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BRIEF NOTES 

On Blinowski's second grade materials 

M. VIANELLO (MILANO) 

A THEORY of gradient sensitive fluids, first proposed by Blinowski, is extended to second grade 
elastic materials. Additional assumptions related to frame indifference are used in order to 
compute the dependence of the stress tensor on the internal energy, thus avoiding some inde
terminations present in previous papers. Results are compared with those recently obtained by 
Dunn and Serrin. 

1. Introduction 

THE LIMITED aim of modelling a gradient sensitive fluid, in order to describe a thin interlay 
of such a material placed between two regions of ordinary liquid, led BLINOWSKI [1] to 
postulate, in an isothermal context, an energy balance containing an extra term, intended 
to describe non-standard interactions within the fluid. 

However, his approach leads to the deduction of equations containing undefined 
tensor fields, not deducible from the stored energy function. This makes Blinowski's 
approach unsatisfactory for a wider understanding of second grade materials. DuNN and 
SERRIN [2], in a fundamental paper, formulate a thermodynamically admissible theory 
of such materials: introducing an extra flux into the energy balance, by use of the Clau
sius-Duhem inequality, they were able to deduce the form of the dependence of the stress 
tensor on the Helmholtz free energy. 

In this paper we consider a second grade elastic body, rather than a fluid, and show how, 
simply adding a frame indifference hypothesis, it is possible to eliminate all indetermina
tions from Blinowski's model. Moreover, we show that in fact we are led to a set of field 
equations equivalent to those obtained by Dunn and Serrin, when restricted to isothermal 
processes. Our conclusion is that Blinowski's second grade materials constitute a special 
case of those studied by Dunn and Serrin. 

2. Energy balance and field equations 

We restrict our analysis to a second grade hyperelastic body 1!1, undergoing isothermal 
processes, and assume that an intern al energy 

(2.1) 1fJ = ~(F,VF) 
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is given, the function of the first and second deformation gradient. We postulate, following 
BLINOWSKI [1] and GREEN and RIVLIN [3], an energy balance valid for all motions Xt and 
all subbodies· r!/', taking the form 

(2.2) ~ ( J e(¥+;2

)) = J t(n)·v+ J !l(n):Vv+ J b·v, 
Xt(&') OXt(&i') OXt({jl) XtU') 

where t(n) is the surface traction acting on OXt(r!l') and(!, b, v have obvious interpretations. 
The only non-standard term in Eq. (2.2) is 

(2.3) !J(n):Vv, Q'P(n)vi/P' 

which represents an extra flux of energy, required to make the balance equation (2.2) 
compatible with Eq. (2.1). It was in fact proposed by GREEN and RIVLIN [3] who called 
QiP multipolar stress. This approach should be compared with the proposal made by 
TouPIN [4, 5] along different lines. 

Moreover, we assume frame indifference for~' the traction t and the difference b-a, 
where a is the acceleration field. 

As is well known, the assumption of frame-indifference on the energy balance is equi
valent to appropriate invariance requirements on Eq. (2.2) upon superposition of rigid 
velocity fields. 

Standard arguments [6] lead to the deduction of the following: 
1) Cauchy's theorem 

(2.3) t = Tn, 

2) balance of linear momentum, taking the local form 

ea = eh+div T, 

3) the existence of a third order tensor E such that 

(2.4) Q(n) = nE, QPq(n1) = nJ;ipq, 

4) balance of angular momentum, implying that A1k: = Tik + £pik j P be symmetric: 

(2.5) A1k = A"1• . 

We choose to satisfy the relation (2.5) by separately imposing that 

(2.6) yik = yki, 

(2.7) £Pik = £Pki, 

We notice that the assumptions (2.6) and (2.7) are absent from previous papers on the 
subject [1, 3]. We shall see that not only Eqs. (2.6) and (2.7) can be coherently. satisfied 
but, more interestingly, they are exactly what is needed in order to compute explicitly 
the terms left undetermined in the paper by BLINOWSKI [ 1]. 

By differentiation of Eq. (2.1) we have 

• ()~ • h ()~ • h 
(2.8) 1p =()ph F (X+ ()ph P !XfJ, 

(X !X{J 

where the Greek indices denote coordinates in the reference configuration of f!J. 
Since 

(2.9) 
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and 

(2.1 0) 

we have 

(2. 11) . - - ()~ hI PP - ()~ - hI pP p t Olp hI PP 
1p - ()ph v p 0( + a ph v pl 0( p + ()ph v p ap . 

a a{J a{J 

Next, applying twice the divergence theorem, we deduce the following identity: 

(2.12) J T;knkvi+nkJ:kPqvPfq = J Ttklkvi+T;kvi fk+J:kPq jkvpfq+ .EkpqvP/qk· 
ox,(&') x1(&') 

Thus, in view of Eqs. (2.11) and (2.12) we may rewrite the energy balance in the form 
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(2.1 3) f(e 07,, F"a+e a~~ P"a.tJ-T"h-J:khplk)vhip+(e 0~~ P"aF'fl -.E'l)vhi"z = 0. 
Xr(&') a a{J a{J 

We now require Eq. (2.13) to hold for every part [lJ> and all the velocity fields on Xt(&'), 
thus obtaining 

(2. 14) 
where 

(2.15) 

and 

(2.16) "'' p - a-lp P" P' + B' p ~ h - e aphafJ a fJ h , 

where B' /is left undetermined, under the only condition that 

(2.17) 

It is well known that the frame indifference of the function 1p implies the symmetry of A, 
as defined by Eq. (2.15) [7, p. 399] [4]. On the other hand, denoting by J:<'l> and J:C'l1 

the symmetric and skew-symmetric parts of 1:1/, for each h = 1, 2, 3, we deduce from 
Eq. (2.16) that 

(2.18) 

(2.19) 

J:<l p) = n Olp PP P1R 

h 1::' apna{J a P 

.E[lh"1 = B'hP· 

We now state as a separate Lemma and without proof a result of DUNN and SERRIN [2, 
Appendix A]. 

LEMMA. Let clph be a third order tensor such that 

Then 
cclp]h = c<lh)p- c<ph)l 

and 
C'"" = c<'p>h + c<'h>p _ c<ph>'. 

We define 

(2.20) 
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where ?fh is the metric tensor. In view of the relation (2. 7) the Lemma stated above yields 

(2.21) 

Since 

_from Eqs. (2.19) and (2.21) we deduce that 

(2.22) Bl p = n °~ [Fl pk gsp _ pP pk gsl]g h ~;;:; oFsrx{1 oc {3 rx {J kh 

and 

(2.23) l:Z P = n °~ [FP pl gsk + pl pk g!IP _ pP pk gsl] g h ~:: oFsrxfJ rx p rx p oc f3 kh. 

The last equality, together with Eq. (2.15). can be inserted back into (2.14), thus giving 
the full expression of the symmetric Cauchy stress 

'T' p 0~ pP + 0~ pP { 0~ [FP pl sk+pl pk sp £P pk sl] } .lh = f1 oFhoc oc f1 oF"cx.p rxp- (! oFsocfJ rx pg rx pg - rx pg gkh lz' 

We notice that the additional assumptions (2.6) anp (2.7) have been used to deduce 
the form of the dependence of T on the energy function ~ which was left undetermined 
in previous papers. 

An interesting aspect of our result is that the expression of T we have obtained coin
cides exactly with that given by DuNN and SERRIN [2, p. 114], which was derived in a wider 
thermodynamical context, using the Clausius-Duhem inequality. In order to see this, we 
should identify our 'lJl with the Helmholtz free energy, which is certainly possible for iso
thermal processes. This shows how, under appropriate additional assumptions, Blinowski's 
theory may be better clarified and reconciled with othes approaches. 
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