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A note on the instability of a vortex sheet leaving a semi-infinite plate
A. MICHALKE and P. PLASCHKO (BERLIN)

THE CONTROVERSIAL results pertaining to the inviscid instability of a vortex sheet leaving a semi-
infinite plate derived previously by Orszag and Crow and by Bechert and Michel have been
re-examined. While the former found a solution of the problem, which, however, does not
satisfy the full Kutta condition, the latter stated that without excitation by sources, only the trivial
solution exists. It is found that both different methods agree completely, but that the no-Kutta-
condition solution of Orszag and Crow, in the sense of Bechert and Michel, reflects the existence
of a vortex sheet excited by a special dipole sheet along the plate. Furthermore it is shown that
for vortex sheet problems the use of the pressure instead of the velocity potential is more con-
venient. Finally, it is proved that the Wiener—Hopf equation cf the present problem corresponds
to the differential equation for the vortex sheet displacement derived by Bechert and Michel.

Przeanalizowano powtornie kontrowersyjne wyniki dotyczace niescisliwej niestatecznosci
warstwy wirowej opuszczajacej ptyte potnieskonczona uzyskane przez Orszaga i Crowa oraz
Becherta i Michela. Pierwsze z wymienionych rozwigzan nie spelniaja petnych warunkow Kutty,
w drugim zas przypadku stwierdzono, iz bez wzbudzen zrodlowych istnieja wylacznie rozwiazania
trywialne. Ustalono petng zgodnos¢ obu metod z tym, ze rozwigzanie Orszaga-Crowa niespelnia-
jace warunkow Kutty w sensie Becherta-Michela odpowiada istnieniu warstwy wirowej wzbu-
dzonej przez specjalng warstwe dipolowa rozlozona wzdiuz plyty. Pokazano ponadto, Ze przy
rozwazaniu zagadnien warstwy wirowej wygodniej jest korzystac raczej z cisnienia niz z potenc-
jalu predkosci. Wykazano wreszcie, ze rownanie Wienera—-Hopfa omawianego problemu odpo-
wiada réwnaniu rézniczkowemu przemieszczen warstwy wirowej wyprowadzonemu przez
Becherta i Michela.

IToBTOpPHO TIPOAHANHU3UPOBAHBI CIIOPHbIE PE3YJIbTATbI, KACAIOIIMECH HECKHMaeMoll HeycToi-
YHBOCTH BUXPEBOTO CJIOA OIYyCKAIIETO MOJIyOECKOHEUHYIO IUIMTY, MojydeHHble OpLiarom
u Kpoyom, a Taxxke Bexeprom u Miuxenem. ITepBble 13 nepeuncaeHHBIX PEIICHHH HE yI0BJIET-
BODSIET IIOJIHBIM YCJIOBHAM KyTTa, Bo BTOPOM »Ke CIydae KOHCTaTHPOBAHO, UTo 0e3 HCTOUHHKOB
BO30Y)KIEHHII CYLIECTBYIOT HCK/IIOUHTEIBHO TPHBHAJIBHBIC PCIICHHA. YCTAHOBJICEHO IIOJIHOE
COBMajicHHe ODOMX 3THX METOLOB, C TeM, uTo peeHne Opuara—-Kpoya, HeyqoBJIeTBOPSIOLIEe
yeroBusiM Kytra B cmobicie Bexepra-Muxessi, oTBeuaeT CyLISCTBOBAHHIO BHXPEBOIrO CJIOA,
BO30Y)KIOEHHOIO CHEeUHalbHLIM JIMIIOJIBHLIM CJI0EM, pacnpeje/ieHHbIM Baoas mrbl. Kpome
3TOrO IIOKA3aHQ, UTO MPH PACCMOTPEHHMH 3a4ad BHUXPEBOro CJI0sI BBITOAHEE HCIIOJIb30BATh
JlaBJIeHHE, YeM [IOTEHIMaJ CKOopocTH. HaxoHell, IoKasaHo, 4ro ypaBHenue Bunepa—-Xomnda
obcy)KmaeMoi 3agaun, orBevaeT AU(depeHIHaNbHCOMY YPABHEHHIO IEepeMEIeHyil BUXPEBOTo
cllos1, BbIBeJeHHoOMY bexeprom u  Muxenem.

1. Introduction

HeLmHOLTZ [1] studied the hydrodynamic instability of an infinitely extended vortex
sheet as a simple model of a free shear layer in an inviscid, incompressible fluid and found
instability for all frequencies. OrRszaG and Crow [2], in the following abbreviated by
O and C, extended the theory to a vortex sheet leaving an infinitely thin and semi-infinitely
long plate in an inviscid, incompressible fluid by application of the Wiener—Hopf technique.
They found a solution which had, however, some unphysical properties. For instance,
the vertical displacement A(x, t) of the vortex sheet for periodic time dependence behaved
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close to the trailing edge (x = 0) like 7 = O(x'/2). This “no-Kutta™ condition had led to
many discussions about the importance and relevance of the “full-Kutta” condition ¢h/dx —
— 0 for x — 0 for this problem. O and C discussed also modified solutions leading to a full
and a rectified Kutta condition and considered the latter one most reasonable. Using
a completely different method, BECHERT and MICHEL [3], in the following abbreviated by B
and M, obtained the controversial result which states that a time-periodic solution to the
problem does not exist except in the case when an external source excites the vortex sheet.
However, the reason for the discrepancy with the Wiener—-Hopf solution of O and C
remained open, although B and M noted that the O and C-solution corresponds to a vortex
sheet excited by a dipole at the trailing edge of the plate. Unfortunately, this important
result has been widely ignored.

More complicated problems have been solved on the basis of the O and C-method,
for instance, the compressible analogue with excitation by a simple point source by CRIGH-
ToN and LEPPINGTON [4] and the axisymmetric jet problem by CRIGHTON [5], to mention
only a few.

In the meantime, BECHERT [6] extended the theory with respect to certain flow par-
ameters and to flow-field calculations. Later BECHERT and STAHL [7] were able to verify
excellently the theoretical results for the excited vortex sheet by experiments. Hence, there
is no doubt that the results of B and M are correct, but the question remains open what
relation exists between both results of O and C and B and M.

The aim of the present note is to compare both methods and to find out the reasons
for the (apparent) discrepancies of their results, It will become clear that both methods
are correct and lead to identical results, but that the O and C-solution can be interpreted
as a forced solution with the vortex sheet being excited by a special dipole sheet along the
plate. Furthermore it will be mentioned that the use of the velocity potential for the disturb-
ance velocity in both regions outside the vortex sheet can be misleading. As opposed to
this, the pressure disturbance is found to be a more convenient variable. Finally, the
comparison of both methods will show quite clearly the nonuniqueness of the Wiener-
Hopf technique and the equivalence of the Wiener-Hopf equation of O and C with the
differential equation derived by B and C.

In § 2 the governing equations of the inviscid, incompressible problem are derived with
emphasis laid on the fact that the vortex sheet has to be considered as the limit case of a
continuous, finitely thick shear layer. Following the method of B and M in Sect. 3, the
pressure-displacement equation is solved by means of Poisson’s integral. In Sect. 4 the
problem is, following the method of O and C, solved by means of the Wiener-Hopf tech-
nique applied to the pressure field. Finally, in Sect. 5, both methods and their results are
compared. In all cases, it is found that in the strict absence of any “source”, a nontrivial
solution of the problem does not exist.

2. Governing equations

Since we want to treat the vortex sheet as the limit of a shear layer of finite, but vanishing
thickness, we consider a parallel basic shear flow with an x-velocity component U(y)
in an inviscid, incompressible fluid. For small disturbance velocity #'. v" and pressure p’
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the linearized Euler and continuity equation in the presence of incompressible sources
become

o = 0 du op’
2.1 e - I LIS
@) Q[5r+ng]u+g-v LA 2V
o N
(22) g[at+U n ]7) -7
ou’' ov’
23) et =

where g is the constant density, f, and f, are dipole-type source distributions and ¢ is a

simple source distribution. Furthermore the vertical particle displacement h,(x, y,t)
is introduced, which is related to the o'-velocity by

. 9
(2.4) o' = [a[ + T ax]h,,.

If we take the x-derivative of Eq. (2.1) and the y-derivative of Eq. (2.2), we get with Eq.
(2.3)

?p | P du &’ I 6" af, . of,
23) B Tt T TRy 9[“5; lq oty
Here @’ can be eliminated by Eq. (2.4) yielding from Egs. (2.5) and (2.2)
*p  p 0 dU c¢h, of  ofy
(2.6) 2 T E?yri? = — [Bt +U- ] [2dy Ix +q] +fa—+ﬂa'y
o - o) op’

Equations (2.6) and (2.7) constitute a system for the unknowns p’ and k, for given basic
velocity U(y) and sources g, fx, f,.

In the following only the case of a discontinuous shear layer is treated by assuming
@9 R )
where H(y) is the Heaviside unit-step function with H(y > 0) = 1 and H(y < 0) = 0.
d(y) = dH/dy is the Dirac delta function with 8(y # 0) = 0 and d(y = 0) = . For
those who are not familiar with the functions H(y) and (), some relations which are used
in the following are given in the Appendix 1.

Equation (2.8) implies that at y = 0 there is a vortex sheet with the vorticity 2 =
= —dU/dy = — Ud(y)in the fluid. A semi-infinitely long and infinitely thin, rigid plate is
assumed at y = 0, x < 0. With Eq. (2.8), the pressure-displacement equations (2.6) and
(2.7) become

?p  p 0 d oh, ] s
@9 et —9[- o UH®) 5}-”2U6(y) o Tt t o

(2.10) 2 ruHG) L. h = Y
' ?| e ox | ™= oy T
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As boundary condition we have to require that dp’/dx and dp'/dy — O for |y| - o0
and for x - —oo far upstream save for the case when sources are there. Furthermore,
the particle displacement 4,(x, y, t) has to be continuous across the vortex sheet at y = 0
for physical reasons. Then h(x,t) = h,(x, 0, t) is the displacement of the vortex sheet.
Along the plate (y = 0, x < 0) the normal velocity component " and hence the displace-
ment must be zero: h(x,t) = 0 for x < 0. In addition, if there is no source along the
vortex sheet at y = 0, then the pressure must be continuous across y = 0. One can derive
a patching condition from Egs. (2.9) and (2.10) which requires that Eq. (2.10) be satisfied
for y — 40. Finally, from physical reasons it follows that the displacement /4 has to be
continuous along the vortex sheet and therefore # — 0 for x — 0.

It should be mentioned that without mean flow (U = 0), a nontrivial solution of Egs.
(2.9) and (2.10) satisfying the boundary conditions exists only in the presence of sources.
Furthermore, if we assume, e.g., a simple point source g = go(?) d(x—x,) d(y —y,) at
X, V5. the boundary condition along the plate requires additionally a dipole distribution
fy = Fy(x,1)d(y) for x < 0. As a consequence of Eq. (2.10) with #, = 0 for y = 0 and
x £ 0, we have a pressure difference across the plate:

(2.11) Ap = lim[p'(x, +&,t)—p'(x, —&,t)] = Fy(x,t) for x
e—0

N

0.

This can be obtained by integration of Eq. (2.10) over —e& < y € ¢ for ¢ » 0. Some
examples of solutions for U = 0 are given in Appendix 2 by means of conformal mapping.

In order to solve Egs. (2.9) and (2.10), different approaches have been used by O & C
and by B & M. Instead of the pressure p’, O & C used the potential function @ which
is related to the pressure p’ by

, ] 0

(2.12) p = —@[-8;4— UH(y) bx]qj'
For y # 0, @ is the velocity potential. Since p’ is continuous along the free vortex sheet,
it follows that @ must have a jump at y = 0 and that d®/dy is not bounded but will contain
a o(y)-term. This is very inconvenient as compared with the pressure p’, especially if the
limits of d@/dy for y - +0 are needed. These limits make sense only if they are interpreted
as y > 4+¢ with 0 < ¢ € 1. Notwithstanding, O & C applied the Wiener—Hopf technique
to the problem to derive the solution for @. Instead, B & M derived a differential equation
for the vortex sheet displacement h(x, t) which has been derived from Egs. (2.9) and
(2.10) by means of symmetry conditions for the pressure p’.

In both methods the Helmholtz solution p,, #, for the infinitely extended vortex sheet
without plate has been separated by assuming

(2.13) p = pot+pe, h=ho+h..
For periodic time dependence, p, and A, are the Helmholtz solution, growing exponentially

in the x-direction, of Egs. (2.9) and (2.10) which satisfies the boundary conditions at
|y| > o0 and the patching conditions at y = 0. The vortex sheet displacement 4, is then
(2.14) ho(x, 1) = Coexp(—iu, x—iwt),

where C, is an arbitrary constant amplitude, w is the real cyclic frequency and u, is the
complex eigenvalue of the Helmholtz problem:

(2.15) iy = — LT,
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There is an additional eigenvalue u, which is the conjugate complex value of ;. This
corresponds to a disturbance decaying exponentially for x — co. An analysis of the
Helmbholtz solution for the disturbed free vortex sheet shows that, as required, the displace-
ment of the vortex sheet and the pressure is continuous across the vortex sheet, but that
the y-velocity component @ has a jump and, as a consequence of the continuity equation,
the x-velocity component u has a Dirac contribution. Since A, # 0 for x < 0 along the
plate, a compensating field p,, A, is necessary to satisfy & = hy+h, = 0 for x < 0. &, and
the gradients of p, are assumed to vanish for |x| — oo.

In order to compare the different methods of O & C and B & M and their results, both
methods will be re-examined in the following sections. To simplify the analysis, we restrict
ourselves to a simple point source at (x,, y;) with

(216) q(x! Y t) = ro(t) 6(x_xs) 6(}’_)"5)

for y, < 0, i.e., the source is located in the fluid at rest. Furthermore we assume f. = 0
and restrict the dipole distribution f, to a dipole sheet along the plate with a separate

contribution F,(x, t)d(y) belonging to the simple source, as mentioned above. Hence
we have

2.17) Jy = [Fa(x, 1)+ Fo(x, )] 6(y)

which vanishes for x > 0.

Furthermore, since h,(x, y, t) has to be continuous at y = 0, we put the displacement

of the vortex sheet A,(x,0,t) = h(x,t). Then, according to Appendix 1, we have

(¥ hp(x, y, 1) = 8(y)h(x, t). Finally, the Helmholtz solution p,, h, satisfies Egs. (2.9)
and (2.10) for ¢ = f; = f, = 0. Hence we obtain from Eq. (2.9) an equation for p,:

&°pe

(2.18) '%pc+7y”_ 2)U6(y)[ L UHG) - ]

oh,
ax

_g_d_qe 3(x—x,) Sy —yy)+ (Fo+ Fo) ().

The first patching condition for y - +0 and all x is due to Eq. (2.10):

(2.19 tim | < _ (F, + Fy)( )| = - e 2h

| »—0 a,V ( 4 d Y - @ 7&; ax ¢’
ap. &h,

(2.20) ylll_llo[ 7-—(!" utFD) 5()/)] —e—az

The limits on the left-hand sides of Egs. (2.19) and (2.20) remain bounded since in Eq.
(2.10) the left-hand side is bounded because of the continuity of hp and the finite jump by
H(y). Thus, in the presence of a dipole sheet (F,+ F; # 0) along the plate x < 0, ap./dy
must contain a &(y)-term which cancels the corresponding Dirac function in Egs. (2.19)
and (2.20). By adding both Eqgs. (2.19) and (2.20), we obtain a differential equation for 4,:

2 2
2.21) 0{[%}[—-{- U%:l +%2~=hc = [Qpc (F, +Fd)5(y)] [%}; —-(F,,+F,,)6(y)] :

y=++0 y—+-0
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The second patching condition is given by the pressure continuity across the free vortex
sheet for x > 0:

(2.22) pe(x, +0,1) = p(x, —0,1¢)
while the condition /& = 0 along the rigid plate for x < 0 requires
(2.23) ho(x,t) = —hy(x, t).

In the next section the solution of the problem is derived by a method similar to that
of B& M.

3. Solution of the pressure-displacement equation by means of the Poisson integral

B & M considered only time-periodic solutions of Eq. (2.18) and split p,. into an
instability field p; and a source field p,:

(3.1) Pe = PitDs.
For the moment being we retain arbitrary time dependence. The instability field p; has to
comply with

a*pi 2p oh,
3. L - e ,
(3.2) a2 T iy ZaUO(y)[ +UH(y) - ] T = L(x,p,t)
while the source field is defined with U = 0 and determined by
82[’: azps dq &
. Gt = e gy M X —r)+ (F )Y ().

For special cases the solution to this equation can be obtained by conformal mapping
as shown in Appendix 2. The solution p, is related to its y-velocity component v by Eq.
(2.2) which yields with U = 0

0v, ops
(3.4) 0 5 = —ar + (EHF)O0).

at

Here 24(x,0,7) = 0 for x < 0, and ¢, is continuous at y = 0, x > 0.

B & M concluded from Eq. (3.2) and from the boundary conditions for y —» 00
that p; has to be a symmetric function with respect to y. We shall show this more strictly
by using the Poisson integral. If we treat Eq. (3.2) as a Poisson equation for p; and assume
that 4, vanishes for x - 4co, thén the Poisson integral yields the solution of Eq. (3.2):

(3.5) P,y 1) = f de a’nL(s 7, HlnlGx— &2+ (-0,

where L(x, y, t) is defined by Eq. (3.2). The integration with respect to  can be performed
if we take the properties of the Dirac function d(7) into acount (see Appendix I). Then
we get with Eq. (3.2)

o 5 h
(3.6) ey, = -2 [ a [023{2 RIA ]m[(r— )2 437,

— @
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It is obvious from Eq. (3.6) that p; is, in fact, a symmetric function of y. Hence the condition
(2.22) is satisfied for all x. For y # 0 we can interchange the differentiation with respect
to x or y with the integration over &. Then it follows that dp;/dx and dp;/dy vanish for
|y| = oo. Especially, we obtain

i _ o 2 O*hs 9*h, ] 1y
() By 2 J d‘s[U 8 T o 7t (x—§&)*+y*

The last factor in the integrand of Eq. (3.7) tends for y - 40 to a Dirac function (see
Appendix 1). Thus we' find

= 2 ﬂ2
(3.8) yliTo 1= —g fd [ 6;;2 +2Ua§g ][ié(x—f)] = FI(x).

The integral /(x) cannot be evaluated unless the term in the square brackets is continuous
for all &. Nevertheless, by introducing Eqs. (3.8) and (3.4) into Eq. (2.21), we note that
I(x) drops out. Since the Helmholtz solution A, satisfies the homogeneous part of Eq.
(2.21), we get for the vortex sheet displacement h = ho+h,.:

- - 2 2 _
(3.9) {[fj +Ufj ] +3}h _ du(x, +0,1) wé.(x," 0,1) 2dv;(x 0, ’,)
ot ox ar at ot
The required boundary condition is A(x, r) = 0 for x < 0. The exciting velocity v, of the

sources is unequal to zero only for x = 0.

The homogeneous equation (3.9) has already been given by Howe [8], while the in-
homogeneous equation (3.9) and its solution has been discussed by MiCHALKE [9]. Here
we shall restrict ourselves to the case of periodic time dependence of v, and & proportional
to exp(—iwt) where w is the real frequency. Without changing the symbol for the vor-
tex sheet displacement (i(x, t) := h(x)exp(—iwt)) and putting v,(x, 0, t) = V(x) H(x)
x exp(—iwt), we obtain from Eq. (3.9)

d*h
(3.10) U2 d—z———leU : —2w*h = =2ioV(x) H(x).
Eq. (3.10) corresponds to the equation derived by B & M. Its solution satisfying # = 0
for x < 0 is easily found to be:

G.1D)  h(x) = U2( = )fdfv(E)H(f)[eXp[ml@ x)] = exp [ip, (§ = 0)]]-

Here u, is the Helmholtz eigenvalue (2.15) and u, its conjugate complex value. The solution
(3.11) yields A(x) = 0 for x < 0 and tends for x — o0 to the exponentially growing Helm-
holtz solution with the amplitude being completely determined by the exciting velocity V.
From this equation (3.11), B & M concluded that a nontrival solution does not exist
without excitation (V; = 0). B & M calculated the displacement A for excitation by a point
source g, # 0leading to V; = O(x~!/?). The solution (3.11) then satisfied the full Kutta
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condition & = O(x*?). This can easily be seen by considering the expansion of Eq. (3.11)
close to the trailing edge of the plate for x » +0:

(3.12) b = gl f GEV () H(E) (r— 8+ .
Excellent agreement of theoretical results with experimental ones has been found by BECHERT
and STAHL [7] in the range of validity of the vortex sheet approximation.

For the physical understanding it is necessary to emphasize that, by excitation (gq # 0),
also a dipole distribution F, # 0 along the plate exists which, due to Eq. (2.11), corresponds
to a pressure difference Ap across the plate (see Appendix 2). Due to Eq. (3.3) a pressure
difference Ap can also be generated for g, = F, = 0 by a dipole sheet F; alone along the
plate for x < 0. In this particular case the solution to Eq. (3.3) with the Poisson integral
for periodic time dependence is given by

@13) pe) = o] f @i t+y| = 2.

Furthermore, since the function W satisfies the equation
;W PW

(3.14) _ax—zJ”T = Fy(x)6(»),

we get from Egs. (3.4), (3.13) and (3.14) with g = F, = 0:
. ap, 3w

(3.15) —iwgyy = — 31y +Fi00) = 55

Hence the inhomogeneous part of the differential equation (3.10) becomes

' 2. W
(3.16) —2iwV(x) H(x) = E}}_{% g

With Eq. (3.13) and with & = —{ we find

ew a1 4 B x| _ Fu(=0)
3.17) B2 = x[—z—;t—of dCF( C)M—Z_I_y;]———./?[f C(C—{—Z)Z],

where z = x+iy and # means “real part of”.
Since the left-hand side of Eq. (3.16) vanishes identically for x < 0, the question is
whether dipole distributions F; of this type do exist. Let us try:

(3.18) Fix) = G(—x)*"', x <0, G = constant.

Then the integral (3.17) can be evaluated (see GRADSHTEYN and Ryzuik [10], formula
3.194.6):

- C”"‘ﬁ_ _ (l=»)mz'?
3.19) Of dC~(C+Z)2 = g 0<v< 2.
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The branch cut of z"~2 is located in the negative real axis. It follows from Egs. (3.15)
to (3.19) with z = x+iy = rexp(i¢):
(1- v)G

(1-v)G cos((»— 2)()2)
~ 2sin(vm)

(3.20) —iwgvy(x, y) = ?_sm(wr,) F2-Y

R =

For ¢ —» 4=, v, has to vanish for y - 40, x < 0. Hence admissible values of » are either
v = 1/2 leading to

» G -—3/2 = G -3/2
(3.21) ovs(x, y) = ‘4"(;=l[ I; oVix > 0) = 4—l.w—x

or » = 3/2 leading to
(3.22) 0v,(x, y) = G R[z=Y?], oVix>0) = G x~1?
' SR diw ¥ et diew '

It follows with Eq. (3.12) from Egs. (3.22) and (3.18) that a dipole sheet with F; ~ (—x)!/?
leads to the full-Kutta-condition solution with & = O(x%?), while F; ~ (—x)~Y? with
Egs. (3.21) yields the no-Kutta-condition solution # = O(x!/2) derived by O& C. In
the latter case it is necessary in evaluating Eq. (3.12) to replace £-32H(&) due to Egs.
(3.21) by Z[(E+iy)~>/?] and taking the limit y — +0 after the integration. Hence it is
proved that the no-Kutta-condition solution of O & C can be obtained by the method
of B& M, if only a dipole source distribution along the plate is assumed with F; oc
(—x)~*? leading to ¥, oc x~3/2,

Before discussing both dipole sheet solutions in more detail, let us re-examine the method
of O & C in the next section.

4. Solution by means of the Wiener-Hopf technique

As already mentioned in Sect. 2 O & C used the velocity potential @ in their calculation.
For the reasons already mentioned we prefer to use the pressure p. for the solution by

means of the Wiener-Hopf technique. Analogously to O & C, we denote
P (x, y)exp(—iwt r > 0,

@l pcz[ (X, y)exp( ! ) )
Pea(x, p)exp(—iowt) y < 0.

From Eq. (2.18) we see that for y # 0 and ¢, = 0 both functions are solutions of the
Laplace equation. In order to avoid problems with the asymptotic behaviour of the func-
tions for |y| — oo, the Laplace equation is replaced by

pe P ,
(4.2) Efci;ﬁfa;’;:gzpﬂ i=1,2.

Here ¢ is a real positive constant which is set zero later. The boundary conditions require
Per = 0 for y = 400, and p,, = 0 for y - —oo. The first patching condition at y = 0
valid for all x is given by Egs. (2.19) and (2.20). These yield for the “bounded” part of
0peif Oy

apd — 0 . . . apcl | 2
4.3) | = Q[Uax—lw] h.; ¥ = pw?h,.

y=+0 y—-=0
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Finally, the second patching condition along the free vortex sheet and along the rigid plate
are given by Egs. (2.22) and (2.23).
In order to solve the problem, a Fourier transform with respect to x is introduced:

(4.4) Pi(y, 3) = @m) "% [ dxpey(x, y) explidx)

and corresponding expressions for P,(y, 1) and C(4) as Fourier transforms of p., and A,,
respectively.

The solutions of Eq. (4.2) satisfying the boundary conditions for |y - oo lead to
Pi(y, 1) = A(D)exp[— (22 +£)'12y],
Py(y, 2) = B(Dexp[+ (22 +)'2y],
where the branch cuts for (42+¢2)!'/? as function of A are chosen in a way that the real
part is positive for all complex A4 (see O & C). Then in the strip —e < &#(4) < & both
functions are analytic. The Fourier transform of the first patching condition (4.3) yields
(4.6) P{(+0, 2) = p[UA+w]?C(R), Py(—0, 1) = pw?C(4).
With Egs. (4.5) it follows
@7 A = —p(UA+w)*(A2+e2)"12C(R),  B(A) = ow? (22 + £}~ 12C(A).

(4.5)

To satisfy the second set of the patching conditions (2.22) and (2.23), half-range Fourier
transforms will be used as defined by

0 o
(4.8) C. = @2 [ dxh (e, C, = @) [ deho(x)et.
— 0
It is obvious that C = C, + C_. Analogous relations hold for P, and P,. Then Egs.
(2.22) and (2.23) yield with the half-range Fourier transform of Eq. (2.14)

(4.9) A, = B,, C_ =iCe(Ru) 2(A—uy)~"
Furthermore, from Eq. (4.7), it follows

A, +A_ = —o(Ur+w)? (224 e2)"12(C +CL),
(4.10) + o( ‘ ) + )

B, +B_ = pw?(A%+ 2" Y2(C, +C).
With Egs. (4.9) we find from Egs. (4.10)

@ @ = WL 0, yicy@ny -

By means of the Helmholtz eigenvalues u, and u, given by Eq. (2.15) it follows that
(4.12) (U4 w)? +0?* = U212 +20U2+20% = U(A—pu)(A— ;).

Then we can split Eq. (4.11) in a function F_ defined by

(4.13) F. = —(A—ie)*(A_.—B_)/oU?

and a function F, defined by
4.14) F, = [(A=p) (A=) Cy +iCo(2)~ 2 (A— p)l(A+ie)™ 12,
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F_ is analytic in —oo < () < ¢, F, is analytic in —e < % (4) < + o0. Both functions
are analytic in the common strip of overlap —& < & (1) < ¢ and there Eq. (4.11) requires
that F, = F_.

The functions F, and F_ agree with those derived by O & C by means of the velocity
potential @. From the asymptotic behaviour of the Wiener-Hopf equation F, = F_ for
|A] = oo, O & C concluded that F, = F_ = E = constant. Then:

(4.15) Ci = [(A=p)(A—p)) " [(A+ie) PE—iCo(2m)~ 12 (2— )]

Since C, has to be regular at 4 = u,; (u, is located in the upper half-plane), it follows:
(4.16) (1 +ie)'PE = iCoQRa)y~ Y2 (1 — us).

This equation relates both constants E and C,. Furthermore we have

(4.17) A_—B_ = —oU*E(A—ie)~ 12,

With Eqgs. (4.9) the results follows:

(4.18) C(2) = Co+C_ = [(A=p)(A— )] E(A+ie)' 2

and

(4.19) A(A)—B(A) = —oUE(A—ig)™'/?

which, together with Egs. (4.7) and (4.5), determines P, and P,.

We note from Egs. (4.5) and (4.19) that 4 — B is the Fourier transform of the pressure
difference Ap(x) = p.(x, +0)—p.(x, —0) across the plate. Hence E # 0 implies that
according to Eq. (2.11) a dipole sheet is present along the plate. The inverse Fourier trans-
form of Eq. (4.19) yields (see LIGHTHILL [I1]):

4.20) Ap(x) = ‘/LT— fdl[A(/l)—B().)]e‘”‘" = —pU2EQRi]—x)"2H(—x)e"™.

! Ll

— o

We see that Eq. (4.20) indicates the presence of a dipole sheet with F, = Zp corresponding
for ¢ = 0 to that of Eq. (3.18) with » = 1/2. The inverse Fourier transform of C(2) given
by Eq. (4.18) yields /.. For ¢ —» 0, O & C found the no-Kutta-condition solution # = hy+
+h. = O(x'?). However, if there is no dipole sheet along the plate (E = 0), only the
trivial solution # = 0 would exist.

Finally, it should be mentioned that O & C noted that “by adding a periodic, irrotational
surging around the edge of the plate™ a full-Kutta condition solution with & = O(x*?)
can be obtained. This “added” flow corresponds to the “folded” parallel flow discussed in
Appendix 2 and yields a dipole sheet like that of Eq. (3.18) with » = 3/2.

5. Comparison and discussion of both methods

We shall now compare the results of O & C with that of the method used by B & M.
It is obvious that the no-Kutta-condition solution of O & C corresponds to that which
is obtained by the method of B & M, when a dipole sheet (3.18) with » = 1/2 along the
plate is assumed. This is equivalent to a pressure difference across the plate. The correspond-
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ing flow field is generated by a “folded” dipole, as can be seen by comparing Egs. (3.21)
and (A2.11).

The full-Kutta-condition solution also mentioned by O & C requires a dipole sheet
along the plate, too. Its distribution Fj is given by Eq. (3.18) with » = 3/2. The correspond-
ing flow field is generated by a “folded” parallel flow, as follows from the comparison
of Egs. (3.22) and (A2.17). Hence it is obvious that the type of the Kutta condition which
is found depends on the exciting source type applied, or more precisely, on the transverse
velocity v4(x, 0, t) exciting the free vortex sheet, as can be seen from Eq. (3.9) or from
Egs. (3.11) and (3.12). In the absence of any source generating a nonzero v,(x, 0, t) and,
equivalently, a pressure difference Ap across the plate, then no instability wave can exist.
This confirms the statement of B & M. The conclusion can also be drawn from the results
of O & C (case £ = 0). :

It should, however, be mentioned that the expressions “source” and “excitation”
may be a little bit ambiguous. It may be a question of philosophy to denote the necessary
pressure difference across the plate as the cause for the instability wave to develop (“excita-
tion by a dipole source sheet”) or to mention the instability wave to be the cause for the
pressure difference across the plate. In the latter case of interpretation it is, however,
difficult to explain why such quite different pressure distributions across the plate should
be generated by the instability wave of the vortex sheet having always the same asymptotic
behaviour. Furthermore, note from Eq. (A2.9) that the pressure of the “folded” dipole
has an infinitely large pressure jump at the trailing edge between x - —0 and x —» +0,
which is physically quite unrealistic if the presence of a source is excluded.

A dipole sheet along the plate corresponds to the inhomogeneous term f, = Fy(x) d(y)
of the linearized Euler equation which has to be a given quantity. Its existence is a necessary
condition to generate a fluctuating flow around the trailing edge of the plate in absence
of any other source. Since only in this way an instability wave is generated, it seems to be
reasonable to denote the inhomogeneous term in the Euler equation as a “source™. As
already mentioned, a simple point source placed in the stagnant fluid requires also a dipole
sheet along the plate, as was shown in Appendix 2. BECHERT [6] discussed the effect of the
source position z, = x,+ i), on the excitation of the vortex sheet. He found that the excita-
tion become ineffective if the simple source is placed downstream of the trailing edge of
the plate right at the vortex sheet. In this case the dipole sheet along the plate vanishes,
as can be seen from Eq. (A2.3) for a source position z; = x, > 0. Hence we can conclude
that the existence of a dipole sheet along the plate inducing a flow around the trailing edge
of the plate is the necessary condition for the existence of an amplified instability wave
past the trailing edge of the plate. This seems to be reasonable since for U = 0 only the
inhomogeneous equations have a nontrivial solution satisfying all boundary conditions,
i.e., if sources are present (at least, F; # 0). The same is obviously true even for U # 0.

It can be shown by means of Eq. (3.9) that even a sound wave coming from the upstream
stagnant fluid will generate a o,(x, 0, f)-distribution along the free vortex sheet which
leads to an amplified instability wave. The same is true for flow disturbances in the potential
flow. Assume a potential vortex upstream of the trailing edge convected in the potential
flow parallel to the plate. If the vortex approaches and passes the trailing edge of the plate,
a transient instability wave is excited, as can be derived from Eq. (3.9). Again in this case,
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the vortex requires a dipole sheet along the plate in order to admit only a tangential velocity
component at the plate. In both cases the full Kutta condition is satisfied.

Finally, it remains to be shown that the results of the Wiener—-Hopf technique applied
by O & C are identical with those of B & M. The Wiener-Hopf equation F, = F_ yields
with Eqs. (4.9), (4.13) and (4.14)

(5.1) (A=) (A—p2) C = — (A2 + )2 (4—B)[eU*.

Here C is the Fourier transform of /4. and

(5.2) A—B = lim P,(y, A)— lim P,(y, A) = AP(2)
y=++0 y=-0

is the Fourier transform of the pressure difference Ap across the plate corresponding to a
dipole sheet with strength F, = Ap, as already mentioned. The left-hand side of Eq. (5.1)

is the Fourier transform of a differential equation for /.. With Eq. (4.12) the inverse Fourier
transform of Eq. (5.1) yields

d*h dh
3 180 2% 907 — R
(5.3) U pre 2ioU — 2w*h, = R(x)/e,
where
(5.4) R(x) = (2m)~1/? f dA(22+ eDH2AP(A)exp(—iAx).

It is obvious that the left-hand side of Eq. (5.3) is identical with that of Eq. (3.10) derived
by B & M if we take into account the fact that the Helmholtz solution h, satisfies the
homogeneous equation (5.3). Hence we should have R(x)/o = —2iwV,(x)H(x) if both
methods are to be equivalent. Moreover, we know from Egs. (3.10) and (3.11) that a solu-
tion h = hy+h, complying with the condition # = 0 for x < 0 requires R(x) = 0 for
x < 0. :

To interpret the function R(x) of Eq. (5.4), we note that we obtain with Egs. (5.2)
and (4.5)

(5.5) (124 )2 (A—B) = (A2 + &) 2AP = — lim 21— fim P2,
yo+0 OV ya—0 QY

From this and Eq. (5.4) we find that

(5.6) R() = — lim -Pe _ lim P
yo+0 0V 30 0y
This corresponds to the right-hand side of Eq. (2.21) if, in the presence of dipole sheets,
only the “bounded” contribution of dp./dy is taken. Hence R(x) # 0 for x > 0 requires
that p. has an antisymmetric contribution at y = 0.
In the case that we admit only a dipole sheet along the plate at x < 0 as source, it
follows from Egs. (3.10), (3.16) and (5.3) that we must have the identity

(5.7) R(x) = 2 ol

y=0 ox? ’
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where W is defined by Eq. (3.13). To show this Eq. (5.4) is re-written as

(5.8) R(x) = Qn)-112 f dAGA2 + 2) AP(A)[A2 + £2]2exp(— i2x)

g 2
= lim [82 - —;xz] {(27:)‘”2 J dAAP(A)(A%2+ e?)~2exp[—idx— (A2 + 82)”2_]']} .

y=0

On the other hand, we have with Eqs. (2.11) and (2.17)

oo 0
(5.9) AP(R) = 20)7"12 [ dEAp(&)e™ = @u) 2 [ dEF,(§)e.
With Eq. (5.9) we obtain from Eq. (5.8)

(5.10)  R(x) =

0 ®©
2
= lim 52—-0—2 vy fd&F,,(E) fd1(12+32)‘”7'exp[ii.(§—x)—(&2+62)”2J'] .
y=0 ox 2n - R

The inner integral of Eq. (5.10) can be expressed by twice the modified Bessel function
K,y(z,) where

(5.11) zy = e[(§—x)2+)*]'2
(see GRADSHTEYN and Ryznik [10], formula 3.961.2). Hence Eq. (5.10) becomes

(5.12) R(x) = lim [SZ—E 5 ]{ f dEFy(&) Ko(l:‘[(vf— X)2 417 1/2)‘
y—+0
Since for £ » +0 Ko(z,) » —In(z,/2), Eq. (5.12) becomes in the limit & » +0 with
Egs. (3.13) and (3.14)

62
=

(5.13) R(x) = thm i

8 — [ J dEF (&) In[(&— x)2+y2]] =2 llm
Hence Eq. (5.7) is proven. This means that the Wiener—-Hopf equation F, = F_ of O & C
is equivalent to the differential equation (3.10) of B & M. The result indicates the well-
known fact that the Wiener—Hopf technique cannot yield a unique solution. In the present
case, F, = F_ only constitutes a differential equation which relates the vortex sheet
displacement to the dipole sheet along the plate or, more precisely, to the normal velocity
distribution along the free vortex sheet induced by that dipole sheet.

As a consequence of these results, the equivalence of both methods of O & C and
B & M is verified.

6. Conclusion

The comparison of the different methods applied to the instability problem of a vortex
sheet past a semi-infinite plate has shown that both methods are completely equivalent.
The Wiener—Hopf equation of O & C is essentially the Fourier transform of the differential
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equation derived by B & M relating the vortex sheet displacement to the exciting transverse
velocity along the free vortex sheet. It is proved that a nontrivial solution of the problem
only exists if any kind of sources is present which leads to inhomogeneous terms in the
original differential equations. These sources require, in the presence of the half-infinite
long plate, an additional dipole sheet along the plate which generates a pressure difference
across the plate and, as a consequence, a flow around the trailing edge of the plate. Sound
waves or flow disturbances in the potential flow can also excite the vortex sheet. In the case
of Orszag and Crow, only a special dipole sheet along the plate is the exciting source.

Appendix 1. Some properties of the Heaviside and Dirac functions

We consider the Heaviside function H(x) and the Dirac function §(x) = dH/dx as
limits of continuous functions, e.g.:

1 ; 0, x <0,
(A1.1) H(x) = lim [—i —_— arctan(x/s)] =112, x=0,
£ 40 2 T
1, x>0,
.1 (xep [0, x#0,
(AL2) = b A= [oo, %= 0.

The properties of the Dirac function lead to the following result:

X

(A1.3) [ deF&)88) = Hx) F(©)

— 0

provided F(x) is bounded and continuous at x = 0. Especially, for F(x) = 1 we have

(Al.4) [ ded®) = HEx)

-0

which is equal to unity for x > 0. Hence we have equivalently F(x)d(x) = F(0)(x).
From Egs. (Al.2) and for F(x) = x", n > 1 it follows from Eq. (Al.3) that

(ALS) x"d(x) = 0.

Furthermore, if G = G(H(x)) is a function discontinuous at x = 0 according to its argu-
ment H(x), then we have

— 0

@ e} 1
(ALS) 1= [ dxFx)GH)(x) = FO) [ dxG(H(x))dH/dx = F(0) [ dHG(H).
0

- 00

Especially for G = H(x), Eq. (Al.6) yields I = F(0)/2.
The function 2H(x)—1 is identical with the function sgn(x). Hence we have

(ALT) j_x [sgn(x)] = %x RH(x)—1] = 258(x).
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Appendix 2. Source fields in the presence of a plate

Solutions of Eq. (3.3) can be obtained by conformal mapping of simple flow fields.
We consider the complex z-plane (z = x+iy) with the half-infinite plate at y = 0,
x < 0. This can be conformally mapped in the upper half-plane of the Z-plane (Z = X'+
+1iY) by
(A2.1) Z = iz'2,
The whole X-axis then corresponds to the “up-folded” plate.

A simple point source at Z; = X;+iY;, Y, > 0 with its mirror image in the Z-plane
has the complex potential:

(A2.2) w(Z) = [Q()2a][I(Z ~ Z) +1n(Z - Z,)],

where Q(¢) is the source strength and the overbar indicates the complex conjugate. It is
obvious that for Z = X = real w is also real. Then the X-axis is a streamline. If we go back
to the z-plane, Eq. (A2.2) can be written with (A2.1):

(A23) W = [/ [InGz—z)+I[(y 2+ 2)|(Vz+V/ 2)] +In(~D)].

Here the first part is the source at z = z, in the z-plane, while the other part takes the effect
of the half-infinite plate into account. The complex velocity is

(A2.4) u—iv = dwldz

and the pressure is due to the linearized Bernoulli equation

(A2.5) p = —oR[ow/ot],

where “#2"” means: “real part of”. The expressions for these quantities will not be given
here. They have been used previously by B & M. However, it can be found that along the
plate at y = 0, x < O there is a w-velocity jump, which corresponds to a vortex sheet,
and a presssure jump, which corresponds to a dipole sheet with F, as defined by Eq. (2.11).

We now consider an X-dipole at the origin of the Z-plane. Its complex potential is given
by

(A.2.6) w(Z) = [D(1)[2n]Z7*

which can also be interpreted as the limit of two counter-rotating potential vortices on the
Y-axis of equal amount of circulation I” placed at Z, = +iY,, if Y, — 0, while D = 2Y,I"
remains constant. In the z-plane we get a “folded” dipole whose complex potential becomes
with Eq. (A2.1)

(A2.7) w(z) = [D(t)/2nri]z=1/2.
The complex velocity is with z = x+iy = r exp(ip) and with Eq. (A2.4)
(A2.8) u—iv = [iD(t)/4n)z731% = [D(r)/4x)r3*[sin(3p/2) +icos(3¢/2)].

We see that for ¢ — 47 along the plate v = 0 and u = +D(t)/4nr-32. The pressure
becomes, due to Egs. (A2.5) and (A2.7)
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(A29) p = (g ‘fiif/zﬂ) Aliz~117] = @‘f,—?sin(wz)/(zn Vr)

= 027 sgn () [(r—x) /21 2a).

Here also a pressure jump exists along the plate at y = 0, x < 0 which yields, due to Eq.
(2.11), a dipole sheet with the strength

D 1
A210) =l i =02 = o L0 (=) el

Note that this discontinuity is associated with the branch cut of the function z!/2 located
in the negative real axis, i.e., at the location of the plate. Furthermore, the y-component
of the velocity, v, is due to Eq. (A2.8):

(A2.11) v = —[D(@) /4] R([z~*7].
Finally, we consider a pargllel flow in the Z-plane with
(A2.12) w(Z) = W) Z.

This yields a “folded” parallel flow in the z-plane with Eq. (A2.1) which has also been
considered by B & M:

(A2.13) w(z) = W(t)iz'I%.
The complex velocity is with z = x+iy = rexp(ip) and with Eq. (A2.4):
(A2.14) u—iv = [iW(1)[2]z~1% = W(t)[sin(p/2) + icos(p/2)]/(2r!?).

At ¢ —» L+ along the plate again we have v = 0 and u = + W(¢)/(2r'/?). The pressure
is due to Egs. (A2.5) and (A2.13):

aw dw :
(A2.15) p= "QW@[I'ZM] = 97"”2 sin(g/2) = Q%sgn(y)[(r—x)ﬂ]”z.

Again we have a pressure jump across the plate for y = 0, x < 0 which yields a dipole
sheet due to Eq. (2.11) with the strength

(A2.16) Fy = 20 Y (- 0212 = 20 S 1x| H(= 1,
The v-velocity becomes, from Eg. (A2.14),
(A2.17) v = —(W()[2)R[z"7].
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