'Pe-~ tr a+ 2E tr + 20 +Dt)E tra D, 

where -S is the stress deviator. 
It was proposed in [21, 22] that strength reduction of the cracked solid can be described 

by means of the yield criterion formulated as an isotropic scalar function of the stress 
tensor a and the damage tensor D. The assumed yield criterion has the form 

(2.5) 

where ch c2 and c3 are the material constants and ao is the uniaxial yield stress for the 
matrix material. The simplest way to determine Ch C2 and C3 is to specify Eq. (2.5) for 
the prescribed states of ·stress such as uniaxial tension in two mutually perpendicular 
principal directions of the material structure symmetry and for a biaxial tension. As 
a result, the following set of linear equations is obtained: 

2 c.+ 3 C2 +D1 C3 = (aofato)z, 

(2.6) Ct + } Cz +D2 C3 = (aofa2o) 2, 

where a 1 0 and a 20 are the respective yield stresses for damaged material loaded uniaxially 
in the principal directions corresponding to the values D 1 and D 2 , and T0 stands for the 
yield stress for the biaxial uniform tension. Those yield stresses required to calculate C., 
C 2 and C 3 were determined from two theoretical models described in [21, 22]. In the 
first model, named the mechanical one, the failure modes associated with the plastic 
zones developing between the adjacent cracks were analysed and, as a result, the respective 
yield stresses were obtained. The second model, referred to as a theoretical one, consists 
in comparing the strain energy (2.4) calculated for the equivalent material with that obtai
ned for the matrix material. The curves of a10 versus Q 1 and also the relevant experimental 
results determined for square and quincuncial crack arrangements are shown in Figs. I 
and 2. The numerical value of Q 1 according to Murakami's definition [11], is calculated 
as a ratio of crack area and the original cross section taken in the plane perpendicular to 
the principal direction I. The character of these curves, and also the fact that the crack 
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FIG. I. Uniaxial yield stress versus damage tensor component !.1 1 for square crack arrangement. 
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FJG. 2. Uniaxial yield stress versus damage tensor component !.1 1 for quincuncial crack arrangement. 
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arrangement in the damaged material is usually the combination of those two patterns 
assumed in the models analysed, justifies the assumption that the yield stresses o-10, o-20 

and T 0 can be calculated from the simplified relations 

O"to = To = (1-Ql)ao, 

0"20 = (1-Q2)ao · 
(2.7) 

The above result concerning T0 is not taken directly from Figs. ·1 and 2 but from the 
additional considerations presented in [21, 22] and also those shown in [23] for perfo
rated materials with regular arrays of circular cavities. It should be noted that for a given 
crack arrangement much more accurate results than those expressed by Eqs. · (2.7) are 
available in [21, 22, 23]. However, as it has already been mentioned, the crack array in 
the damaged material is generally an unknown combination of various simple patterns 
and in such a situation the values given by the relations (2.7) can be considered as suffi
ciently accurate. 
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8 A. LITEWKA 

3. Damage evolution equation 

The formulation of the appropriate damage evolution equation as a function 

(3.1) Q = F(a,n, T,a) 

is a crucial problem of the damage mechanics. In Eq. (3.1), Q stands for the time deriva
tive of the damage tensor n, T is the temperature and a is a strain hardening parameter. 
There are many attempts to formulate the explicit form of the function (3.1) but most 
of them like those of SDOBYREV [24], HAYHURST -[17] or LECKIE and HAYHURST [25] are 
the generalization of the classical theory proposed by K.ACHANOV [2] and RABOTNOV [3] 
to describe creep rupture under uniaxial tension. The only promising theory, based on 
the tensorial nature of damage and enabling the analysis of tertiary creep of solid subjected 
to a comlex loading as proposed by MuRAKAMI and SANOMURA [15], is handicapped by 
a great number of various material constants. 

The damage evolution equation proposed in this paper is formulated for a given con
stant temperature as a t:£nsor function: 

(3.2) Q = F(a, Q) , 

where, for simplicity, the strain hardening parameter is omitted. The most general math
ematical form of the function (3.2) obtained on the basis of the tensor function represen
tations [26] can be written as follows 

(3.3) Q = .2: at G b i = 1 , 2, ... , 9 , 
i 

where G i is a set of nine tensor generators 

I, a, n, an+na, 

Q2a+aQ2, a2Q2+Q2a2 

and ai are the polynomial functions of the scalar invariants 

tra, tra2, tra3, trn, trn 2
, trn 3

, tran, tran2 tra2n, tra2Q 2
• 

There is no need to look for the damage evolution equation in such a general form. Taking 
into account some experimental observations, Eq. (3.3) can be written in a shorter and 
more convenient form. The basic experimentally-stated facts which made it possible will 
be summarized below. 

HAYHURST [17] performed creep rupture experiments for an Al-Mg-Si alloy subjected 
to multiaxial tensile states of stress at a temperature of 483°K. He stated that uniformly 
distributed grain-boundary cracks could be observed on planes which were inclined at 
approximately 90° to the principal stress directions, and the plane of most intense cracking 
was found to be perpendicular to the 'largest principal stress. The examination of equally 
biaxially-loaded specimens showed a uniform distribution of grain boundary cracks and 
it was difficult to assign a preferential direction of growth. 

DYSON and McLEAN [19] studied metallographically the specimens of Nimonic 80A 
subjected to tension and torsion at 1023°K. They revealed that all the cracked grain bound
aries were inclined at an angle greater than 30° to the maximum principal axis in both 
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tension and torsion specimens. It justifies the assumption that only tensile stresses could 
develop microstructural damage in metals. This conclusion is well supported by the results 
obtained by JoHNSON, HENDERSON and MATHUR [27] for copper under uniaxial compres
sive stress. Careful examination of the microstructure of the specimens subjected to com
pressive stress for the times in excess of the tensile uniaxial rupture time did not reveal 
any evidence of grain boundary voids or material deterioration. 

HAYHURST [17] additionally studied the micrographs taken of the planes perpen
dicular to the surface of the plate specimens subjected to plane states of stress. He showed 
that in all tests the grain boundary cracks had grown on planes which were at an ap.gfe 
90° to the direction of the maximum tensile stress. 

All those results prove that the principal values of the damage tensor and their direc
tions are closely connected with the positive principal values of the stress tensor. On the 
other hand, as stated by KRAJCINOVIC [5], the effect of the stress applied, observed as 
a growth of microdefect density, could be changed only at the expense of externally supplied 
energy. It seems reasonable to identify this energy with the strain energy accumulated 
in the solid subjected to a given state of stress with account for the current state of the 
material, described by the damage tensor. 

The above experimental results, together with the purely mathematical basis supplied 
by the theory of the tensor function representations, made it possible to derive an appro
priate form of the damage evolution equation. It will be proved in this paper that the 
damage evolution equation 
(3.4) Q = B1 (/>~"1 + B2 (/>:a* 

accounting for both isotropic and anisotropic damage is sufficiently general to describe 
the creep rupture behaviour of the metals. Equation (3.4) contains the modified stress 
tensor a>:' expressed in terms of its positive principal values. This means that in the case 
of negative principal values of the stress tensor a, the relevant principal values of the 
modified tensor a* are equal to zero. The exponents m, n and multipliers B1 and B2 are 
the material constants, whereas (/>e is the strain energy expressed by Eq. (2.4). 

The assumed form (3.4) of the general expression (3.3) contains only two tensor gener
ators I and a* and the scalars cxi are the simple polynomial functions of three invariants 
tra, trS2 and tra2D. According to HAYAHURST (17], SDOBYREV (24] and LECKIE and 
HAYHURST [25], the damage evolution is affeted not only by the positive principal stresses 
but also by the second invariant of the stress deviator and the first invariant of the stress 
tensor. This means that a simple form of the damage evolution equation (3.4) accounts 
for the combined effect of all the factors considered in the damage mechanics as most 
important. 

Further considerations presented in this paper are based on the following form of the 
damage evolution equation: 

3 ) Q _ [ l-2v 2 I +v 2 D1 2 ]" * ( .5 - 6£ - tr a+ - 2E trS + "2(1 +Dt)E tra D B2 a , 

where the isotropic damage expressed by the term B11 is omitted. This is justified as the 
metallographical inspection of damaging solids [17, 19] detected mainly the oriented 
damage associated with the positive values of the principal stresses. 
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10 A. LITEWKA 

Three different values of the exponent n were assumed, and as a result the following 
forms of Eq. (3.5) were obtained: 

(3.6) n. [ 1-2v 2 S2 Dt 2D] K * O'l~= 3(l+v)tra+tr + -(T+v)(l+D
1
)tra 2 a 

forn = l, 

(3 n. { (l-2v)2 4 2S2 2(1-2v) 2 S2 
.7) >'l~ = 90 +v)2 tr a+tr + 3(1 +v) tr atr 

for n =~and 

(3 8) n. { (l-2v)3 6 3 2 (l-2v)2 4 S2 
• >'l~ = 27(1 +v)3 tr a+tr S + 3(1 +v)2 tr atr 

for n = 3, where 

( 
1 +v)n 

K2 = 2E B..2. 

It should be noted that Eqs. (3.7) and (3.8) represent the simplified forms of Eq. (3.5) 
derived for n = 2 and 3 where the terms containing D2 and D3 are neglected. A detailed 
analysis of numerical values of those terms together with relevant multipliers showed that 
they are relatively small in comparison with these retained in Eqs. (3. 7) and (3.8). 

At this moment it is necessary to explain that two different damage tensors are left 
in Eqs. (3.6), (3.7) and (3.8) as the principal values of both tensors n and D are related 
by the very simple equation (2.1). Therefore there is no need to rearrange these equations 
in order to obtain the uniform expressions in terms of ei.ther nor D. 

4. Rupture criterion 

According to KACHANOv's theory [2], it is usually assumed that the final rupture of 
the material in creep under constant load occurs when at least one principal value of the 
damage tensor n is equal to unity. However, there is experimental evidence which con
tradicts such an assumption. For example, PIATTI, BERNASCONI and CozZARELLI [28] 
are of t~e opinion that there is a so-called critical value of the scalar damage variable 
corresponding to the rupture of the element. LEMAITRE [4] suggests that for metals this 
value is less than I and varies from 0.2 to 0.8. A more precise conclusion is drawn by 
DYSON and McLEAN [19] from metallographical inspection of broken Nimonic 80A 
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CREEP RUPTURES OF METALS 11 

samples subjected to tension and torsion. They found that the total volume of cavities 
had been too small to reduce the net cross-sectional area to zero as Kachanov supposed. 
Furthermore, detailed quantitative assessment of the damage growth during creep up to 
rupture at a temperature of 1237°K for a refractory alloy INIOO can be found in the papers 
by CHABOCHE [29, 30]. Front the diagrams of the damage scalar variable versus the time 
shown in those papers, it is seen that for the time very close to the rupture time the experi
mentally-determined value of the damage scalar parameter is less than 0.3. Besides, 
for the whole life-time of the elements the damage was smaller for higher stress applied 
than that detected in the samples subjected to the lower stress. 

HAYHURST [17] in his experiments with aluminium alloy observed that close to the 
final rupture, the microcracks had deformed in shear bands which had been inclined 
approximately at 45° to the direction of the applied stress. He stated that the boundary 
micro-fissures h~d grown in a stable manner during creep to the size and distribution at 
which the collapse condition for the current structure of the specimen had been satisfied. 
It is worthwhile to mention that the shear bands developing at rupture and detected in 
a microscale by HAYHURST [17] are similar to those analysed in a macroscale in the papers 
[31, 32] where macroscopic models simulating the damage materials were tested. 

To explain all those experimental observations, it was assumed in this paper that the 
onset of ruptme is observed when the material yield stress, continuously decreasing due 
to the damage growth, becomes equal to the stress actually applied. In a general case of 
the multiaxial state of stress, the rupture of the element begins at a critical combination 
of the damage tensor components which can be determined from the yield criterion (2.5). 
This means that the yield criterion (2.5) is assumed as a collapse condition for the deterio
rated material structure as supposed by HAYHURST [17]. 

This new approach to the problem of creep rupture is explained for the plane state of 
stress in Fig. 3. Let us assume at the beginning that the material at a given temperature 

rrouJ=O 
t = 0--------........... 

uz 

F(uij , D,~fJ=O 
t= tr 

FIG. 3. Yield surfaces for damaging solid. 
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12 A. LITEWKA 

is perfectly elastic-plastic and obeys the Huber-Mises yield criterion which is represented 
in Fig. 3 as an ellipse ABCD. The actual loading is described by a stress tensor O'o and 
corresponds to the point E. This loading, not exceeding the matrix material yield stress, 
results in the instantaneous elastic strain and then primary and secondary creep is observ~d. 
However, from the beginning of the creep process microstructural damage and the stable 
reduction of the overall material strength occurs. This process of damage growth is descri
bed by the damage evolution equation (3.4) and the relevant strength reduction is expressed 
by the yield criterion (2.5) represented in Fig. 3 for the time 0 < t < tr by the curve 
A'B'C'D'. In a limit case when the yield surface is reduced to such a size that it touches 
the pointE (curve A"B"C"D" in Fig. 3), the critical value of the damage tensJr Dfj is 
obtained and plastic flow represented by the plastic strain rate tensor efj begin~. Some 
ductile metals when cracked, particularly for a great amount of damage, exhibit pro
nounced brittleness and then the onset of plastic flow is hardly detected because the rupture 
is accompanied by very small plastic deformation. This is observed at lower stress where 
accumulation of damage sufficient to reduce the strength of the material to the level of 
the stress applied required a long period of time. At high stress, in comparison wi~h the 
material yield stress, failure occurs relatively quickly because the total amount of damage 
necessary to reduce the overall strength of the material is smaller and this results in greater 
macroscopic ductility of the material at rupture. 

It is clear from the above considerations that the rupture condition of the material 
consists of two equations: the damage evolution equation (3.4) or (3.5) and the yield 
criterion for damaging material (2.5). The rupture time for the element subjected to the 
multi-axial state of stress according to Eq. (3.5) can be calculated from the equation 

(4 ) l {J [ 1-2v 2 1 +v S2 D~r 2ncr] -nd'('")Cr cl 
.1 tr = -!J~-;;; ~ tr a+ 2E tr + 2(1 +D~r)E tra ~.:1 - , 

where C is the constant to be calculated from the initial condition Q 1 = 0 for t = 0. The 
critical values of the damage tensor components DiJ can be calculated from the yield 
criterion 
(4.2) 

corresponding to the curve A" B" C" D" in Fig. 3. As the ratios of the principal values of 
n and a*, according to the damage evolution equation (3.5), are the same, the set of 
equations (4.1) and (4.2) is sufficient to calculate the rupture time for the multi-axial 
state of stress. To this end, the elastic and plastic characteristics of the matrix material 
are required together with only one additional constant B 2 contained in the damage evo
lution equation (3.5). 

A similar approach to the problem of creep rupture was proposed by Bm-Quoc and 
BIRON f33] but their promising results were limited only to the uniaxial state of stress. 

5. Strains in tertiary creep 

The strains in creep are usually considered when theoretical tertiary creep curves are 
constructed so as to fit the experimental results (MuRAKAMI and SANOMURA [15], CHA
BOCHE [30] and HAYHURST [34]). However, there are at least two reasons to formulate 
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\ 

appropriate equations describing strains in a tertiary creep region. The necessity to account 
for strains arises when analysing the rupture of damaging solids subjected to a nonhomo
geneous complex state of the stress. This problem was considered theoretically and experi
mentally by HAYHURST [34), LECKIE and HAYHURST [35, 36) and LECKIE and WoJE
WODZKI [37]. They found that after initial elastic response, interaction between the elastic 
and creep strains results in stress redistributions. Moreover, a further stress redistribution 
can be expected as a result of the softening of the deteriorated material. This stress redis
tribution is the first reason why the analysis of strains becomes one of the most important 
problems of the damage mechanics. The second reason is connected with engineering 
practice and strong limitations placed by some design regulations on strains in elements 
and structures. 

; 

The instantaneous strain and also the creep strain in primary and secondary regions 
are described by the well known equations and they are beyond the scope of this paper. 
For this reason, only so-called accelerated creep in a tertiary region will be considered 
f&ther. It is seen from Eq. (2.2) that strain in the damaging material consists of the instan
taneous elastic strain represented by the first two terms and additional strain which is 
associated with the damage growth. This additional strain 

(5 ) D Dl ( ) .1 £ = 2(1 +Dt)E aD+Da 

is a nonlinear function of time and increases with the increasing damage according to the 
damage evolution equation (3.4). Strain in tertiary creep is explained for the uniaxial 
tension in Fig. 4. It is seen that the additional strain £D appears at the very beginning of 

a 

c 

(j 

el 

0 

Original 
material (t=O) 

Damaged 
material (t= tr) 

b 
6 

------r:o 
-----r::~ 

-------r=t; 
c 

L-------------~ 
[. 

Curvilinear characferisfics 
with hardenin 

Time 

FIG. 4. Tertiary creep curves for various material models. 
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14 A. LITEWKA 

the creep process and increases steadily, resulting in the curvilinear diagram OAB of the 
total strain versus time. In the case of the perfectly elastic-plastic material as shown in 
Fig. 4a, in the point B where the yield stress of the deteriorated material is equal to the 
stress applied a, plastic flow occurs. The appropriate plastic strain rate can be calculated 
from the associated flow law 

(5.2) £P
1 

= A of( at}, Dijl 
' oat} ' 

wheref(a;j, Dil) is the yield criterion (2.5) and A is a scalar multiplier. The plastic strain 
rate e!j obtained from Eq. (5.-2) is much greater than eB calculated from Eq. (5.1) together 
with the stabilized creep strain rate ef1. This means that from the point B, corresponding 
to the rupture time, the curve c versus time is vertical as shown in Fig. 4c. 

However, the stress-strain diagrams for metals in their original state, and particularly 
after micro-cracking, are curvilinear as shown in Fig. 4b. Thus small plastic deformation 
appears starting from point A at time tA shorter than the rupture time t,.. In such a case, 
the corner obtained ·in point B is smoothed, and for curvilinear material characterictics 
without hardening the expected creep curve is represented in Fig. 4c by the dashed line. 
The rupture time, t,. predicted from the perfectly elastic-plastic model should then be very 
close to that determined for the real material. For a material which exhibits hardening 
(Fig. 4~), the rupture time could be longer as shown by the chain line in Fig. 4c. 

It is seen from the above considerations that the tertiary creep is a rather complicated 
combination of stabilized creep, additional strains due to material structure deterioration 
and plastic flow. The approach to creep rupture presented in this paper requires experi
mental verification not only for uniaxial tension but also for the multi-axial state of stress. 
Such a verification requires appropriate experimental results collected from specially 
designed multi-axial creep tests. Analysis of the existing literature of the subject shows that 
complete experimental verification of the proposed theory is not possible at the moment 
due to the lack of complete experimental data concerning the elastic, plastic and creep 
characteristics of metals at elevated temperature. However, it is worthwhile to check the 
validity of this approach to the extent the available experimental data allow. To this end, 
a comparison of theoretical results with the experimental data collected for several metals 
by MURAKAMI and SANOMURA [15), LEMAITRE [4), CHABOCHE [29, 30), DYSON and McLEAN 
[19], HAYHURST [17] and SALIM [38] is presented in the next sections. 

6. Unixial tension 

The three forms (3.6), (3.7) and (3.8) of the proposed damage evolution equation 
specified for the uniaxial tension lead to the same differential equation: 

1-!11 d'n K 2n+1d 
n b n2 ~.: 1 = a t' 

a-a~-:1 + ~.:1 
(6.1) 

where K = (1 ~:)n, a = 1, b = n = 1, 2 or 3 and a is the applied stress. As a solutjon 

of this equation the following function is obtained: 

http://rcin.org.pl



CREEP RUPTURES OF METALS 15 
--- ----- ··--

(6.2) 

where C is a constant to be calculated from the initial condition Q 1 ._;=:: 0 for the time t = 0. 
Equation (6.2) together with the uni~xial yield stress for the damaged material (2.7)1 

represents the rupture criterion in the case of uniaxial tension. This means that the rupture 
time can be calculated from the equation 

1-2!!-
a 

where !J1r is a critical value of the appropriate damage tensor component calculated 
according to Eq. (2.7)1 frpm the relation 

(6.4) 

It is seen from these equations that to calculate the rupture time tr the material yield 
stress Go and the constant K are required. The yield stress Go can easily be determined 
experimentally for the material at a given temperature, and the constant K can be calcu
lated from only one creep test up to rupture. 

It was found that Eqs. (6.2) and (6.3) written for n = 1 in the form 

1 ru n 1 2!J1 -1 n 3 (6.5) - 2 1n1~~1 -~~ 1 + 1\ + V
3 

arctg V
3 

+ 
6
y3 =KG t 

can be applied to describe the creep rupture behaviour of a commercially pure copper 
at a temperature of 523°K. The theoretical predictions concerning the rupture time calcu
lated from Eqs. (6.5) and (6.4) were compared with the experimental results collected by 
MuRAKAMI and SANOMURA fl5]. The theoretical creep curves calculated from the equation 

(6 6) . s DiG 
. e=e0 +st+(l+Dt)E 

forE= 80000 MPa and for the instantaneous and primary creep strain e0 and also for 
es taken from the experimental curves are compared with the experimental results in 
Fig. 5. The uniaxial yield stress Go cannot be found among the experimental data presented 
by MURKAMI and SANOMURA [15], therefore two creep curves were used to determine 
from Eqs. (6.4) and (6.5) the constant K = 7.6 · 10- 9 1/MPa3h and the yield stress of 
undamaged material Go = 120 MPa. 
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~.--------.--------~---------.--------~----~--~----~ 

e,% o Experiments by Murakami [15] 

-- Theory -eqns. (65), (6.6} 

u=60.6MPa 
8 

u=52.DMPa 

0 400 800 Time, h 

FIG. 5. Creep curves for copper at 523°K. 

Much more complete experimental verification was obtained for Eq. (6.2) specified 
for n = 2 

1 I 2 1 1 I' 3 4.Q 1 - 1 {6.7) - 4 ln .Q1 - 2 .Q1 +2 + 
2 

y'"f arctg J/
7 

+0.03159 = Ka5t. 

This equation was used to describe the creep behaviour of the refractory alloy INIO and 
Nimonic 80A. 

The experimental data obtained by LEMAITRE [4] and CHABOCHE [29, 30] include the 
.diagrams of the rupture time versus the uniaxial stress at various temperatures. Unfor
tunately no hint concerning the material yield stress at the test temperature can be found 
in their papers. That is why the constants K and a0 were calculated from Eqs. (6.7) and 
{6.4) using two experimental results for each temperature. Eventually the following results 
were obtained for the refractory alloy INIOO: 

K = 1.6 · I0- 15 1 /MPa5 h l 
<1o = 700 MPa 

for 1173°K, 

K = 1.05 · 10-131/MPa5hl 
for 

<Jo = 400 MPa 

K = 0.7 · 10- 11 1 /MPa5h } 

<Jo = 250 MPa 
for 

The above numerical values were used to calculate from Eqs. (6.7) and (6.4) the theor
etical curves of the rupture time versus the uniaxial stress. The comparison of these curves 
with the experimental results by LEMAITRE [4] and CHABOCHE [29] collected at various 
temperatures is shown in Fig. 6. 

The same equation (6.7) was also used to describe the creep rupture of Nimonic 80A 
at a temperature of 1023°K. The experiment~} data gathered for the uniaxial tension by 

http://rcin.org.pl



CREEP RUPTURES OF METALS 

u,MPa 

400 

200 

o Experiments by Lemaitre [4] 
and Chaboche [29] 

------ Theory-eqns .(67),(64) 

10
3 Time.h 

FIG. 6. Rupture time versus uniaxial stress for refractory alloy INlOO at various temperatures. 
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DYSON and McLEAN [19]madeitpossibletocalculatetheconstantK = 3.8·10-15 1/MPa5h 
and the uniaxial yield stress a0 = 800 MPa. To this end two experimental results con
cerning the rupture time wer~ used. These two constants together with Eqs. (6. 7) and (6.4) 
enabled to determine the theoretical curve of the rupture time versus the effective stress 
a calculated according to the Huber-Mises criterion. The comparison of this curve with 
the experimental results by DYSON and McLEAN [19] is shown in Fig. 9. 

The third form of the damage evolution equation written for n = 3 

1 I 2 1 1 I 5 6Q 1 - 1 7 
(6.8) - 6 lni!Jl--3 .!21 +·r .+ 

3
yll- arctg 

11 11
- -0.03594 =Kat 

was used to describe the creep rupture behaviour of Al-Mg-Si alloy at 483°K. To this end, 
the experimental results obtained by HAYHURST [17, 34] were used. As the material yield 
stress a0 = 149.4 MPa for the aluminium alloy tested was given in the paper [34], only 
one experimental result was used to calculate the constant K = 3.08 · I0- 16 l/MPa7 h. 
The creep curves calculated from Eqs. (6.4), (6.6) and (6.8) forE = 60060 MPa, as deter
mined by HAYHURST [34], are shown in Fig. 7. A comparison of the theoretical curve 
of the rupture time versus the applied stress with the appropriate experimental results is 
shown in Fig. 10. 

To make the verification of the proposed theory more complete, in the case of uniaxial 
tension the experimental results collected by SALIM [38] for I% Cr.Mo.V steel at a tem
perature of 838°K were used. The creep rupture behaviour of this material is described 
by Eqs. (6.8). The theoretical creep curves determined from Eqs. (6.4), (6.6) and (6.8) 
for various uniaxial stresses are compared with the experimental results in Fig. 8. The 
numerical calculations were performed for a0 = 600 MPa, K = 1.55 · I0- 20 l/MPa7 h 
and E = 105 MPa. No experimental points are shown in Fig. 8 because, as stated by 

2 Arch. Mech. Stos. l/89 
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a=58.7MPa 

A. LITEWKA 

o Experiments by Hayhurst [34] 

- Theory-eqns. (6.6), (68) 

a=55.2 MPa 

FIG. 7. Creep curves for Al-Mg-Si alloy at 483°K. 

CJ:::230HPa 

1200 

--- Experiments by Salim [38] 
----- Theory-eqns.(6.6), (6.8) 

1600 21JOO 
Tfme,h 

FIG. 8. Creep curves for 1% Cr.Mo.V. steel at 838°K. 

SALIM [38], all creep data lie accurately on the experimental curves, hence the individual 
readings were not shown in the figures presented in his paper. 

The good agreement of the theoretical predictions with the experimental results ob
tained for uniaxial tension confirms the validity of the proposed theory of creep rupture. 
However, a more complete verification of the proposed approach can be obtained by 
comparing the theoretical predictions with the creep rupture results under multi-axial 
loading. 
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7. Pure shear 

High standard experimental results concerning the creep rupture of Nimonic 80A in 
torsion at a temperature of 1023°K were obtained by DYSON and McLEAN [19], and these 
results were used to check the validity of the proposed theory in the case of pure shear. 
The damage evolution equation (3.7) written for n = 2 and specified for the pure shear, 
where a 1 = -a2 = -r:, tra = 0, trS2 = 2-r:2 and tra2D = -r:2D 1 gives the same differential 
equation as obtained for the uniaxial tension (6.1) where a = -r:, and with the folowing 
values of the coefficients: 

a= 4(1 +v)2
, b = 4(1 +v). 

This means ihat the analysis of creep rupture behaviour in pure shear requires the Poisson 
ratio of the undamaged material. Because of the lack of the relevant experimental results 
for Nimonic 80A at 1023°K, it was assumed that v = 0.3. The final form of the damage 
evolution equation for pure shear was as follows: 

(7.1) -In !Di-1.3.Q1 + 1.31 +0.7473 arctg(l.068.Q1 -0.6938)+0.7157 = 10.4 K-r:5 t, 

where K = 3.8 · l0- 151/MPa5h is the same material constant as determined for uniaxial 
tension of Nimonic 80A in the previous section of this paper. 

The rupture time was calculated from Eq. (7.1) inserting the critical value .Q~r obtained 
from the yield criterion (2.5) and taking into account the approp~iate yield stresses (2.7) 
required to specify the constants C1 , C2 , C3 from the set of equations (2.6). However, 

iJ,MPa 

400 

200 

o • Experiments by Dyson and Mclean [1g] 
- Theory'-eqns; (7.1), (7.8) and (6.4), (6.7) 

o~~~U---~ __ ._._~ .. ~~~--._~~~~~~--~~~~1~o4 

Ttme.h 

FIG. 9. Rupture time versus effective stress for Nimonic 80A at 1023°K under uniaxial tension and pure 
shear. 

2* 
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20 A. LITEWKA 

it was found that a very good approximation of the critical value !Jir can be obtained 
from a semi-empirical formula 

(7.2) 

where -r0 = a0 fJI3 is a yield stress in pure shear of undamaged material. 
The theoretical curve of the rupture time versus the effective stress Ci calculated accord

ing to the Huber-Mises criterion, together with the experimental results by DYSON and 
McLEAN [19] and also the relevant results obtained for the uniaxial tension, are shown 
in Fig. 9. 

8. Equal biaxial loading 

To verify the applicability of the proposed theory in the case of uniform biaxial tension, 
the experimental results of HAYHURST [17] for Al-Mg-Si alloy at 483°K were employed. 
To this end, the damage evolution equation (3.8) written for n = 3 was specified for the 
equal biaxial tension, where a 1 = a2 = T, tra = 2T, trS2 = 2T2 /3 and tra2D = 2T2D1 • 

As a result, the differential equation (6.1) was obtained, where a = T and 

a = 8 - 24v + 24v2 
- 8v3

, 

b = 24-48v+24v2
• 

Although HAYHURST supplies in his papers [17, 34] almost complete material character
istics of the undamaged material at the test temperature, there is no information about 

100 

80 

60 

10 3 

T/me,h 

Fro. 10. Rupture time versus maximum principal stress for Al-Mg-Si alloy at 483°K under uniaxial and 
equal biaxial tension. 
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the Poisson ratio of the aluminium alloy tested. Therefore, it was assumed that v = 0.3, 
and the final form of the function (6.2) was as follows: 

(8.I) -0.04252lni.Oi -0.2333.Q1 +0.23331 

+0.1602arctg(2.I35.Q1 -0.2484)-0.02279 = KT7 t, 

where K = 3.08 · I o- 16 I /MPa 7h is the same material constant as determined for the 
uniaxial tension for Al-Mg-Si alloy at the temperature 483°K. 

The rupture time for the biaxially-loaded specimens were calculated from Eq. (8.I) 
for the critical values of .Q1 determined according to Eq. (2.7) 1 

(8.2) .Q~r = I-_!_ • 
ao 

In Fig. IO, the relevant theoretical curve of the rupture time versus the maximum principal 
stress is compared with the experimental results obtained by HAYHURST [I7]. 

9. Conclusions 

The damage evolution equation, formulated as a tensor function of the stress and 
damage tensor, together with the yield criterion for the damaging material constitute the 
set of equations which make possible a full description of creep rupture behaviour of 
metals at elevated temperature. The application of the proposed theory require~ conven
tional data concerning the elastic and plastic characteristics of the original material at 
a test temperature. The only additional material constant K required to calculate the rup
ture time and to construct the creep curves for the multi-axial state of stress, can be easily 
determined by employing the single creep curve obtained from the uniaxial creep rupture 
test. A comparison of the theoretical prediction with the test results gathered by various 
researchers for several metals like steel, aluminium alloy, copper and nickel alloy, con
firmed the validity of the theory proposed. The general conclusion is that the derived equa
tions can be used successfully in the case of creep rupture of metals under proportional 
multi-axial loading. The experimental verification presented in this paper and based on 
the perfectly elastic-plastic model of metals showed good agreement of the theoretical 
and experimental results. More accurate results concerning, in particular, creep curves 
could be obtained when the curvi-linear material characteristics are taken into account. 
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