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Discrete velocity models for mixtures 
of noble and chemically active gases 

K. PIECH OR · (W ARSZA WA) 

BASING on the ideas of our previous paper [13], we present constructions or DVM for mix
tures of noble gases and of those with binary chemical reactions. The first step in our construc
tions is to postulate the form of the space of collisional invariants. Owing to this, we determine 
this space for previously existing models. We show that DVM, in their present form, cannot 
be applied to models of gases with chemical reactions unless the principle of detailed balance 
is satisfied. 

Opieraj'lc si~ na zaloieniach poprzedniej pracy [13], podajemy konstruk.cje modeli z dyskret
nymi pr~dkosciami dla mieszanin gaz6w szlachetnych i gaz6w z binarnymi reakcjami chemicz
nymi. Pierwszym krokiem proponowanych konstrukcji jest postulat dotycZ<iCY budowy prze
strzeni niezmiennik6w zderzen. Dzi~ki temu wyznaczamy te przestrzenie dla modeli istniej'lcych 
wczesniej. Pokazujemy, ie modele z dyskretnymi pr~dkosciami nie ffiOSCl w swej obecnej postaci 
bye stosowane do gaz6w z reakcjami chemicznymi, o ile nie jest spelniona zasada szczeg6lowego 
bilansu. 

OrmpaHc:& Ha npeAJiono>Kemmx_ npe,Abi,zzymeH: pa6oTbi [13], npHBO.AlfM nocrpoeHHe Moge
ne:H C ,AlfCKpeTHbiMH CKOpOCTJIMH AJU1 CMCCeH HHepTHbiX ra30B H ra30B C 6HHapHbiMH XHMH
qecKHMH peaKQWIMH. I1epBhiM waroM npe,AJiaraeMoro nocrpoeHIDI HBJIHeTCH nocrynaT, 
Kacaromli:Hcs: nocrpoeHWI npocrpaHCTBa HHBapHaHTOB CTOJIKHoaemm. Bnarogaps: 3ToMy 
onpegens:eM 3TH npocrpaHCTBa AJU1 Mogene:H cymeCTByroll.{HX paHDrne. I1oKa3hmaeM, ~o 
MO,ACJIH C ,AHCKpeTHbiMH CKOpOCTHMH He MOryT, B CBOCM TenepeiiiHCM BH,Ae, 6biTD npHMeHCHhi 
I< ra3aM C XHMlfqCCKHMH peaKQHHMH, CCJIH He Y.AOBJICTBopeH npiiJIIU{II geTaJIDHOro 6aJiaHCa. 

1. Introduction 

IN THE LAST quarter of this century the discrete voelocity models of the Boltzmann · equa
tion have acquired a firm position in the kinetic theory of gases (see [1, 2]). 

The main idea of these models is that the gas particles can take only a finite number~ 
say p, of the velocities c1 , c2 , ••• , cp, all of them are d-dimensional real vectors of Rd. 
Owing to the discretization of velocities, the one-particle distribution function f(t, x, c), 
(x E Rd) is replaced by a p-dimensional vector field N(t, x) with the components Nm(t, x)~ 
m = I, 2, ... , p and a system of p semilinear partial differential equations for N1 (t, x), 
N 2 (t, x), ... , Np(t, x) is considered instead of the integra-differential Boltzmann equation. 

The admissible velocities Ct' c2' ... 'Cp are assumed to satisfy the following relations ; 

(1.1) ci+c1 = ck+ct 
and 
(1.2) 

for some nontrivial quadruplets of indices i, j, k, I (1 ~ i, j, k, I ~ p ). These relations are 
interpreted as discrete analogues of the momentum and energy conservation principles. 
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96 K. PrECHOR 

CABANNES [3] was the first who posed and solved with specific examples the following 

problem: 
given v models with Pa.(a = 1, 2, ... , v) velocities c~, c~, ... , c~Ot and densities Nf, 

N~, ... , N;Ot. Should the case be that 

(1.3) 

and 

(1.4) 

for some i,j, k, I (1 ~ - i, k ~ Pa., 1 ~ j, I~ pp) not only for (J = a, but also for some 
(J =1= a (1 ~ a, (J ~ 1'), then we can form a new model with 

(1.5) 

velocities (cL ... , c~l, c7, ... , c;
2

, ••• , c~, ... , c~,), and p densities (Nf, ... , N;
1

, Ni, ... , 
... , Ni

2
, ••• , N'{, ... N~ )-

Following this idea, new specific models were constructed by GATIGNOL [I] and, recently, 

by CABANNES (4]. 
BELLOMO and de Soc10 [5] generalized Cabannes' idea by postulating 

(1.6) 

and 

(1.7) 

instead of Eqs. (1.3) and (1.4). Here ma., mp are some positive coefficients which they 
interpreted as molecular masses of the a and (J components of the mixture. 

BELLOMO and de SoCIO assumed in [5] that each separate component of the mixture 
is the BROADWELL gas ([6]). 

Following their ideas, other models of gas mixtures were constructed, and MoNAco 
and PLATKOWSKI [7] organized them into a methodology of constructing discrete velocity 
models of gas mixtures. 

Despite a very short history of dLscrete velocity models of gas mixtures, some inter
esting results relevant to the gas dynamics of mixtures were obtained. MoNACO [8, 9] and 
PLATKOWSKI [10] considered the problem of shock wave structure in a binary mixture 
of Broadwell gases, LONGO [11] and LONGO and MoNACO [12] studied the steady Couette 
flow and the Rayleigh problem, respectively. It is important to note that they obtained 
analytical solutions. 

This paper is a continuation of our previous paper [ 13]. Its aim is to show how to 
apply a new method proposed in [13] to the problem of construction of discrete velocity 
models of gas mixtures. As a result we obtain easily a very general class of models, of 
which the models discussed in [7] are just particular cases. Additionally, we construct 
such discrete velocity models that can be interpreted as those for mixtures of gases with 
chemical reactions. 
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DISCRETE VELOCITY MODELS FOR MIXTURES OF GASES 97 

2. Rational construction of discrete velocity models 

For future reference we outline here the theory of modelling developed in [13]. 
Let p ~ 2 be a given integer, and let P be the set of all unordered pairs of integers 

(i,j), I ~ i,j ~ p. Every element of the Cartesian product P x Pis called a collision; a colli
sion formed of two pairs (i,j) and (k, I) is denoted by (i,j; k, I). By definition, a symbol 
y(i,j; k, I) of the collision (i,j; k, I) is a p-dimensional vector, whose m-th coordinate 
Ym(i,j; k, I) (1 ~ m ~ p) is given by 

(2.I) 

where bii is the Kronecker's delta symbol. 
We say that two or more collisions are independent if their symbols are linearly inde

pendent vectors of the Euclidean space RP. 
The core of our construction is to choose somehow a set Q of p- q independent colli

sions, with 1 ~ q ~ p. This set is called the set of basic collisions. 
Let Q be of the form 

(2.2) Q = {(ibjl;kl,ll),(i2,h;k2,12), ... ,(ip-q,jp-q;kp-q,lp-q)}, 

and let y(im,jm; km, 1m) (m =I, 2, ... ,p-q) be symbols of the collisions forming Q. 
The set Q of admissible collisions consists, by definition, of all collisions belonging to 
P x P whose symbols can be represented as linear combinations of y (i 1 , j 1 ; k 1 , l1), 

y(i2,j2; k2, 12), ... , y(ip-q,jp-q; kp-q' lp-q). 
Since the vectors y(im, jm; km, 1m) (m = 1 , 2, ... , p-q) are linearly independent, they 

span a (p-q)-dimensionallinear subspace fJ. c RP. An orthogonal (in the sense of RP) 
complement F of fJ. to RP is called the space of collisional invariants and every vector 
q; E F is called a collisional invariant. 

We have, of course, dimf = q. 
It can be shown (c.f. [13]) that q; = (rp 1 , rp 2 , ••• , rpp) is a collisional invariant if and 

only if for every (i,j; k, I) E Q 

(2.3) 

Thus, starting from a set of p- q independent collisions, we have constructed the set 
Q of admissible collisions and the space of collisional invariants. 

Let us notice, that in some cases an inverse procedure can be useful namely we choose 
a system of q linearly independent vectors forming F and determine all nontrivial quadru~ 
lets of indices, for which relations of the type (2.3) hold. As a result we obtain the set Q 
of admissible collisions and, substracting from it a system of p-q independent collisions, 
we find the set Q of basic collisions. 

In our construction we did not make any use of the molecular velocities. Therefore, 
from the purely mathematical point of view, they can be completely arbitrary but, due 
to physical reasons, it is very desirable to have the usual conservation laws satisfied, i.e. 
relations of the type (1.1) and (1.2) should hold for every collision (i,j; k, I) E Q. 

It is very easy to choose the molecular velocities in such a way that the momentum 
conservation principle (I, 2) is fulfilled. Indeed, let the vectors 'Pi (i = 1 , 2, ... , q) with 
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98 K. PmcH6R 

the components q;;1 (j = 1 , 2, ... , p) form a basis in F. The molecular velocities c1 , c2 , ..• 

. . • , cp satisfy the momentum conservation principle (1.1) if and only if there exist vectors 

v 1 , v 2 , ••• , v q E Rd such that 

q 

(2.4) c1 =.J:q;lJv, i=1,2, ... ,p. 
j=l 

To have the energy conservation principle satisfied, it is sufficient to demand the veloc

ities to satisfy Eq. (1.2) for these collisions which form the set Q. 
Substituting Eq. (2.4) into Eq. (1.2), we obtain a system of p-q quadratic equations 

for every (is,js; ks, Is) E Q, s = 1' 2, ... ,p-q. 
Starting from some most basic principles we derived in [13], the following form of the 

col\isional operator is obtained: 

(2.6) !F(U, V) = ~ 2 _ A(i,j;k,l)y(i,j;k,I)(U1V1+U1 V,-UkV,-U,Vk), 
(i.j;k,l)eQ 

where U = {U1 , U2 , ••• ,Up), V ~ (V1 , V2 , ••• , Vp) are arbitrary vectors of RP and 
A(i,j; k, I) are non-negative coefficients called transition rates. 

Here we devote more time to the question of determination of the transition rates 

because this problem was not discussed in our previous paper [13]. 
On the -Cartesian product P x P, we introduce the following equivalence relation (see 

also [1]): 

(2.7) (i,j) = (k, I)<=> q;1+q;1 = q;k+q;1 for every q; E F. 

This relation splits P into a certain number of equivalence classes, say P 1 , P 2 , .•• , P P'; 

the class of (i,j) is also denoted as {i,j). 
This partition of P determines a partition of Q. We have (cf. [13]) 

p' -

Q = U Q, Q, n Q1 = 0, i ¥: j, 
i=l 

where 

Q1 = P1 xP, i = 1, 2, ... ,p'. 

Let (i,j) P; we denote by a(i,j; k, I) the probability that (i,j; k, I) E Q. 
We set (cf. [1]) 

a(i,j; k, I) = 0, 

if (i,j), (k, I) belong to two different classes, and 

(2.8) .J; a(i,j; k, I) = 1. 
(k, i)e(i,j) 

Usually it is assumed that all collisions which belong to the same class Q1 are equally 
_probable, therefore one takes 
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(2.9) a(i,j; k, I) = 
1 

number of elements of (i ,j) 

for every (k, I) E (i,j). 
Let the molecular velocities c1 , c2 , ••. , cP satisfy the momentum and energy conser

vation principles. Then 

(2.10) 

Under the assumption that all molecules are the same, we obtain 

(2.11) A(i,j; k, I)= Slct-c11a(i,j; k, I), 

where Sis proportional to the collisional cross section. If, however, the gas consists of 
molecules of various types, say oc and {1, we can replace S in Eq. (2.11) by Sa.fJ· 

ExAMPLE 1. We takep = 2r, where r is an arbitrary but fixed integer, (r = 2,3, ... ). 
As the set of basic collisions we take 

r-1 
(2.12) Q = U {i, i+r; i+ 1, i+r+ 1)}. 

i~l 

The set Q of admissible collisions is 

(2.13) Q = U {(i, i+r;j,j+r)}. 
l~i<}~r 

We have 

j 

(2.14) y(i, i+r;j,j-tr) = }; y(k, k+r; k+ 1, k+r+ 1) (l ~ i < j ~ r). 
k=i 

As the basis cp0 , cp1 , ... , cp, of the space F of collisional invariants we take 

(2.15} 
{

(/Jom = 1, 

(/Jtm : t5im- t5t+r, m' 

m - 1, 2, ... , 2r, i = 1, 2, ... , r. 

As it follows from Eqs. (1.1) and (1.2) and the above, the momentum and energy conser
vation laws are satisfied if and only if 

(2.16) 
{ 

c1 = v0 +v1 , 

Ci+r = v0 -v1, 

i=1,2, ... ,r, 
where v 0 , v 1 , •.• , v, are arbitrary vectors of Rd such that 

(2.17) vf = v = const, i = 1' 2, ... 'r. 

In the case under consideration the equivalence relation defined by the relation (2. 7) 
splits the set P of all pairs (i,j) (I ~ i,j ~ 2r) into the following equivalence classes: 

one class, say P 1 , consisting of r pairs of the form (i, i+r}, (i = 1, 2, ... , r); 
many one-element classes. 
Therefore, 

7* 
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100 K. PmCH6R 

Assuming all collisions of Q to be equally probable, we obtain on the basis of Eq. (2.11) 

(2.18) 

(2.19) 

A( . . . . ) 2vS 
z, z+r;J,J+r = -

r 
(1 ~ i < j ~ r), 

A(i,j; k.l) = 0 in other cases. 

Owing to Eqs. (2.6), f2.13) and Eqs. (2.18), (2.19), the collisional operator F is of tqe 
form 

(2.20) F(N, N) = 
2
:

8 2 y(i, i+r;j,j+r) (!i,Ni+r-NJNJ+r). 
l<.i<j<.r 

Usually the following convention is introduced: for every quantity, say W, depending on 
the indices i 1 , i2 , .•• , is, we set 

(2.21) W(i1 ,i2, ... ,is)= W(it,j2, ... ,js) if i~c =A(mod2r), k = 1,2, ... ,s. 

Using this convention, we can represent the collisional operator F (N, N) in the well
known form ([1], [2]) 

(2.22) 

r 

.~",(N, N) = 
2
:

8 2 (Nl+JNi+i+r-NlNi+r), 
j=l 

where Fi(i = 1, 2, ... , 2r) is the i-th component of F. Particular cases: 
i) We put d = 2, and 

(2.23) v1 = v( cos (i-/)n , sin (i-,I)n ). i = I, 2, ... , r. 
The resulting model is the so-called plane 2r velocity model introduced by GATIGNOL [1], 

ii) We put d = 3, r = 3, and 

(2.24) 

This is the celebrated space BROADWELL model [6]. 
iii) if we set d = 3, r = 6, and take 

(2.25) 
( 

. 2in . . 2in) v1 = v cosa, smacos-·-
3
-, smasm-

3
- , i = 1, 2, 3, 

( 
. (2i+1)n . . (2i+l)n) v 1 = v cos {3, sm fJ cos 

3 
, sm {3 sm 

3 
, i = 4, 5, 6, 

where 

tan a = 3- }1'5, a = 37~377, 

tan{3 = 3 + }1'5, fJ = 79°.187, 

we obtain the so-called regular space model with 12 velocities. This model was introduced 
by CABANNES [14]. 
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3. General construction of DVM for gas mix~es 

Let us assume that we have a certain number, say v, of discrete velocity models of the 
Boltzmann equation. 

Let the tX-th model be represented with a Pa-dimensional density vector 

(3.1) 

and with Pa. velocities 

(3.2) 

We will represent also the mixture with a p0 -dimensional density vector N 

(3.3) 

where 

(3.4) 

, 

Po= };Pa, 
oc=l 

and with the mixture the set of admissible velocities 

(3.5) 

Inversely, let a p 0-dimensional vector N 

N = (N1 , N 2 , ... , Np) 

be given. With it we can form a piX-dimensional vector by projecting RPo on the Pa-dimen

sional subspace Ra = RPIX with the aid of a projection operator Pa. defined by 

(3.6) PIXN =NIX = (NriX+l, Nra.+2, ... , NriX+l), 
where 

r1 = 0, 
a-1 

ra. = }; Pth ex = 2, 3, ... , v. 
(3.7) 

fJ= 1 

Similarly, if a set of p 0 velocity vectors c1 , c2 , ... , Cp
0 

is given, then the subset Cra+ 1 , 

cra + 2, ... , Cra+ 1 can be treated as the set of velocities of the rx-th model. According to the 
philosophy of [13], it is sufficient to form a set of (mixture) basic collisions in order to 
obtain the desired model. 

We assume that all collisions which take place for the rx-th model when isolated take 
place also when in the mixture. Accordingly, let Qa be the set of basic collisions of the 
rx-th model, i.e. 

Qcx = {{il,jl;kl,/1), ... ,(iPa-qa,jPa-qa;kPa-qa.,/Pa.-qa.)}, 

1 ~ is, is, kn Is ~ Pa., S = 1 , 2, ... , Pa.- qat, 

where qa is the dimension of the space of collisional invariants of the rx-th model. Since 
in the joint p-dimensional representation of the mixture the places from ra + 1 to ra+ 1 

are reserved for the rx-th model, we rewrite QIX as 

Qa = Qaa = {(ra+it, ra+it; riX+kl, ra+lt) ... 

(ra+iPat-qiX, r1X+j.Pa-qa; ra+kPa.-qa' ra.+ 1Pcx-q1X)}. 
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The set 

is called the set of basic self-collisions. 
To the set of basic self-collisions we have to add a set of basic cross-collisions, i.e. 

collisions between particles of different types. Let them be 

Qa.{J = {(i1,j1; k1, /1), ... , (ica.{J'jca.p; kca.(J' lca.{J)} = Qpa., 

where Ca.fJ is the number of collisions of the type ex, P +-+ ex, p, and 

Ta. < in ks ~ Ta.+l 

rp <is, Is ~ TfJ+1' 

s = 1 , 2, ... , Ca.fJ, 1 ~ ex < P ~ 11 • 

These sets of collisions can be chosen in a principally arbitrary way; the unique con
straint s that the total number of mixture basic collisions 

c= }; Ca.p, 
l~a..;;{J~v 

where Ca.a. = Pa.- qa., does not exceed p 0 • 

The difference q0 = p 0 - cis equal to the dimension of the mixture space of collisional 
invariants. 

As the mixture set of basic collisions we take 

QM = U Qa.{l· 
I ~.a,E;{l~v 

Having constructed it we can proceed exactly in the way described in Sect. 2 and obtain 
the desired discrete velocity model of the mixture. 

We consider in more detail a special, but in our opinion the most interesting case. 
Namely, let us assume that each of the models we use to form a mixture has the same set 
of basic collisions. More precisely, we assume that 

Pt = P2 = · · · = p, = P 
and 

Ql = Q2 = ... = Q, = Q. 

Let F be the common, for every model, space of collisional invariants, and let q;0 , q;1 , ... 

.. • , f/Jq- 1 with q;0 = (I, I, ... ,1), be its basis. 

As the mixture space of collisional invariants we take a linear (q+Y-1)-dimensional 
subspace FM of RP" spanned by the vectors 

(/>1 = (g;o, 0, ... , 0), 
(/> 1 = (0, flJo , ... , 0), 

/ .................... 
(/>, = (0, 0, ... , gJo), 

(/>,+1 = (g;1' fP1' ... 'fP1), 

(/Jq+v-1 = (q;q-1' qJq-1' · · ·' qJq-1)' 

where 0 stands for the p-dimensional null vector. 
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Let Q be common for all models, when separate set of admissible collisions. As it 
follows from the set (3.8), the following types of collisions are possible: 

(i,j; k, I) E Q => (foc+i, fp+j; foc+k, fp+l) E QM, 
(foc+i, fp+j; fp+k, foc+l) E QM, 
(fp+i, fa. +j; foe +k, fp+l) E QM, 
(fp+i, fa +j; fp+k, fcc+l) E QM 

(1 ~ ex ~ {3 ~ v), 

where QM is the set of the mixture admissible collisions, and 

fa.-p(ex-1), ex=1,2, ... ,v. 

Moreover, we have collisions of th~ type 

(foc+i, fp+j; foc+J, rp+i) E QM 

for every I ~ i < j ~ p and 1 ~ ex < {3 ~ v. 

Therefore the set QM of mixture admissible collisions is of the form 

(3.9) QM = U U {(ra.+i, fp+j; roc+k, fp+l), 
l.;;;oc.;;;{J .;;;v (i,j;k,l)eQ 

(fcc+i , fp+j; fp+k, rcc+/), (fp+i, roc+J; ra+k, rp+l), (rp+i , ra.+J; 

rp+k, roc+l)}v U U {(foc+i, fp+j; foc+J, fp+i)}. 
l.;;;oc:!i;{J:s;;v l.;;;i<j:ii;p 

We have to indicate a set of mixture basic collisions. 
Let us notice first that this set consists of vp- (q + v- 1) = v(p- 1)- ( q- 1) collisions. 
We have v(p-q) independent self-collisions. 

,. 
(3.10) Q~> = U {(ra+it, roc+ft; roc+kt, ra.+lt), 

oc=l 

where (i11 ,j11 ; k., 111), (s = 1, 2, ... , p-q) are the basic collisions of Q. As the lacking 
v(p-1)- (q-1)-v(p-i]) = (v-1) (q-1) independent collisions, we may take the follow
ing set of cross-collisions: 

11-l q-l 

(3.11) Q~> = U U {(roc+i,foc+t+i+1;ra.+i+1,foc+l+1)}, 
oc=l i,=l 

provided that q > 1. 
Hence the set 

(3.12) 

is a set, of basic collisions for the mixture under consideration. 
Owing to Eq. (3.9) and the general theory of collisional operators given in [13], the 

mixture collisional operator is of the form 

(3.13) .F(N,N) = l, 2 _ [A~~(i,j;k,l)y~~(i,j;k , l)(N,oc+iNrfJ +i-Nra.+kN,fJ+t) 
t .;;a. :;;;,fl:;;; v (i,j;k,l)eQ 
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(3.13) 

[cont.] 

where 

(3.14) 

(3.15) 

+ 

K. PIECHOR 

+Ap~(i,j; k, l)ytp~(i,j; k, I) (N,a.+tNrp+J-Nra.+tNrp+k) 

+A~rp(i,j; k, l)~p(i,j; k , I) (N,a.+lNrp+t-Nra.+kNrp+l) 

+A~~(i,j; k, l)yg~(i,j; k , I) (N,a.+JNrp+i-Nra.+tNrp+k)] 

\' ~ Aa.fJ( · · .. ') a.fJ(· · .. ') (N. N. N. N. ) ~ L.J a.{J l,] , ] ' l ')' a.{J l , .I'}' l r a.+ i r {J + j - r a.+ j r {1 + i , 
l ..; a...;P..;v l<"S;i<j<"S;p 

A~~(i,j; k, I)= A(ra.+i, rp+j; ry+k, r6 +/), 

y~g(i,j; k, l) = y(ra.+i , rp+j; ry+k, r11 +1) E R"P. 

Usually we are interested in the projection 

ffa.(N, N) = Pa.ff(N, N) 

of the collisional operator on Ra.(oc = 1, 2 , .. . , v). From Eq. (3.13) we obtain 

(3.16) g-a.(N, N) = ~ _ A~~(i,j; k, l)y(i,j; k, I) (NTNJ-N~NT) 
(i , j ; k,/)eQ 

+ ~ { ~ _ [A~~(i,j; k, l)y(i, k) (NT N1-N~Nf) 
P= 1 (i , j;k,l)eQ 
fJ-:Fa. 

+Ap~(i, j ; k, l)y(i, I) (NT Nj -NT Nf)+A~rp(i,j; k , l)y(j, k) (N~ N~ -N%N1) 

11_ fl fJ ~ Aa.fl(· ·. · ') ( ' ') (Na.NfJ Na.Nfl) +A11:(i , j;k , l)y(j,I)(NJN;-NfNk)]+ £.; a.p z,J ,J,t Y z,J ; J- 1 ; , 
l<"S;i<j..;p 

where y(i,j; k , I) E RP is the symbol of the collision (i , j; k, I) E Q, and y(i,j) is ap-dimen
sional vector whose m-th component is defined by 

(3.17) 

When deriving Eq. (3.16), we made use of the following equalities: 

Pa.Y~~(i , j; k, I)= y(i,j; k, 1), 

Pa.Y~~(i,j; k, I) = y(i, k), {3 =F oc , 

which result from the definition of the symbol (2.1) and that of the projector (3.6). 
Let 

(/Jj = ((/Jjt, (/)}2 , ... , (/Jjp), j = 1, 2 , ... , q-1 

be the basis in F. The mixture momentum vector 

(3.18) 

is an element of FM if and only if 

(3.19) i=l,2 , ... ,p, oc=l , 2 , ... ,v, 
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where v~ and vi are arbitrary vectors of Rd, and 

(3.20) 

The mixture energy vector 

mt 
ftrx. = -, oc = I , 2, ... , v. 

rna. 

(3.21) (m1(cD2
, ... , m1 (c~)

2 , m2 (ci)2
, ... , m2 (c~), ... , mv(cD2

, ••• , mv(c;)2
) 
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is a collisional invariant if and only if it is orthogonal to the symbols of any collision of QM. 
According to Eqs. (3.10), (3.11) and (3.22), we obtain after some manipulations 

q-1 q-1 q-1 q-1 

(3.22) (l' vmCJJmir + (l' vmCJJmjr = (~ vmCJJmkr + (~ vmcpm,r 
m=1 m=l m=1 m=1 

for every (i,j; k, l) E Q, and 
q-1 q-1 

(3.23) . [ vg -v~+l_ (flo+l -!'.) 2 v,. 9'mi + ;m.l+l ] 2 v,.(IJ'ml -9' ... 1+1) = 0, 
m=1 m=l 

oc=l,2, ... ,v-1, i=l,2, ... ,q-l. 

A model is said to be regular if 
q - l 

(3.24) (~VmCJJmlr = V
2

, i = 1, 2, ... ,p. 
m=l 

For regular models the relations (3.22) are .satisfied identically, and Eq. (3.23) reduces 
to 

q-l 

(3.25) (vg -v~+l) · ~ Vm(CJJmi- CJJm. 1+1) = 0 · 
m=l 

Assuming that q > d and that the vectors 
q-1 

(3.26) ~ Vm(CJJmt-CJJm, i+l), i = I, 2, ... , d 
m=l 

are linearly independent, we obtain from Eq. (3.25) 

(3.27) vg = v0 , - oc = I , 2, ... , v . 

Bearing in mind the Gallilean transformation, we can set v0 = 0 without losing generality. 
Hence we obtained for regular models 

q-1 

(3.28) cr = ftrx. ~VmCJJmb i =I, 2, ... ,p. 
m=1 

EXAMPLE 2. We consider a mixture of v gases each of them modelled as in Example I 
of Sect. 2. 

Since these models are regular, the molecular velocities are 

(3.29) 
c~ = fta. vi , i = 1 , 2, ... , r, 

cf+r= -{ta.Vt, 

where vi E Rd (i = I , 2, ... , r) and have the same modulus. 
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Now, we proceed to determine the nontrivial classes of equivalence into which the 
relation (2.7) splits the set P of all (unordered) pairs (i,j) (1 ~ i,j ~ p). 

Using the definition (2.7) of the equivalence relation as well as the relations (2.16) and 
(3.8), we obtain 

i) v classes of the form 

U { ( 2r( ex- 1) + i, 2r( ex- I) + i + r)}, ex = 1 , 2, .... , v . 
i=l 

Each class contains r pairs, therefore due to Eq. (2.9). 

CXCX(' ' • • '+ ) - 1 Ocxcx l, z+r ,],] r - - , 
r 

cx=l,2, ... ,v , 1~i<j~r. 

The relative velocities are 

lcf-cf+rl = lc~-cJ+rl = 2ftcxV , ex= 1,2 , ... , v, I~ i <j~ r. 

The collisions which can be formed of pairs of the same class can be physically inter
preted as head-on collisions between particles of the same gas with subsequent scattering 
into 2r directions. 

The transition rates are 

(3.30) Acxcx(• '+ • • '+ ) - 2Vftcx s cxcx z, z r,J,J r - --- cxcx, 
r 

cx=1,2, ... , v, l~i<j~r . 

where Scxcx s the collisional cross-section for self-collisions. 

ii) ; (P-1) classes of the following form: 

r 
U { ( 2r( ex - 1) + i , 2r(f3- 1) + i + r) , ( 2r( ex- I) + i + r , 2r(f3 - 1) + i)} , 

1=1 

I ~ex < {1 < P . 

Each class contains 2r pairs, therefore the transition probabilities are 

a:~(i, i+r;j,j+r) = ap~ (i, i+r;j,j+r) = agp (i, i+r ;j,j+r) 

1 
= t4:(i , i+r;j,j+ 1) = 2r ' 

l~cx<f3~v, l~i~j~r. 

The relative velocities are 

lcr-c~+r l = lcr-c~+rl = v(ftcx+ftp) , I ~ ex< {3 ~ P , 1 ~ i ~ j ~ r. 

Hence the transition rates become 

(3.31) A:~(i, i+r;j , j+r) = Apg(i, i+r;j, j+r) 

(Jcx ( . . . . ) A{Jcx {. . . . ) V S { ) = Aa.p z, z+r;J,J+r = fJa. z, z+r;J , ]+r = 2r a.{J fta.+ftp , 

where Sa.fJ is the collisional cross-section for cross collisions. 
Physically, the collisions that may be formed of the elements of the same class represent 

collisions between particles of different components with subsequent scattering into 2r 
equally probable directions. 
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iii) rv(r- 1) (v- 1) classes consisting of just two pairs 

{{2r(a-1)+ i, 2r({J -1)+ j), {2r(a-l) + j, 2r({J -1) + i)}, 

l~a<{J~v, l~i<j~2r, j=#:i+r. 

The transition probabilities are, consequently, 

• . . . fJa. . . . . I 
dfa,(r,J;J, r) = aa.p(z,J;J, z) = 2 , 

and the relative velocities ru.! given by 

lc~- c~ I = jcj-cf I = v v' P-! + !-'~ - 2!-'a.l-'fJ cos V'tb 

where V'iJ is the angle between v1 and vi. 
Taking now 

1 
-Sa.p 
r 

as the collisional cross-section, we obtain 

(3.32) 

1 ~ a < {J ~ v, 1 ~ i < j ~ 2r, j =!- i + r. 
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iv) Numerous one-element classes. They are of no significance because by using just 
one pair it is impossible to build a non-trivial collision. 

Now, using Eqs. (2.14) and (3.30)-(3.32) as well as the convention (2.21), we obtain 
from Eq. (3.16) the collisional operator of the model under consideration. 

The corresponding model equations are (cf. [7]) 

v 2r 

(3.33) ( :t +f.'.C.. vx)N:, = ~ 2 S.p(p.+ Jlp) 2 [N!+1N!+w-N:ON!+,] 
{J=l j=l 

v 2r 

+ ;, 2 sa.{J 2 VP-i+P-'J-21-'a.!-'fJCOStpm.m+j (N:+JN!-N!N/!,+J), 
{J=l j=l 

where 

Cm = Vm, 

Cm+r = -Vm, m = 1, 2, ... , r. 

4. Constructic-n of DVM for mixtures of reactive gases 

In order to illustrate better our ideas of modelling, we present here a construction of 
such discrete velocity models which can be interpreted as those for mixtures with chemical 
reactions. 

Our modelling is based on the theory of real gases which is given in [J 5] and [16] (see 
also, for example [17, 18, 19] or other textbooks). ' 
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In the theory of real gases each molecule is identified by both its chemical type and by 
its internal quantum state. In this paper, for the sake of simplicity, we take into account 
changes in chemical character and ignore those in internal quantum state. 

We assume that we know from chemistry this assortment of molecules Ba (a = 
= 1, 2, ... , v) which can be present in the gas mixture. 

Let the molecule Ba consist of atoms A<">( A = 1, 2, ... , x). The atomic composition 
of a molecule is represented in the form of a chemical formula ([15]) 

(4.1) 

where Kpa.(fJ = 1, 2, ... , x, a = 1, 2, ... , v) is the number of atoms of the {J type in the 
molecule Ba. These numbers are assumed to be known from chemistry. We consider only 
binary reactions, i.e. such reactions when, as a result of a collision of two molecules of 
any sort, we obtain again two molecules but in general of different types. Hence we admit 
binary inelastic collisions of the type 

(4.2) 

We assume again that we know from chemistry the set of all types of reactions which can 
occur in the mixture. 

We use the shorthand 

(a' {3 ~ y ' ~) 

to denote a reaction of the type ( 4.2). Let ~ be the set of all types of reactions which occur 
in the mixture. 

In this Chapter we follow the general lines of the previous Chapter, i.e. we consider 
v models, each of them having the same number of velocities p and the same set of basic 
collisions Q. 

We start from constructing the mixture space FM c R"P of collisional invariants. 
First, the total number of molecules is conserved because the outcome of a collision 

of two molecules are again two particles. 
Consequently, the vector 

(4.3) 

where, as previously, qy0 = (1, 1, ... , 1) E RP is a collisional invariant. 
The next conservation law expresses the conservation of the number of atoms in mol

ecules before and after a collision. This can be expressed as 

(4.4) K:;.a.+K,.fJ = K:;.y+K,.~, A= 1, 2, ... , x, (a, {J ~ y, ~) E ~. 

Hence the following vectors 

l/>1 = (Kll(/Jo, K12 (/Jo, : ·., Ktv(/Jo) E R"P, 

(4.5) 
l/>2 = (K21(/Jo, K22cpo, ... , K2v(/Jo) ER"P, 

l/>" = (~t (/Jo, K"2 (/Jo, ..• , K" vcp0 ) E R"P 

should be numbered among the space of collisional invariants. 
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Under the additional assumption which follows from physico-chemical reasons and 
claims that the component atoms A<1>, A< 2 >, ... , A<~> are included in the assortment of the 
molecules Ba., i.e. assuming that there is at least one {3 (" + 1 ~ {3 ~ Y) such that 

(4.6) 

it can be proved (cf. [15]) that the vectors (/)0 , (/J1 , ... , (/J~ are linearly independent. 
Finally, we assume that the other quantities represented now by the vectors cp1, cp2, •. 

• • • , CfJq- 1 are conserved during each collision, be it elastic or inelastic. 
Hence the vectors 

(/J~+l = (cpl' fPl' ... 'cpl) E RVP, 

(4.7) 
(/)~+2 = (cp2, f/J2, ... 'f/J2) E RVP, 

are elements of FM. 
Under the assumption (4.6) the vectors (/)0 , (/J1 , •.. , (/Jq+1(- 1 are linearly independent, 

and we take them as the basis of the mixture space of collisional invariants. 
Evidently 

dimFM = q+"· 
Applying the general method of construction of the discrete velocity models presented 

in Sect. 2, we can determine the set of admissible collisions QM. By direct inspection of 
the basis (4.3), (4.5) and (4.7) of FM, we obtain 

(4.8) QM = U [ U _ {(ra.+i, rp+j; r,+k, r,+ 1)} 
(cx,P<->y,t'J)efJl (i,};k,l)eQ 

u U {(rcx+i, rp+j; r,+j, r6 +i)}, 
l~i<j~p 

where 
ra. = (ex-l)p. 

Using that in Eq. (2.6), we obtain the joint mixture collisional operator as a mapping 
from Rvp x Rvp into RvP. However, one is usually interested in a partial collisional operator, 
i.e. in a collisional operator describing changes of the densities Na. due to all types of 
collisions the ex molecules can experience. 

It is convenient to split the set &l of all types of collisions (reactions) into two subsets: 
i) the subsets &le of elastic collisions, i.e. such collisions which preserve the identities 

of two colliding partners 

&le= U {(ex,f3~f3,ex)}; 
l~a.~{J~v 

ii) the subset &lin of inelastic collisions, i.e. such reactions between a pair of molecules that 
result in the emergence of two chemically different molecules. 

We distinguish two types of inelastic collisions: 

&l~~~a. = U {(ex, ex~ {3, !5)} 
{J,t'J=l 

f3¢rx or 6¢cx 
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and 

Of course 

.. 
~~~~ex= U {(cx,P+-+ .~,e)}. 

/J,d,£= 1 
fJ=Fcx, d¢.a.,e¢cx 

d=F{J or e¢{1 

. . " 
Bl1n = U 9fi!~ ex U U 9f~~~ ex' 

cx=l a.=l 

9f~ U 9fin = 9t • 

K. PIEcH6R 

Accordingly, we split the collisional operators into two parts: one part responsible for 
the elastic collisions, fFe.a., and the second part describing the inelastic collisions, :F1n,cx 

i.e. we write 

(4.9) 

The elastic part :Fe. ex is given by the form of the operator (3.13), whereas the inelastic 
part F 1n.a. (N, N) is of the form 

(4.10) §in, ex = 2 { 2 _ [Ap:(i,j; k, l)g(i , j) (NfNt -N~ Nj) 
(11,11<->!J,c5)eat\~~a. (i,j;k,l)eQ 

+Ar:ff(i,j; k, l)g(i,j) (Nf Nf-NfNJ)+A~~(i,j; k, l)g(k, /) (N~ N~-N:-Nf) 

+A~(i,j; k, l)g(k, I) (N~Nt-N:Nf>+ 2 [Ap~(i,j; i,j)g(i,j) (N~ N~-NfNj) 
l~i<j~p 

+[A~(i,j;i,j)g(i,j)(N~Nt-NfNj)]}+ 2 { 2 _ 
(cx,fJ<->d,s)e~~!cx (i,j;k,l)eQ 

+ [A~(i,j; k, l)h(i) (NfNi-N~ Nj)+Ar:/(i,j; k, l)h(i) (NfN:-N1 N~) 

+A~:(i,j; k, l)hU) (N~Ni-NJN~)+A~t(i,j; k, l)h(j) (N1N:-NjN~) 

+A~p(i,j; k, l)h(k) (N1Nj-N~Nf)-t-A~(i,j; k, l)h(k) (N~Ni-N~Nf) 

+A~~(i,j; k, l)h(l) (N1Nj-Nr N~)+A'p~(i,j; k, l)h(l) (N1Ni-Nr Nf) 

+ 2 [A:/(i,j; i,j)h(i)(NtNJ-NfNf)+A~/(i,j; i,j)h(i)(N1Ni-N~N1) 
lo;;.i<j~p 

+A~t"(i,j; i,j)h(j) (NtNj-NjN~)+A~:(i,j; i,j,j)h(j) (N~Ni...!.NjNfJ}· 

cx=1,2, ... ,v, 

where the symbols A:/(i,j; k, I) are defined by Eq. (3.14), and g(i,j) and h(i) arep-dimen
sional vectors whose components Km(i,j) and hm(i} are given by 

Km(i,j) = ~~m+ ~J'"' m = 1, 2, ... , p, 

hm(i) = ~im' m = 1 ' 2' ... ' p' 

respectively. 

Physical collisional invariants 

Now, we proceed to the determination of the molecular velocities c~, i = 1, 2, .... , p, 
ex = 1, 2, ... , v. 
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First, because the momentum is conserved in any type of collision, the pv-dimensional 
vectors of the mixture momentum (3.18) must be elements of FM. This results in 

(4.11) 
where 

(4.12) 

" 
Aa. = .2; K1a.a1 , 

j=l 

Qo-1 

B, = 2(/)Jtbh 
j= 1 

~=1,2, ... ,v, 

i=l,2, ... ,p. 

Here a 1 , ••• , &,c, b1 , ... , bq-t are arbitrary vectors from R4
, #a. = mdma., and (/JJb i = 

= 1, 2, ... , pare components of (/)J e RP, (j = I, 2, ... , q-1). 
The inelastic collisions do not preserve the translational energy but they preserve the 

sum of the translational and internal energies. Therefore the following vector 

(4.13) ( ~ m, (cl)2 +E1 , ... , ~ m1 (c!)2 +E1 , ... , ~ m,(c\)2 +£, ... ,-'2m,(c;)+E,)• 

where Ea. is the internal energy of the molecule Ba., is a collisional invariant instead of the 
vector (3.21). 

Thus we get the following relations: 

(4 4) 1 2 ( a. )2 1 2 ( tJ )2 .I 2 -ma.P,a. A +B1 + 2 mpp,p A +B1 +Ea.+Ep 

= ~ m"p,~(A"+B1)2 + ~ m6 p,;(A6 +B,)2 +E"+Es 

for every (~, P +-+ b, E) e &land (i,j; k, I) e Q. 
Of these relations merely vp- dim FM = vp- q- x is independent. 
It is convenient to treat the internal energies Eb E2 , ... , E, as unknown. As a result, 

we get more unknowns (their total number is equal to d(x+q) =1= I +v), what can be helpful 
in constructing "physically interesting models". For instance, assuming 

Aa. = 0, ~ = I, ... , v, Bf = B2 , i = I, 2, ... , p 

we get from ( 4.14) 

(4.15) 

The difference of internal energies does not vanish due to the difference of masses of 
the colliding and emerging molecules. 

The polyatomic molecules cannot be treated as spherically symmetric and, therefore, 
(in the case of d = 3) we have an additional collisional invariant which is the angular 
momentum ([I 9]) 

( 4.16) ma. X" cr + Ia.' ~ = 1 ' 2' ... ' 'V' i = I ' 2' ... 'p' 

where for any two three-dimensional vectors a, b, a" b stands for their vectorial product. 
In relations (4.16) x denotes the position of the center of colliding molecule and Ia. is the 
mean angular momentum of the ~ molecules. 
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Usually, the distance between the centers of the colliding molecules is neglected owing 
to its shortness. This means that, as a matter of fact, the molecular mean angular momentum 
lex is conserved. Since lex does not depend on the molecular velocities c~, then the angular 
momentum is a collisional invariant if and only if 

" 
lex = 2 Kpex J {J, <X = 1 , 2, .. . , X , 

ex=l 

where ]p E R3 are arbitrary vectors (ft = 1, 2, ... , x). 

Maxwellian 

A Maxwellian is, by definition (cf. [1, 13]), a vp-dimensional vector with positive com
ponents whose logarithm is a collisional invariant. 

In the case under consideration, we obtain from this definition and from the vectors 
(4.3), (4.5) and (4.7) 

" Qo-1 

(4.17) Ni = Aexp(E K;.exfl;+ 2; 9liic1] , i = l , 2 , .. . ,p , a = 1, 2, ... ,1', 
). = 1 j=l 

where A, p 1 , . . . , flx, C 1 , .. . , Cq- 1 are arbitrary constants. 
The quantities 

" 2 KJ.exflJ., <X= 1, 2, .. . , V 

J.=l 

can be interpreted as chemical potentials. 
In the full theory (see [15]), in the case of isotropic mixtures in equilibrium, the Max

wellian/a{;) is of the form 

(4.18) 
" 2ma.~ +Eex 

r 
1 t2 ] 

/ex(~)= Aexp ~ KJ.ex#).- kT , 

where; is the molecular velocity, Tis the temperature, and k is the Boltzmann constant 
provided that the so-called principle of detailed balance is satisfied. 

If, however, the principle of the detailed balance is not satisfied, a distribution different 
from Eq. ( 4.18) takes place in the state of equilibrium ( [20]). 

Hence the principle of detailed balance is, in a sense, equivalent. to establishing a Max
wellian as an equilibrium distribution ([15]). 

Since for the proposed DVM the Maxwellian is a unique equilibrium distribution, 
these models can be applied to such mixtures for which the principle of detailed balance 
holds. Should we like to have other distributions in the state of equilibrium, we ought to 
construct a new theory of discrete velocity models. Hence the DVM in their present form 
cannot be applied to models of these gas mixtures for which the principle of detailed balance 
is ont satisfied. 
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