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Elastic wave propagation in a two-component composite structure 

M. SOKOLOWSKI and Z. WESOLOWSKI (WARSZAWA) 

PROPAGATION of longitudinal elastic waves is considered in a model of composite structure 
consisting of two rods made of different materials interconnected by means of elastic springs. 
Wave profiles are evaluated numerically from the accurate integral formulae (8). 

RozwaZa. si~ propagacj~ podluznych fal spr~zystych w modelu konstrukcji zlozonej z dw6ch 
pr~t6w wykonanych z r6i:nych material6w i pol~czonych spr~zynkami. Ksztalty fal wyznaczono 
numerycznie ze scislych wzor6w calkowych (8). 

PaccMaTpu:aaeTcH pacnpOCTpaHeuue npoAOJibHbiX ynpyrHx BOJIH B l'dOAeJIU I<oucrpyi<QHH 
COCTOHI.l.\eH U3 ABYX CTepH<HeH, U3I'OTOBJieHHbiX U3 pa3HbiX MaTepHe&JIOB, If coe,zumeHHbiX 
npy>KHHI<aMH. ¢opMbi BOJIH onpeAeJieHbi "t!Hcneuuo H3 TO"t!HbiX UHTerpaJibHbiX IPopMyn (8). 

LET us CONSIDER the problem of propagation of longitudinal elastic waves in a com
posite structure consisting of two rods made -or different elastic materials interacting with 
each other with forces proportional to the difference of their longitudinal displacements. 

The problem was formerly considered by one of the authors in the paper fl]; however, 
the numerical analysis applied in that paper did not give satisfactory results concerning 
the accurate profiles of elastic waves propagating in both rods. The problem will now be 
analyzed in a slightly different manner, with the use of the integral transforms technique. 

A model of such a structure is shown in Fig. 1: two rods characterized by Young's 
moduli E 1 , E2 and densities (h, fh are interconnected by means of elastic springs (Fig. la) 
transmitting longitudinal forces of intensity 

(1) r: = x(u-v) 

(Fig. lb), where u = u(x, t), v = v(x, t) denote axial displacements of the respective 
rods and ~ is the spring constant. In order to eliminate possible bending eJ;Iects, the cross-
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FIG. 1. 
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section of the composite rod should actually be symmetric; for instance, it may be assumed 
in the form of an elastic tube and core separated by a filling material (rubber, grease etc. ) 
transmitting the required interaction forces (1.1), Fig. lc. By assuming the problem to be 
strictly one-dimensional (no transversal displacements or interaction forces) , the equations 
of motion of the model shown in Fig. I are written in the form 

(2) 

azu azu 
E1 ax2 -rh ot2 -x(u-v) = 0, 

o2v o2v 
Ez axz -ez 012 -+x(u-v) = 0. 

Apply now the Laplace transform to Eqs. (2); using the notation 

co 

U(X,p) = .fe{u} = f e-ptU(X, t)dt, 
0 

v(x,p) = !l'{v}, 

where p is the complex transform parameter, Eqs. (2) are rewritten in the form 

(3) 

Here ci = y Edei , i = 1, 2, are propagation speeds, ky = xfeh and functions Fi(x, p) 
are determined by initial conditions of the problem 

F1(x , p) = u(x. O)+pu(x, 0), 

F2 (x,p) = v(x, O)+pv(x, 0). 
(4) 

In order to simplify the considerations as much as possible, assume the displacements 
u(x), v(x) to be symmetric in x , u(x, t) = u( -x, t), v(x, t) = v( - x, t); it follows that 
the axial stresses in the rods, E1 oujox and £ 2 ovfox, vanish at X = 0; this takes place 
when a semi-infinite rod 0 < x <_ oo with a stress-free end x = 0 is considered. Under 
this assumption, the integral cosine-transforms u*, v*, Fi* of displacements u, v and func
tions Ft may be introduced: 

(5) 

u(x ' p) = f u* (rx , p)cos rxxdrx , 
0 

co 

v(x, p) = f v *(rx , p)cosrxxdrx, 
0 

co 

Fi(x , p) = J F*(rx , p)cosrxxdrx. 
0 

On introducing the expressions (5) into the differential equations (3), the problem 
is easily solved for u* (rx, p) and v*(rx, p) to yield 
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(6) 
f21 Fi+k~F[ v*(a,p) = -=-~-...,.--,:-~ 
Q1Q2 -kik~ ' 

with the notation Q 1 = Qi(a,p) = p 2 +a2 c[+kf. 

159 

Inversion of the double transforms (6) would be possible under very special assumptions 
as to the physical conditions of the problem under consideration. Partial inversion of 
those formulae will be presented for the case of initial conditions 

u(x, 0) = v(x, 0) = 0, u(x, 0) = v(x, 0) =go t5(x), 

where t5(x) is Dirac's delta; then Fi*(a) = g0 /n. 
Assume now that k 2 > k 1 and c2 > c1 • Introducing further notations 

k2 = ~ (ki +k~), k2 = ~ (k~-ki), 

"2 1 ( 2 2) c = 2 c1 +c2 , -z 1 ( 2 2) c =2 c2-Ct' 

(7) 

the formulae (6) may be partly inverted to yield 

00 

(8) 

( ) _ g0 J (M1 sinBt N1sinAt) d 
u x, t . - 2n B + A cos ax a, 

0 

00 

( ) g0 J (M2 sinBt N2 sinAt) d v x t =- ----+ cosrxx x ' 2n B A . 
0 

The integrals (8) representing elastic displacement waves travelling along the composite 
rod cannot be written in explicit forms except for certain particular cases. For instance, 
if k 1 = k2 = 0, that is when the model consists of two different but separate rods subject 

to identical boundary and initial conditions, in view of k = k = 0, (]> = a 2c2
, A = ac2 , 

B = ac1 , M 1 = N 2 = 2, M 2 = N 1 = 0, one obtains (cf. [2]) 

00 

( ) 
g0 J 2sinac1 tcosaxda g0 ( ) ux t = -- - =-'Y}c1 t-x 

' 2n ac1 2c1 ' 
0 

v(x, t) = -2g~ 'Y}(c2 t-x) , 
c2 
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. 'Y)(ci t-x) denoting the Heaviside function. This is the known solution representing two 
separate elastic waves of constant displacements g0 /2ci travelling at the respective speeds 
ci along both semi-infinite rods 0 < x < oo. Similarly, in the case when k 1 = k 2 = k, 
c1 = c2 = c (two identical, interconnected rods), both waves are identical and travel 

at the same speed c, u = v = ;; rJ(ct-x), what should be expected. 

Finally, consider another simple but not trivial case of c1 = c, c2 = 2c. Introducing 
new space and time variables: x = xja (dimensionless distance) and i = tfa, where a de
notes a unit of length, assuming a= 1, c = 1, and putting k 1 a = k 2 a = 2, the formulae 
(7) are reduced to 

" k = 2 , k = 0, c2 = 2.5, c2 = 1.5 f/> = 1.5J/ rx4+N4, 

N = y8j3, A2 = 4+2.5rx2 + 1.5 y rx4 +N\ 

B 2 = 4+2.5rx2 -1.5 y' rx4+N4, 

4+ 1.5rx2 

1.5 y rx4 +N4' 

The integrals (8) are computer-evaluated and lead to the results presented in Figs. 2, 
3, 4 and 5. 
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Figure 2 corresponds to relatively short times (i = 0.8, t = 1.6, t = 2.4). Solid lines 
denote displacements u in the first rod, dashed lines - displacements v in the second 
rod, c 1 = 1 and c 2 = 2. At small times t--. 0 both displacements are represented by 
Heaviside's functions. At x = t only displacement u is discontinuous, the jump being 
independent oft and equal to 1/2; At x = 2i only vis discontinuous and exhibits the same 
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discontinuity 1/2; at that point the first displacement u vanishes. For larger values oft 
(Figs. 3, 4 and 5) an interval of the rod may be observed along which both displacements 
are approximately the same, u ~ v. This confirms the observation made in [I] according 
to which for large values of time, in addition to separate waves travelling in both rods, 
a "common" wave is also propagated at a speed approximately equal to 

The approximate position of that "common wave-front" is marked in Figs. 3, 4 and 5 by 
triangles. 

Unexpected oscillatory curves appear in the neighbourhood of two displacement 
discontinuities (wave fronts) x = c1 t and x = c2 t for larger values of time (larger dis
tances from the end of the composite rod). For instance, observe such phenomena in the 
interv~ 18 < x < 20 and 34 < x < 40 in Fig. 5 corresponding to time t = 20. 

In order to verify this phenomenon, let us consider two graphs presented in Fig. 6 a, b. 
Contrary to the preceding ones, the curves correspond to fixes values of x and variable 
time ·t, for which displacement u of the first rod has been evaluated numerically. At times 

t < x jc2 displacement u = 0 (in case of Fig. 6a x = 2, ..and in case of Fig. 6b x = 4). 

At the instant t = x jc2 displacement u starts to increase due to the motion transmitted 

from the second rod in which the wave propagates at speed c2 > c1 • At t-= xjc1 , the 
displacement discontinuity [u] = 0.5 propagating along the first rod appears. Comparison 
of the right-hand portions of curves shown in Figs. 6a and 6b confirms the previously 
observed tendency of oscillatory motion of rods close to the wave fronts, the tendency 
which is seen to intensify with increasing distances from the end of the rod. 
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