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Transient momentum and heat transfer from a cylinder

Notation

S. P. LIN (POTSDAM)

By usk of a series of integral transformations, the Navier-Stokes equation and the energy equa-
tion are solved for the transient momentum and heat transfers from a circular cylinder in an
incompressible fluid executing a small amplitude high-frequency fluctuation at finite Reynolds
numbers.

Za pomoca szeregu transformacji catkowych rozwiazano rownania Naviera-Stokesa i réwnanie
energii dla nieustalonego wyplywu pedu i ciepla z cylindra kolowego do cieczy niesciSliwej wy-
konujacej niskoamplitudowe drgania wysokiej czgstosci przy skoficzonych liczbach Reynoldsa.

Ilpu momoimly pAda MHTErpANBHBIX NpeobpasoBamuii pemeHo ypaBHenne Hamse-Crokca
¥ YpaBHEHHE SHEPTHM [UIA HEYCTAHOBHBIIETOCH HCTEUEHHs MMITYJIbCA M TEIUId M3 KpPYroBOIo
IUTHHAPA B HECKHMAEMYIO YMIKOCTh, COBEPIIAIOMIYIO KOJIe0aHHA ¢ MAJILIMK AMILTATYHAMHE
BBICOKOMH YacTOTHI MPH KOHEYHBIX uwWciaax Peitronsnca.

radius of the cylinder,
specific heat,
drag force,
Eckert number,
" Grashof number,
gravitational acceleration,
thermal conductivity,
Nusselt number,
pressure,
Prandt] number,
heat transfer rate from the cylinder,
Reynolds number,
radial distance,
tension,
temperature,
time,
cylinder velocity,
dimensionless cylinder velocity,
fluid velocity,
dimensionless fluid velocity,
Cartesian coordinates (Fig. 1),
‘fluctuation amplitude,
dimensionless amplitude é/a,
dimensionless temperature,
polar angle,
dynamic viscosity,
kinematic viscosity,
dimensional gradient operator,
dimensionless gradient operator,
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fluid density,
dimensionless time,
dissipation function,
stream function,
fluctuation frequency.

£E4 Bun

zero-th order solution,
first-order solution,
second-order solution,
maximum value.

I n=e

1. Introduction

THE PROBLEM of transient thermal energy transfer from a thread in an unsteady flow at finite
Reynolds numbeérs are encountered in many industrial and scientific devices. The examples
include the cooling of power transmission lines in wind, the heating of electric wires
and optical fibers in electronic instruments, the hot wire and hot film anemometers for the
measurement of fluctuating flows.

The problem of steady heat transfer without natural convection from a circular cylinder
in an incompressible fluid has been studied by CoLE and RosHko [l], ILLINGWORTH [2]
and Woop [3] with various types of Oseen approximations for low Reynolds number
flows. The same problem has been studied by HieBer and GEBHART [4] with matched
asymptotic expansion. The effect of buoyancy was later included by Woop [5]. The theo-
retical results are in good agreement with experiments [6, 7, 8, 9] when the Reynolds
number is much smaller than one. For the case of large Reynolds numbers, the problem
of steady mixed convection from a horizontal circular cylinder has been studied recently
by SparrOow and LeE [10] and MERKIN [11] with the boundary layer approximation.

Unsteady heat transfer from hot wires in a low Reynolds number flow has been esti-
mated by DAvies [12] with an Oseen type approximation. Despite its technological impor-
tance, a theoretical study of fluctuating heat transfer from a circular cylinder in a finite
Reynolds number flow has not yet appeared. This situation is closely related to the fact
that even the isothermal flow field about a cylinder fluctuating at finite Reynolds numbers
is not yet theoretically predicted. Numerical solutions and boundary layer solutions for
the cases of impulsively started uniform motion and other prescribed simple motions
are available as explained in the writer’s work [13] and the works of COUTANCEAU et al. [14]
and BAR-LEv et al. [15]. On the other hand, a considerable amount of significant experi-
mental results on fluctuating heat transfer has now been accumulated (see references
in [6, 8, 16, 17]). The state of art of this particular subject therefore is simply that the
theory lags far behind the experimental work.

Here the writer develops a method of solution for the problem of forced convective
mourtum and heat transfer in a fluctuating flow at finite Reynolds numbers for which
the boundary layer approximation may not be applicable.' The fluctuation of the flow
need not be sinusoidal. The usefulness of the general results is demonstrated by applying
them to the problems of 1) the transient initial drag on a circular cylinder which starts
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an arbitrary translation from rest, 2) transient damped vibration of a string, 3) the onset
and the migration of the separation point, and 4) the heat transfer from a cylinder in fluctu-
ating finite Reynolds number flows.

2. Theory
2.1. Governing equations

Consider the heat transfer from a circular cylinder of radius a moving with a velocity
—iU(?) in a quiescent fluid as shown in Fig. 1.

us

-I'U(f} -

Fie. 1.

With respect to the coordinate system attached to the cylinder, the momentum, mass
and energy equations are respectively

T (VY = =V, PWiVHO) s

@1) 2 1v@n=o.

kV2T = gc,(-g} +v-v,) T—PV,V—ud,

where V is the fluid velocity, P is the pressure, V, is the gradient operator, the dot denotes
differentiation with respect to time 1, o is the density, g is the gravitational acceleration,
T is the temperature, C, is the specific heat, k is the conductivity of fluid, u is the viscosity,
@ is the dissipation function, and i and j are unit vectors in the x- and y-directions, re-
spectively. :
Invoking the Boussinesq approximation and introducing the following dimensionless

variables

V = v(wd), P = p(p,w?*8*), V,=V/a,

T= ('1::"" Tno)s 6= (A T)Q’ t= ‘I'ﬂz/‘)',
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where T, is the surface temperature of the cylinder, T, is the ambient temperature,  and 4
are respectively the characteristic frequency and amplitude of the fluid oscillation, we can
write Eq. (2.1) in a dimensionless form :

_g‘;_ +eR(v: V)v = —eRVp+V2v—GR®,

@.2) Vov=0,
V20 = (P,T% +&P,Rv- v) 6— 2P, RE$,

where P,, R and G are respectively the Prandtl number, the Reynolds numbe_r and the
Grashof number defined by

P, = v/(k/oC,), R =wa*ly, G = B(—ig+il)AT/w?s,
and
e=dla, E=r|C,AT, ¢ = D/(0w?6*/a?).
In the present study, we consider only the cases in which
(2.3) e<l, G=0(s%), E=0()

but P, and R need not be small. The above parameter range is relevant to the problems
of forced convective heat transfer in_small amplitude high-frequency oscillatory flows
including the initial transient momentum transfer at finite R as a special case [13, 18, 19]
when the boundary layer theory needs not to be applicable. In this range of parameters,
the velocity field and the temperature field described by Eq. (2.2) are decoupled from each
other up to 0(s®) when the solution is sought in power serics of &.

2.2. Velocity field

In terms of the stream function y in cylindrical coordinates (r, 8, z)

_ 1 oy . oy

=TT T e

where u, and u, are respectively the » and 0 velocity components, the first equation of
the set (2.2) can be written as

d 2) g2, _ ER Ay, V?y)
@ -7l -+ %

In the above equation

We expand y in the form
¥=votep +eipat ...
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Substituting this series into Eq. (2.4), we have from the 0(e°) terms

2.5 (% —V’) V2yp, = 0.

) =0 [-1(%)] -0

(B;O ).m = [~u(t)+&(r; ))-csinb,

The boundary conditions are

[_ % % r—co = [u(f)f(r, T)],_,WCOS'B,

where u(t) = U(t)/[U(t))maxs g(r, T) and f(r, 7) are as yet unknown “penalty functions”
which must remain smaller than order one if the boundary condition at infinity is to be
satisfied to the zero-th order. '

The solution of Eq. (2.5)-with its boundary conditions is [19]

V’o = fﬂ(r! t)Sine)

o= u) (=) + 1 [ 20 @, v,

%o = 2 [ u(Wo Ir,(z— D1dA,
o

g _ 2 r — g Jo(wr) Yo(w)— Yo(wr)Jo(w) dw
Zolr, 1) = l+?!e = J%(W)+Y;s(w) : w

o

o Zf i dw
~--H-;o e Co(w,r)T,

f lim— 7_1? [ f 1ela, r)sds-l-u(t)], e lin gole, 9
F—soo i r—o

For the special case of harmonic oscillation, it can be shown that f = g = 0 for all = [19].
It is most likely that f and g remain zero for the case of nonharmonic fluctuations, although
a rigorous verification must be given a posteriori. For the present expansion y = &'y,
to be valid up to 0(¢"), u(7) must be such that both f and g remain 0(¢"*!). Otherwise,
we will end up with a parabolic equation with conditions specified both at r = a and
r— coin the 0(¢"*?) solution. This is an over-specification of the boundary condition
and the present method of successive approximation cannot be continued.

The differential system for the 0(s) solution is

(2.6) (-g—r -—Vz) Vip, = };— sin26- F,(r, 1),



Fy@r,7) = -r“[xo,(zo—u—ur"-r“‘ f wxodw)+zo.,.(—ur"+ur-r“ f wxodw)].
1 1
The solution of Eq. (2.6) can be written as

wl- = fl RSinzo,
where f, must satisfy

(2-») DY, =5 it

o2 10 4
6r’+r73r—_r3'

By use of the method of variation of parameters, we can integrate Eq. (2.8) to give -

2.3
D? =

29) (2 -2 =600,

where

r

G,(r, 'r) = —:—[r’ffr‘—dr—r"fraﬁ',,dr].
1

By use of the transformation

L= 11_2’-2}’2’13"3’
1
Eq. (2.9) can be reduced to

r
B 1300 G, (O,
%‘?'75(’? =gk T )

The solution of this equation with the boundary condition corresponding to Eq. (2.7) is
T ®
2= [ [ 6, ) e e=2C,(w, N)C,(w, ) wr'dwdr'da,
01

where

Jo(wr) Y, (w)— Yo(wr)J, (w)
Viw)+ Yi(w))'/? '

Similarly, the higher order solutions can be obtained.

C;(l‘l", I’) =
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2.3. Temperature field

The solution to the energy equation is sought in the form
O = tyter +e2,+ ...

Substituting this series expansion into the third equation of the set (2.2) and collecting
the 0(¢%) terms, we have p

a 2 o
(2.10) (p,_é,? -V )‘ro = 0.

Only the case of constant wall temperature will be illustrated here. The method of
solution for other types of boundary conditions remains essentially the same. Thus the
constant wall temperature boundary condition is

w(l, =1, >0,
(1, 7)=0, t<0.
The solution of Eq. (2.10) with the above condition is

Ty = l+%-! exp [—w2T/P,JCo(w, r)dw/w.

Similarly, the governing equation for the 0(¢) solution is

@11 (vz-p i),, - p,x(a% 0% _ 1 %o "’o).

"ot or réd r 00 or
The solution of this equation can be written as
7, = P,RJ(r, t)cosl.
Substitutions of the above into Eq. (2.11) gives
2
2.12) (P,f"— LB —,'—) J = H(, ),

where

Jo(wr) Yo(w)— Yo (wr)Jo(w) i)

He, 9 = 2 futr, ) [ enpl-atejpy 220D T80 el
1]

and the prime denotes differentiation of the Bessel function with respect to its argument.
By use of the integral transform

(2.13) Ji= -}. f Ysds
1

Eq. (2.12) can be reduced to
Y 1 a(ray)__l 0
r

(2.14) P, &

1.0 8. e, O = - B0, )
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if Y,(1, v) = 0. Note that the condition 7,(1, 7) = 0 is satisfied since J(1, 7) = 0 accord-
ding to Eq. (2.13). Thus the side conditions for Eq. (2.14) are

Y. (1,7) =0,
and
J(z,r)=0, 7<0ie, Y(z,n=0 <0
The solution of Eq. (2.14) with the above conditions is

w tf/Pr w

Y(r, z/P,) = Iaf J" H, (', HCi(w,r")Cy(w, l")cxp[—wz (—;T —1)]wdwdidr’.

Similarly, for the 0(¢?) solution, we have

2
@.15) (v, P, %) - Q’% [Gycc0s20+ Gusin0+G gcos20],

where

at,

aJ i
Gn=foF. GN=J—é(r—°, GQ=2f1"‘-F

The solution of Eq. (2.15) can be written as
7, = (P,R)*[M(r, 1)cos?0+N(r, 7)sin?0 +Q(r, z)cos20].
Equation (2.15) then demands that M, N and Q satisfy

d 1@ a*\[|M 1 [Gu
@19 P'a—r‘?a‘ﬁﬁ)[nl=?[a,, :
' 0 1 2 1
.17 (P,E —D’) 0= _r.[cq_ = (M+N)] = —L(,9).

The solution of Eq. (2.16) with its homogeneous boundary conditions yields [20]

w /R, ™

[]:] =f f f °"?[‘“‘2( 5 —1)] [ﬁ"((::)) C,(w, Ny (w, r)wdwd Adr'.
11 0 r N s

The solution of Eq. (2.17) with homogeneous boundary conditions is

where

7|P, 4]
Z= L(r', 3) | exp [— w? (i - J,)lCl(w, rC,(w, rYwdwdr'dA.
[ fueo]
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The heat transfer ¢ from the cylinder to the surrounding fluid is then given by

2
218) g= -—kATf [% (ro+£‘rl+szrz)+0(e3)] - db
3 r=]

= —kATR77e (1, )+ £*7P.R {M,.(l , D+N,(1,7)}]1+0(3),
where the subscript r denotes differentiation.

3. Specific problems

3.1. Initial drag

Consider the drag force D per unit length of a cylinder which starts from rest a motion
described by u#(7). During the initial stage when the distance traveled by the cylinder
is much smaller than the cylinder diameter, the fluid velocity field is approximated by ;.
The corresponding stress field can be readily obtained and integrated over the cylinder
surface to give [13]

3.1 D = npvU,[u(r)—2x,,(1, 7)],
where U, = [U(7)lmax and the subscript r denotes differentiation with respect to r. For
7 €1, we have

Fo.(l, 7) = —(m7)~ '3 — -;— + -;—(t,-‘:z)‘fz--—sL 7—3257% /{lO24I‘(—§)}+O(r’),

and

32 D= nng,,[i:+4fﬁ(i){n(t—3)}—lf2dl+2{v('r)—v(0)}
o

T

—nV2 af #(A)(r— )2dA+ % of u(4)(v—Adi

+ —3255 fu(l)(r 41)3”d2+0('r=)]
2561‘(2)

For the special example of impulsively started uniform translation, u(z) = H(z) where
H(z) is the Heaviside function, we have

] 12,-1/2 2, 1 w3257 32 2
D = poU,[nH(z)+4n' 27~ P24 20— (A0)' P + - a7 = ———(—~ 732 40(7?).

5
256}"(7)

The first term is the added mass drag mgvU,H(r) = na%oU,H(1). The second and the
third terms were obtained by WANG [21] who omitied the added mass term and used the
method of matched asymptotic expansions. This drag formula also agrees up to 0(z'/%)
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with that of CoLLiNs and DeNNis [22, 23] who also omitted the added mass term and used
double series expansion in a diffusion time and convection time.

For other u(7), D can be obtained from Eq. (3.2), which is a new contribution by the
writer.

3.2. Damped vibration of a string
Consider a string of radius a stretched along the x axis under a tension of magnitude S.
Small amplitude vibration of such a string is governed by

m‘zQSP::(x’ r) = Syxx(x’ ‘)+D(x; ‘);

where g is the density of the string, y(x, ¢) the transverse displacement of the string at the
station x at time ¢, D the drag per unit length of the string. With D given locally by Eq. (3.1)
the writer solves numerically the above integral differential equation [19]. It was shown
that the usual theory based on the quasi-steady drag formula overestimates considerably
the period and the decay rate of damped vibration of a string in a viscous fluid.

3.3. Separation point

The separation occurs at the point where the shear stress a,4 vanishes, i.e.

du, duy
T = ,u(lhhﬂ)(m.';:9 ) 7:)”1 =0.

In terms of the stream function, the above equation can be written as
2

d
‘672‘(%4'5%)"'0(82) = 0.
Substitution of the expressions for y, and y, into the above equation leads to

=Y ZOr(l ] t‘)___
2%,»(1, T)eR ’

which gives the location of the separation point, as a function of time, on a circular cyl-
inder which starts its motion from rest. Of course this result remains valid as long as

33) cosb(t) =

'
% f U(?) dt < 1. Thus, for small amplitude high-frequency oscillation the above results
0
may be valid for indefinite periods of time. Note that yo,(1,7) >0 as &"—» 0,n = 1.

3.4. Heat transfer

The heat transfer from a circular cylinder in a fluctuating flow is given by Eq. (2.18).
In terms of the Nusselt number Nu Eq. (2.18) can be written as

(3.4 Nu Tos(1, t)+-§(P,R)’[M,(1, 7)+N,(1, 1)]+0(&).

=_..q_=
—kAT

It should be pointed out that this equation does not state that Nu ~ P2, since P, also
appears in the integrands of M, and N,.
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A very important application of the present results will be found in the area of hot-film

anemometry. The numerical computation based on Eq. (3.4) may be used to give a theo-
retical estimate of the difference between static and dynamic calibration [6, 17, 24-26]

of hot-film in the range of high frequency spectrum.
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