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Discrete velocity models for mixtures
of noble and chemically active gases

K. PIECHOR - (WARSZAWA)

BASING on the ideas of our previous paper [13], we present constructions of DVM for mix-
tures of noble gases and of those with binary chemical reactions. The first step in our construc-
tions is to postulate the form of the space of collisional invariants. Owing to this, we determine
this space for previously existing models. We show that DVM, in their present form, cannot

be applied to models of gases with chemical reactions unless the principle of detailed balance
is satisfied.

Opierajac si¢ na zalozeniach poprzedniej pracy [13], podajemy konstrukcje modeli z dyskret-

nymi predkosciami dla mieszanin gazow szlachetnych i gazdéw z binarnymi reakcjami chemicz-

nymi. Pierwszym krokiem proponowanych konstrukcji jest postulat dotyczacy budowy prze-

strzeni niezmiennikow zderzen. Dzieki temu wyznaczamy te przestrzenie dla modeli istniejacych

wczesniej. Pokazujemy, ze modele z dyskretnymi predkosciami nie moga w swej obecnej postaci

g}]ré stosowane do gazow z reakcjami chemicznymi, o ile nie jest spelniona zasada szczegotowego
ilansu.

Onupasck Ha NPENNONIOKEHHUAX Tpeablayweid pabore! [13], mpuBoauM NOCTpoEHHE MOMIE-
JIEH C JUCKPETHBIMM CKOPOCTAMM IUIS CMeCeil MHEPTHBIX T'a30B U ra3oB C OMHAPHBIMM XHMH-
4YeCKMMHM peakuusamy. IlepBbIM IaroM mnpejsiaraeMoro IOCTPOEHUS SBJAETCA IIOCTYJIAT,
KacalOILHIICA IOCTPOEHMA IIPOCTPAHCTBA WHBAPHAHTOB CTOJIKHOBeHMiT. Braromaps aromy
OHnpenessieM STH NMPOCTPaHCTBA OJIA Mojelieif cyuiecTByromux pasbine. IloxasoiBaem, uro
MOJEJIX C AUCKPETHBIMH CKOPOCTSIMM HE MOT'YT, B CBOEM TEIEPELUHEM BIJE, ObITh MPHMEHEHDBL
K TasaM C XHMHYECKHMH DeaKUMsIMH, €C/IH He YIOBJICTBOPEH NIPHHIMII JeTaabHoro Oanmamca.

1, Introduction

IN THE LAST quarter of this century the discrete voelocity models of the Boltzmann equa-
tion have acquired a firm position in the kinetic theory of gases (see [1, 2]).

The main idea of these models is that the gas particles can take only a finite number,
say p, of the velocities ¢,, ¢,, ..., ¢, all of them are d-dimensional real vectors of R?.
Owing to the discretization of velocities, the one-particle distribution function f{#, x, ¢),
(x € RY is replaced by a p-dimensional vector field N(z, x) with the components N, (t, X),
m=1,2,...,p and a system of p semilinear partial differential equations for N,(z, x),
Na(t, x), ..., Np(t, x) is considered instead of the integro-differential Boltzmann equation.

The admissible velocities ¢, ¢,, ..., ¢, are assumed to satisfy the following relations:

(1.1) c;+¢; = ¢ +¢
and
(1.2) (€)?*+(c)? = (c)*+(c)?,

for some nontrivial quadruplets of indices i, j, k, [ (1 <i,j, k, ! < p). These relations are
interpreted as discrete analogues of the momentum and energy conservation principles.
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CABANNES [3] was the first who posed and solved with specific examples the following

problem:
given » models with py(x = 1,2, ...,») velocities ¢, ¢3, ..., cga and densities NY,
NE, e Nj,‘u. Should the case be that

(1.3) i +cf = cf+cf
and
(1.4) (€)?+(c)?* = )+ ()

for some i,j,k,I(1 <i,k <py,1<j, 1< pg) not only for f = «, but also for some
B # a(l < e, f <), then we can form a new model with

(1.5) p=r
a=1

velocities. (8] vorx Cp 5 C1s cons CF 0 vey By ...,c;v), and p densities (N{, ..., N} , N3, ...,
2
cous gy vy Ny ave Mg
Following this idea, new specific models were constructed by GATIGNOL [1] and, recently,

by CABANNES [4].
BeLLomo and de Socio [5] generalized Cabannes’ idea by postulating

(1.6) MCE A+ Mgt = M +mpef
and
(1.7) ma(€)? +mp(e])? = my(ef)? +mp(cf)?

instead of Egs. (1.3) and (1.4). Here m,, msz are some positive coefficients which they
interpreted as molecular masses of the « and g components of the mixture.

BeLLoMO and de Socio assumed in [5] that each separate component of the mixture
is the BROADWELL gas ([6]).

Following their ideas, other models of gas mixtures were constructed, and MoNAco
and PEATKOWSKI [7] organized them into a methodology of constructing discrete velocity
models of gas mixtures.

Despite a very short history of discrete velocity models of gas mixtures, some inter-
esting results relevant to the gas dynamics of mixtures were obtained. MoNAco [8, 9] and
PrLATKOWSKI [10] considered the problem of shock wave structure in a binary mixture
of Broadwell gases, LoNGO [11] and LoNGo and MonAco [12] studied the steady Couette
flow and the Rayleigh problem, respectively. It is important to note that they obtained
analytical solutions.

This paper is a continuation of our previous paper [13]. Its aim is to show how to
apply a new method proposed in [13] to the problem of construction of discrete velocity
models of gas mixtures. As a result we obtain easily a very general class of models, of
which the models discussed in [7] are just particular cases. Additionally, we construct
such discrete velocity models that can be interpreted as those for mixtures of gases with
chemical reactions.
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2. Rational construction of discrete velocity models

For future reference we outline here the theory of modelling developed in [13].

Let p > 2 be a given integer, and let P be the set of all unordered pairs of integers
(i,j), 1 < i,j < p. Every element of the Cartesian product P x Pis called a collision; a colli-
sion formed of two pairs (i, ) and (k, /) is denoted by (i, j; k, [). By definition, a symbol
y(i,j; k, 1) of the collision (i, j; k,[) is a p-dimensional vector, whose m-th coordinate
ym(, 3 k, 1) (1 £ m < p) is given by

2.1 YulTs 3 Ky 1) = Ot Ot — Omi — Opujs

where 0;; is the Kronecker’s delta symbol.

We say that two or more collisions are independent if their symbols are linearly inde-
pendent vectors of the Euclidean space RP.

The core of our construction is to choose somehow a set Q of p—gq independent colli-

sions, with 1 < g < p. This set is called the set of basic collisions.
Let Q be of the form

(22) Q = {(il.:jl;k15 ll)s (12 9j2; kz: [2)3 CLE ) (ip—-upjp—q; kp—q’ Ip—q)}’

and let Y(im, jms kms Im) (m = 1,2, ..., p—q) be symbols of the collisions forming Q.
The set Q of admissible collisions consists, by definition, of all collisions belonging to
Px P whose symbols can be represented as linear combinations of y(iysJis ki, i)
‘}’(iz,j;_; ky,15), ..., V(ip—qrjp—q; kp—qs Ip—q)'

Since the vectors ¥(im,jm; km» Im) (m = 1,2, ..., p—q) are linearly independent, they
span a (p—gq)-dimensional linear subspace F* = RP. An orthogonal (in the sense of RF)
complement F of FL to RP? is called the space of collisional invariants and every vector
¢ € F is called a collisional invariant.

We have, of course, dimF = gq.

It can be shown (c.f. [13]) that ¢ = (p,, @3, ..., @p) is a collisional invariant if and
only if for every (i,j; k,/) € Q

(2.3) Pit @ = @t @i

Thus, starting from a set of p—g independent collisions, we have constructed the set
0 of admissible collisions and the space of collisional invariants.

Let us notice, that in some cases an inverse procedure can be useful namely we choose
a system of ¢q linearly independent vectors forming F and determine all nontrivial quadrup-
lets of indices, for which relations of the type (2.3) hold. As a result we obtain the set Q
of admissible collisions and, substracting from it a system of p—g independent collisions,
we find the set Q of basic collisions.

In our construction we did not make any use of the molecular velocities. Therefore,
from the purely mathematical point of view, they can be completely arbitrary but, due
to physical reasons, it is very desirable to have the usual conservation laws satisfied, i.e.
relations of the type (1.1) and (1.2) should hold for every collision (i, j; k, /) €.

It is very easy to choose the molecular velocities in such a way that the momentum
conservation principle (1, 2) is fulfilled. Indeed, let the vectors ¢;(i = 1,2, ..., g) with

7 Arch. Mech. Stos. 1/89
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the components ¢;; (j =1, 2, ..., p) form a basis in F. The molecular velocities ¢, , ¢,, ...
..., €p satisfy the momentum conservation principle (1.1) if and only if there exist vectors
Vi, Vs, ..., ¥y € R? such that

q
(2'4) CJ=2:¢Uvi, i= 1,2,...,‘0.
i=1
To have the energy conservation principle satisfied, it is sufficient to demand the veloc-
ities to satisfy Eq. (1.2) for these collisions which form the set Q.
Substituting Eq. (2.4) into Eg. (1.2), we obtain a system of p —g quadratic equations

q q
esn | z.p) (B win)” = (3 punt” + (S pmind)’

for every (is,js; ks, ) €Q, s=1,2,...,p—q.
Starting from some most basic principles we derived in [13], the following form of the
collisional operator is obtained:

1 = &
QO FW V=3 D) AGikDyGjik DUV UVi- UVi- UV,
G.jsk,he0

where U = (U,, U, ...,Up), V = (Vy, V2, ..., Vp) are arbitrary vectors of R? and
A(i, j; k, 1) are non-negative coefficients called transition rates.

Here we devote more time to the question of determination of the transition rates
because this problem was not discussed in our previous paper [13].

On the Cartesian product P x P, we introduce the following equivalence relation (see
also [1]):
2.7 ==k, Deg+e; =g+¢ for every ¢@eF.
This relation splits P into a certain number of equivalence classes, say Py, P, ..., Pp;
the class of (i, ) is also denoted as (i, j). _

This partition of P determines a partition of Q. We have (cf. [13])

_ o — —
Q='ngQu 0inQg;=9, i#],
where
0,=P,xP,, i=1,2,..p.
Let (i,5) P; we denote by a(i, j; k, ) the probability that (i, j; k, 1) € 0.
We set (cf. [1])
a(i,j; k,1) =0,
if (i, ), (k, ) belong to two different classes, and
@8) 2 aliikD=1.
k,he@, )

Usually it is assumed that all collisions which belong to the same class Q; are equally
probable, therefore one takes
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1
number of elements of (i, /)

(2.9) a(i,j; k,1) =

for every (k, ) € (i, j).
Let the molecular velocities ¢,, ¢, ..., ¢, satisfy the momentum and energy conser-
vation principles. Then
(2.10) lck—e| = |e;—c¢;|  for every k, D e, )).
Under the assumption that all molecules are the same, we obtain
(2.11) AG,j5 k, 1) = Sle,—cjla(i, j; k., 1),

where S is proportional to the collisional cross section. If, however, the gas consists of
molecules of various types, say « and 8, we can replace S in Eq. (2.11) by Sg.
EXAMPLE 1. We take p = 2r, where r is an arbitrary but fixed integer, (r = 2,3, ...).
As the set of basic collisions we take

r—1
(2.12) Q= U {i,i+r;i+1,i+r+1)}.
i=1

The set Q of admissible collisions is

(2.13) 0= | {G, i+r;j, j+r)}.
<i<jsr
We have
J

@14)  yG it ) = O vk, k+rsk+ L ksr+l) (1<i<j<r).

k=i
As the basis @o, @, ..., @, of the space F of collisional invariants we take
tpOm = I)

(2.15) Pim = Oim— Sisr,m>
m=1,2 w2t I=1,2, ...,

As it follows from Eqs. (1.1) and (1.2) and the above, the momentum and energy conser-
vation laws are satisfied if and only if

C, =Vo+V,

(2.16) Civr = Yo~V
i=1,2,..r,

where vq, vy, ..., ¥, are arbitrary vectors of R such that

.17 vi=v=const, i=1,2,..,r

In the case under consideration the equivalence relation defined by the relation (2.7)
splits the set P of all pairs (7,7) (1 < i,j < 2r) into the following equivalence classes:

one class, say P,, consisting of r pairs of the form (i, i+r), G =1,2,...,r);

many one-element classes.

Therefore,

Q=P xP.

T*
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Assuming all collisions of Q to be equally probable, we obtain on the basis of Eq. (2.11)
298
(2.18) AGJ+HL}H)=—%— A<i<j<r,

(2.19) A(i,j; k.1) =0 in other cases.

Owing to Egs. (2.6), (2.13) and Egs. (2.18), (2.19), the collisional operator # is of the
form

20
"

N % BRI ..
2 y(“l+r;.]sj+r)(NlNl'+r—N11vJ+r)-

Igi<jsr

(2.20) F(N,N) =
Usually the following convention is introduced: for every quantity, say W, depending on
the indices iy, i,, ..., is, We set

(2~21) W(f11i25-“’is)= W(jl:st--',js) lf ik =jk(m0d2f), k = 1,2,..‘,5‘.

Using this convention, we can represent the collisional operator & (N, N) in the well-
known form ([1], [2])

(2.22) F.(N,N) =2L,_SZ(N1+:NI+J‘+1-—NtNE+r),
i=1

where #(i = 1, 2, ..., 2r) is the i-th component of &. Particular cases:
i) We put d = 2, and

(2.23) v, = v(cos ('_rl)” , sin ("rl)”" ) i=1,2,..,r.

The resulting model is the so-called plane 2r velocity model introduced by GaTiGNOL [1],
ii) We putd = 3, r = 3, and

1 0 0
(2.24) v, =2|0), v,=9|1]), vi=9]|0
0 0 1

This is the celebrated space BROADWELL model [6].
iii) if we set d = 3, r = 6, and take
. 2in . . 2in .
v, = v|cosax, Slnoccos-fB—, smozsmT , i=1,2,3,
(2.25)

Qi+1)n . Qit+1)a
n——-j——

v, = v(cosﬁ, sinf C08 =3, sin fsi ), i=4,5,6,

where
tane = 3— /5, « = 373377,
tanf = 3+V/5, f = 179187,

we obtain the so-called regular space model with 12 velocities. This model was introduced
by CABANNES [14].
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3. General construction of DVM for gas mixtures

Let us assume that we have a certain number, say », of discrete velocity models of the

Boltzmann equation.
Let the «-th model be represented with a p,-dimensional density vector

(3.1 N* = (N%,N%,...,N3,) eR'™
and with p, velocities
(3.2 €1, 0%, o), ERL
We will represent also the mixture with a p,-dimensional density vector ¥
(3.3) N (N oG o WGy v gy cn o D ...,N;v)eR“
where
(3.4) Po = Pu,
a=1

and with the mixture the set of admissible velocities
(3.5) V={e, ..., ..., ,....cl,...,¢; ).
Inversely, let a py-dimensional vector N
N = (Ny,Nz, ..., Np)
be given. With it we can form a p,-dimensional vector by projecting RPe on the p,-dimen-
sional subspace R, = R"* with the aid of a projection operator P, defined by

(3.6) PyN = N* = (Nyy415 Negr2s oo N,.GH),
where

rl = 05
(3.7 g

Fe = ;fnpﬁ’ o=2,3, cesPs

Similarly, if a set of p, velocity vectors ¢,, ¢,, .. €p, is given, then the subset ¢, ,,,
Crp+25 -5 Cr,,, Can be treated as the set of velocities of the a-th model. According to the
philosophy of [13], it is sufficient to form a set of (mixture) basic collisions in order to
obtain the desired model.

We assume that all collisions which take place for the a-th model when isolated take
place also when in the mixture. Accordingly, let Q, be the set of basic collisions of the
a-th model, i.e.

Q‘Z = {(il ’jl; kl 4] 11)9 LEE, (ipm-qaajna-—qa; kpa"'lu’ [Pa*qa)}’
1 < i jo ks s <pey, s=1,2,...,p4—qa,
where ¢, is the dimension of the space of collisional invariants of the a-th model. Since

in the joint p-dimensional representation of the mixture the places from ry+1 to ryy;
are reserved for the a-th model, we rewrite O, as

O = Qoo = {(r0t+i1s ra+j1;ra+k1ara+ll)
a0y, —ans Pt don—ies Put Ky —ags Yot Lppma) }s
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The set
Qs = L;JlQua

i8 called the set of basic self-collisions.
To the set of basic self-collisions we have to add a set of basic cross-collisions, i.e.
collisions between particles of different types. Let them be

Qaﬁ = {(il ’jl > kl' 11)’ veey (ico:ﬁ’jcaﬂ; kcu’g! l‘:aﬂ)} = Qﬂuv
where ¢, is the number of collisions of the type «, § < «, #, and

Fo < Ig, Ks € Fayy
rp < Js> Iy < rgeq,
s=1,2,...,¢8, l<Sa<fB<go.

These sets of collisions can be chosen in a principally arbitrary way; the unique con-

straint s that the total number of mixture basic collisions
c= D
Isa<fs<r

where Cea = Pa — qx, does not exceed p,.

The difference g, = po — ¢ is equal to the dimension of the mixture space of collisional
invariants.

As the mixture set of basic collisions we take

Ou = U Qup-

Isashsy
Having constructed it we can proceed exactly in the way described in Sect. 2 and obtain
the desired discrete velocity model of the mixture.
We consider in more detail a special, but in our opinion the most interesting case.
Namely, let us assume that each of the models we use to form a mixture has the same set
of basic collisions. More precisely, we assume that

Pr =P = .. =Py =P

0 =0=..=0,=0.
Let F be the common, for every model, space of collisional invariants, and let ¢,, @, ...
ey @q—q With ¢ = (1, 1, ...,1), be its basis.
As the mixture space of collisional invariants we take a linear (q+v— 1)-dimensional

subspace F,; of R?” spanned by the vectors

!Dl = ((PO) 09 veey 0)!

@, = (0, ¢, ..., 0),

@, = (0,0, ..., @o),

Qv-{-l = ((pla Py oons lpl)v
¢q+v-—1 = (%-1 » Pg=11 -+ @q—l)v

where 0 stands for the p-dimensional null vector.

and
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Let Q be common for all models, when separate set of admissible collisions. As it
follows from the set (3.8), the following types of collisions are possible:

(i, js k. D) €Q = (rati, rs+j; ratk, rs+1) € Oy,
(reati,rg+j;rg+k, ra+10) € Qu,
(ra+i, rat+js ra+k, rg+1) € Qp,
(ra+i, ra+j; rg+k, ra+1) € Oy
(I<agf<y),
where QM is the set of the mixture admissible collisions, and
r, m ple—1), «=1,2,...,»
Moreover, we have collisions of the type
(Fati, rp+j; rutj, ra+i) € Qy
forevery l Si<j<pandl <a< figy
Therefore the set Oy of mixture admissible collisions is of the form
G99 Ou= U U ACetiirptiiratk,r+l),
IlsasBsv (i,jk,DeQ
(ra+irg+j;rgthk, ratl), (rs+i, rat+jsratk, rg+1), (rs+i, ra+j;
rpt+k, ret+io U U {(ra+i, rg+j;ra+j, ra+i)}.

I<asf<y Igi<j<p
We have to indicate a set of mixture basic collisions.
Let us notice first that this set consists of »p —(g+v»—1) = »(p—1)—(g— 1) collisions.
We have »(p—q) independent self-collisions.

Y ,
G10) O = U {(ratiy, ratjy; ratky, ra+1y),
a=1
vos (Pat Jp—gs PatTp—gs tathp_gs tatls D},

where (is, Js; ks> Is), (s = 1,2, ..., p—q) are the basic collisions of Q. As the lacking
v(p—1)—(g—1)—v»(p—9q) = (»—1) (g—1) independent collisions, we may take the follow-
ing set of cross-collisions:

v—1 g—1

3.1D o= U {(ra+i, reea+i+ 1 ra+i+1, rap + 1)},

a=1 i=
provided that ¢ > 1.
Hence the set

(3.12) Ou = 0P VO
is a set of basic collisions for the mixture under consideration.

Owing to Eq. (3.9) and the general theory of collisional operators given in [13], the
mixture collisional operator is of the form

G13) FON) = Y D (4B sk DB KD NNy =Ny Vo)

1<a<f<y (1,j;k,)eQ
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(3.13) +A%£(iaj;ksl)ygg(iaj;ksl)(Nra+lNrﬁ+j—Nrm+lNrﬁ+k)
[cont.] +AZ§(I',J'§ k: 1)7575(’5 j; k’ l) (Nr¢+er.3+£_Nra+kNr5+t)
ARG, s e, YRGS kD) (Ney 45N i =N, 11N 4]

& _:\_, 2 A:g(l’.];]’l)yzg(l’./;],l)(Nra+iNrB+j_Nra+erﬁ+i)s

l<a<f<rv l<i<j<p

where
(3.14) A, ji k) = A(ra+i, ra+j; r,+k, rs+1),
(3.15) V8, js ko) = y(re+i, ra+js r,+k, rs+1) eR.

Usually we are interested in the projection
F*(N,N) = P,F(N,N)
of the collisional operator on R,(« = 1, 2, ..., »). From Eq. (3.13) we obtain

(3.16) F*(N,N) = Z_A:Z(i,j;k,I)y(i,j;k,I)(N?Nj‘—N: i)
G.ikhe0

+ 2 Y 148G, k, DG, R) (VENE—NEND)
g;; (i, jsk,De@

+ ARG, j k., Dy(, 1) (NEN§—NEND+ A%, j; k, Dy(j, k) (NN — N3 N%)

+ ARG, sk, Dy, 1) (N3N~ NEND) + 2 B3, 754, DyU,J) (NIN§ —NIN?),

I<i<jsp

where y(i, j; k, [) € R? is the symbol of the collision (i, j; k, [) € O, and y(i, j) is a p-dimen-
sional vector whose m-th component is defined by

(3'17) ym(is.])= a.m)"_'(smh m = 1’2’-"519'
When deriving Eq. (3.16), we made use of the following equalities:
Povaalis ji k1) = y(, ji k. 1),
Poyah(i, jsk, 1) = y(G, k), B+ a,

which result from the definition of the symbol (2.1) and that of the projector (3.6).
Let

Py = (Pits Ps2s - @)y J=1,2,...,9-1
be the basis in F. The mixture momentum vector
(3.18) (myci, ...,mycp, myci, ... ,mycs, ....mc, ..., m,C))

is an element of F,, if and only if

q—1

(3'19) c?=v3+;ua2vj(pjh = 1723'-'ap: @ = 192,-'-'31)9

Jj=1
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where v§ and v; are arbitrary vectors of R%, and

my
2 i 5 ; =152, 505 ¥
(3.20) U e o v

The mixture energy vector
(321) (ml(ci)zs R ml(c}l)zr mZ(c%)zs T3 m2(c§)! L] mv(ci)z) UL mv(c;)z)

is a collisional invariant if and only if it is orthogonal to the symbols of any collision of Q.
According to Eqgs. (3.10), (3.11) and (3.22), we obtain after some manipulations

g-1 5 g—-1 N g-1 ) q—_l‘ R
(3.22) (2 vagm) + (D vum) = (X vune) + (X )

m=1 m=

for every (i,j; k,/) €0, and

g—1 g—1
o x —1 i+ ",
(3.23) [@0_7]0+1 — (Mas1— M) \;. 1, A\ q’)mAgJLH‘] E_ l; O (Pt — P, 141) = 0,

e=1,2,...,v—1, i=1,2,...,9—-1.
A model is said to be regular if

q-

1
(3.24) (X Vngm) =02 i=1,2,.,p.
m=1
For regular models the relations (3.22) are satisfied identically, and Eq. (3.23) reduces
to .
g—1
(3.25) V3=5*")* Y Vo Pt — P, 14) = 0.
m=1

Assuming that ¢ > d and that the vectors

q-1

(3.26) D Pmi—Fmisr)s i=1,2,..d
m=1

are linearly independent, we obtain from Eq. (3.25)

3.27) V=V, a=1,2,..,v.

Bearing in mind the Gallilean transformation, we can set v, = 0 without losing generality.
Hence we obtained for regular models

g—1
(3.28) = pa D Vumis  i=1,2,.,p.
1

m=

ExaMPLE 2. We consider a mixture of » gases each of them modelled as in Example 1
of Sect. 2.

Since these models are regular, the molecular velocities are

C?= aV,-, i=l,2,...,r,
(3.29) #

o
Ciyr = —HaV;,

wherev; e R? (i = 1,2, ..., r) and have the same modulus.
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Now, we proceed to determine the nontrivial classes of equivalence into which the
relation (2.7) splits the set P of all (unordered) pairs (i,j) (1 < i,j < p).

Using the definition (2.7) of the equivalence relation as well as the relations (2.16) and
(3.8), we obtain

i) » classes of the form

U {@ra=D+i, 2r(a=1)+i+r)}, o=1,2,..,7.
i=1
Each class contains r pairs, therefore due to Eq. (2.9).
agg(i,i+r;j,j+r)=7:~, e=1,2,...,v, l<i<j<r.

The relative velocities are
|c?_c?+"[=‘c.7_c?+f'=2#avﬂ o = 172a-"11’a 1 <I<j< r.

The collisions which can be formed of pairs of the same class can be physically inter-
preted as head-on collisions between particles of the same gas with subsequent scattering
into 2r directions.

The transition rates are

20U, .
(B30) A irsjj4n) = S, a= 1,2,y 1<i<j<r,
where S, s the collisional cross-section for self-collisions.

if) f; (v—1) classes of the following form:

‘lij {(2r(@—1)+i,2r(B—1)+i+r), 2r(@—D)+i+r, 2r(B—1)+i)},
=1

I<a<f <.
Each class contains 2r pairs, therefore the transition probabilities are
Ay itrsj j+r) = @l i+r;j,j+r) = ai (i, i+r;j, j+r)

1
= agg(is i+r;jsj+1) = —2—1"

The relative velocities are

/
N
~
VN
~

lef—cf,, | = Ief—¢f,, | = v(uatpp), 1<a<fB<ry, |
Hence the transition rates become
(331)  AB G, itr;j j+r) = ARG, i+r;j,j+r)
T .. .. .. v
= A G, i+r3f, J+0) = ARG T+r3 0,740 = - Sap (a+ 119).

where S,z is the collisional cross-section for cross collisions.

Physically, the collisions that may be formed of the elements of the same class represent
collisions between particles of different components with subsequent scattering into 2r
equally probable directions.
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iii) rv(r—1) (»—1) classes consisting of just two pairs
{@@re—1+i,2r(B—1D+)), @r(@—1)+j, 2r(B—-1)+i)}.
l<a<f<y, 1<i<j<2r, j#i+r.
The transition probabilities are, consequently,
; I 1
agg(l,],_], I) = ag%(li.];]! l) = ‘2_5
and the relative velocities a1 > given by
e —cfl = lef—efl = oV pa+pf—2pappcosyy,

where ;; is the angle between v; and v;.
Taking now

o
as the collisional cross-section, we obtain
(3.32) ALG 13 e, 1) = -2 SepV A W= Tpraig 08
. s, Ji Kk, 1) = 2y Sat P+ g — 2y prg oSy,

I<a<f<y, 1<i<j<g<2r, j#itr.

iv) Numerous one-element classes. They are of no significance because by using just
one pair it is impossible to build a non-trivial collision.

Now, using Egs. (2.14) and (3.30)-(3.32) as well as the convention (2.21), we obtain
from Eq. (3.16) the collisional operator of the model under consideration.

The corresponding model equations are (cf. [7])

v 2r
0 v
(3.33) (at“‘a% v,)N:; -7 Zsuﬁ (ua+uﬂ>2 [NE+ NEger—NEND /]

+ -—2 ,BZ'/:uu'{'ﬂ‘ﬂ—znuaﬂﬂcos'le m+j (Nr‘:+jN'5 NGN,‘:_H),

where
cm = vm’

Cnyr = —Vp, m=1,2, ..., r.

4. Construction of DVM for mixtures of reactive gases

In order to illustrate better our ideas of modelling, we present here a construction of
such discrete velocity models which can be interpreted as those for mixtures with chemical
reactions.

Our modelling is based on the theory of real gases which is given in [15] and [16] (see
also, for example [17, 18, 19] or other textbooks).
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In the theory of real gases each molecule is identified by both its chemical type and by
its internal quantum state. In this paper, for the sake of simplicity, we take into account
changes in chemical character and ignore those in internal quantum state.

We assume that we know from chemistry this assortment of molecules B, (x =
=1, 2, ...,7) which can be present in the gas mixture.

Let the molecule B, consist of atoms A®(A4 = 1, 2, ..., »). The atomic composition
of a molecule is represented in the form of a chemical formula ([15])

(4.1) B, = AP AP . AP

Kjq"Kyy Ky
where Kz (8 =1,2,...,%,a = 1,2, ...,v) is the number of atoms of the § type in the
molecule B,. These numbers are assumed to be known from chemistry. We consider only
binary reactions, i.e. such reactions when, as a result of a collision of two molecules of
any sort, we obtain again two molecules but in general of different types. Hence we admit
binary inelastic collisions of the type

(4.2) Bdt + Bﬁ > ,B? -I- _B(; "

We assume again that we know from chemistry the set of all types of reactions which can
occur in the mixture.
We use the shorthand

(x, >y, 9)

to denote a reaction of the type (4.2). Let # be the set of all types of reactions which occur
in the mixture.

In this Chapter we follow the general lines of the previous Chapter, i.e. we consider
» models, each of them having the same number of velocities p and the same set of basic
collisions Q.

We start from constructing the mixture space Fy; = R’? of collisional invariants.

First, the total number of molecules is conserved because the outcome of a collision
of two molecules are again two particles.

Consequently, the vector

(4'3) ¢0 = ((POa ‘PO 3 veey (Po) € RVP,

where, as previously, ¢, = (1, 1, ..., 1) €RP? is a collisional invariant.
The next conservation law expresses the conservation of the number of atoms in mol-
ecules before and after a collision. This can be expressed as

(4'4) K/’.O;+Klﬁ :KJ.V+KA(5! A= 1,2,...,3, (a’ﬁ_'yi é)ege'
Hence the following vectors

djl = (Klllp()s KlZ‘pOs Yooy Klv(po) € Rvp,

D, = (K2190, K2290, -, Ka2,90) R,

(4.5)

should be numbered among the space of collisional invariants.
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Under the additional assumption which follows from physico-chemical reasons and
claims that the component atoms A, A®, ..., 4* are included in the assortment of the
molecules B,, i.e. assuming that there is at least one # (¥+1 < f < ») such that

(4.6) DK # 1,
a=1

it can be proved (cf. [15]) that the vectors @,, @, ..., D, are linearly independent.
Finally, we assume that the other quantities represented now by the vectors ¢, ¢,, ..
.., g—, are conserved during each collision, be it elastic or inelastic.
Hence the vectors
@n+1 = (‘pl’ @1y o0es 'pl) € Rvp’
D2 = (@2, P2, -.r p3) ERP,

%))

Doiu-1 = (@g-1> Pa-15 ++» Pa-1) €R’Z,
are elements of Fy,.
Under the assumption (4.6) the vectors @y, Dy, ..., D,,,_, are linearly independent,
and we take them as the basis of the mixture space of collisional invariants,
Evidently

Applying the general method of construction of the discrete velocity models presented
in Sect. 2, we can determine the set of admissible collisions @M. By direct inspection of

the basis (4.3), (4.5) and (4.7) of F,;, we obtain

(4.8) Oy = U {(ra+i, rg+j; ry+k, ra+1)}
(,B<—>y,0)eR (l]kl)E

U o i s isrstg, i)},

Igi<j<p
where
re = (e—1)p.

Using that in Eq. (2.6), we obtain the joint mixture collisional operator as a mapping
from R*” x R”” into R*?. However, one is usually interested in a partial collisional operator,
i.e. in a collisional operator describing changes of the densities N, due to all types of
collisions the « molecules can experience.

It is convenient to split the set # of all types of collisions (reactxons) into two subsets:

i) the subsets &, of elastic collisions, i.e. such collisions which preserve the identities
of two colliding partners

A= U {@fepf o)
Iga<f<vy

ii) the subset #;, of inelastic collisions, i.e. such reactions between a pair of molecules that
result in the emergence of two chemically different molecules.

We distinguish two types of inelastic collisions:

Rnla = ﬂU {(a, x> B, 0)}
20=1
B#a or d#a
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and
v
Rz = U  {@B8+6, 9}
B,6,e=1
B, £, s
80 or e#f
Of course

Rin = UADe v U A,
a=1 a=1
RV Rip = R.
Accordingly, we split the collisional operators into two parts: one part responsible for
the elastic collisions, %, «, and the second part describing the inelastic collisions, &%, «
i.e. we write
(4.9) Fo(N,N)=F, «(N,N)+F,,o(N, N).
The elastic part &, , is given by the form of the operator (3.13), whereas the inelastic
part Fia,o (N, N) is of the form
@10 Fou= S D 148G k.DgG.j) (NN -NINT)
@ac—>8,0e R G,jik,DeQ
+ A3, j; ke, g, J) (NENI=NIN)+ ARG, js k. Dglk, 1) (NENG— N —N9)
+ AL, ji k,Dglk, 1) (NN —NENY) + 2 [453G. j; 1,))8(i.j) (N{NJ—NN5)
1<i<j<p
+ A5G, s 1 DeG ) WING-NeNpl+ Y Y
@B<=5>0,0e R, (. jik,he0
+ 438G, j; k, Dh() (NINT—NEND)+ A2, j; k, DG) (NN —NENY)
+ABEG, ji k, Dh(G) (NUNT—NSND) + A%, j; k, Dh(j) (NINE—N3NY)
+ A%, j; k, Dh(k) (NIN§— NEND+ A, j; k, Dh(k) (NN~ NINT)
+ A, j; k, Dh(D) (NJN5—NEN§) + A5, j; k, DR(D) (NSNS —NENK)
+ N (ARG, 1, DhG) (NINS—NENH+ A, 3 1, D) (VINS=NENT)

I<i<j<p

[ Al N T A

where the symbols 4¢(i, j; k, I) are defined by Eq. (3.14), and g(i, j) and A(i) are p-dimen-
sional vectors whose components g, (i, j) and A,(i) are given by

gm(lS]) = 6im+ajm5 m = 1525 s Py
hm(l.) = alm: m = 112’ YL

respectively.

Physical collisional invariants

Now, we proceed to the determination of the molecular velocities ¢f',i = 1,2, ..., p,
a=1,2,..,7
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First, because the momentum is conserved in any type of collision, the pr-dimensional
vectors of the mixture momentum (3.18) must be elements of Fy,. This results in

4.11) ¢f = u(A*+B)),
where

A® = ZK,aa,, a=1,2,..,v,
=1
(4.12) !

Bi=2(pﬁbf, i = 1,2,...,p.

Here a,, ..., a,, b, ..., b, are arbitrary vectors from R, p, = m;/m,, and g¢j;,i =
=1,2,..,pare components of p; e R?, (j=1,2,...,9-1).

The inelastic collisions do not preserve the translational energy but they preserve the
sum of the translational and internal energies. Therefore the following vector

1
(4.13) (f; m, (C)*+E,, ..., ~i--m1(c;)2+E1, o -—;—m,,(c‘;)2 +E, ..., érm, (c:)+E,),
where E, is the internal energy of the molecule B,, is a collisional invariant instead of the
vector (3.21).

Thus we get the following relations:

1 1
@.14) - m. pa (A% +B)* + —ifmﬁ,uf, (A°+B) +E.+Ep

= ; msui (A’ + B)* + f;mgpf (A°+B)*+E;+E,

for every («, f« 0, &) e R and (i, j; k, 1) € 0.

Of these relations merely »p—dim Fy, = vp—q—x is independent.

It is convenient to treat the internal energies E,, E,, ..., E, as unknown. As a result,
we get more unknowns (their total number is equal to d(x+¢q) # 1+v), what can be helpful
in constructing “physically interesting models”. For instance, assuming

A*=0, a«a=1,..,v, B}=B%) i=1,2,...,p
we get from (4.14)

I
(4.15) Eo+ Ep—Ey— E, = - (ma 5+ mopiy — ma piz—mp ) B2.

The difference of internal energies does not vanish due to the difference of masses of
the colliding and emerging molecules.

The polyatomic molecules cannot be treated as spherically symmetric and, therefore,
(in the case of d = 3) we have an additional collisional invariant which is the angular
momentum ([19])

(4.16) mexnancei+I, a=1,2,...,v, i=1,2,...,p,

where for any two three-dimensional vectors a, b, aA b stands for their vectorial product.

In relations (4.16) x denotes the position of the center of colliding molecule and I, is the
mean angular momentum of the « molecules.
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Usually, the distance between the centers of the colliding molecules is neglected owing
to its shortness. This means that, as a matter of fact, the molecular mean angular momentum
I, is conserved. Since I, does not depend on the molecular velocities ¢f, then the angular
momentum is a collisional invariant if and only if

L= KnJp, a=1,2,.,%,
a=1

where jg € R? are arbitrary vectors (8 = 1, 2, ..., %).

Maxwellian

A Mazxwellian is, by definition (cf. [, 13]), a »p-dimensional vector with positive com-
ponents whose logarithm is a collisional invariant.

In the case under consideration, we obtain from this definition and from the vectors
4.3), (4.5) and (4.7)

qo—1

@17 Ni=dexp| Y Kupi+ D euGl. =120 a=1,2,..,»,
i=1 j=1

where 4, 4y, ..., py, Cy, ..., C,— are arbitrary constants.
The quantities

ZK;-G#A’ x% = 1,2,...,1’
A=1

can be interpreted as chemical potentials.

In the full theory (see [15]), in the case of isotropic mixtures in equilibrium, the Max-
wellian £, (8) is of the form

1
o M+ E,
kT ’

@.18) f2(®) = Aexp| D) Kyt~
A=1

where E is the molecular velocity, T is the temperature, and k is the Boltzmann constant
provided that the so-called principle of detailed balance is satisfied.

If, however, the principle of the detailed balance is not satisfied, a distribution different
from Eq. (4.18) takes place in the state of equilibrium ([20]).

Hence the principle of detailed balance is, in a sense, equivalent to establishing a Max-
wellian as an equilibrium distribution ([15]).

Since for the proposed DVM the Maxwellian is a unique equilibrium distribution,
these models can be applied to such mixtures for which the principle of detailed balance
holds. Should we like to have other distributions in the state of equilibrium, we ought to
construct a new theory of discrete velocity models. Hence the DVM in their present form
cannot be applied to models of these gas mixtures for which the principle of detailed balance
is ont satisfied.
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