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On the disintegration of an arbitrary discontinuity generated by
a centrally-cumulated simple wave of finite deformation in an iso-
tropic elastic medium

’

E. WEODARCZYK (WARSZAWA)

The paper presents the solution of the problem of disintegration of an arbitrary discontinuity
in an isotropic elastic medium, the discontinuity being generated by a centrally-cumulated
simple wave of finite deformation. Two approximations of the motion occurring behind the
wave front are considered, isentropic and adiabatic. It is shown that for each approximation
there exists only one stable configuration of wave fronts which is created after the disintegration
of an arbitrary discontinuity (cf. Figs. 3, 4—isentropic approximation—and Figs. 6, 7—adiabatic
approximation). In the isentropic approximation the contact discontinuity is not formed; it ap-
pears, however, in the adiabatic approximation. The solution is presented in a closed form;
it is one of a very few closed form solutions of dynamic problems in nonlinear elasticity.

W przedstawionej pracy rozwigzano problem rozpadu dowolnej niecigglosci w izotropowym
o$rodku sprezystym, wygenerowanej przez centrycznie kumulowana prosta fale skorficzonych
deformacji. Rozpatrzono dwa przybliZzenia ruchu za frontem fali uderzeniowej — izentropowe
i adiabatyczne. Wykazano, ze dla kazdego przybliZzenia istnieje tylko jedna stateczna konfi-
guracja frontdw fal jaka powstaje po rozpadzie dowolnej niecigglosci (patrz rys. 3 i 4 — przy-
blizenie izentropowe oraz rys. 6 i 7 — przyblizenie adiabatyczne). W przyblizeniu izentropowym
nie powstaje niecigglo$¢ kontaktowa, natomiast pojawia si¢ ona w przyblizeniu adiabatycznym.
Rozwiazanie problemu udalo si¢ przedstawi¢é w postaci zamknigtych wzorow. Jest to jedno
z nielicznych zamknigtych rozwigzah dynamicznych zagadnien nieliniowej teorii sprezystosci.

B mpenacraBnennHoii pabore pemlena mpobiemMa pacniajia MPOH3BOJBHOIO paspeiBa B M30TpoOI-
HOH yHOpyroif cpepne, NeHEPHPOBAHHONO LEHTPHYECKH KYMYJHPOBAaHHOH mpocTo# BOMNHOM
KoHeuHbIX Aedopmaumii. PaccMoTpens! aBa npubmpkeHHA JBWKeHHA 33 QPOHTOM yOapHOil
BOJIHBI — H33HTPOIMHYeckoe M aauabarnueckoe. IToxasaHo, UTO ANA KaykAoro mp.
CYIECTBYET TOJIBKO OfHAa ycroiumBad KoHbuMrypaums (pOHTOB BONH, KaKasd BOIHHMKAEET
Mociie pacnafg MpPOM3BOJILHOTO PasphiBa (CMOTPM PHCYHKM 3 M 4 — H3OHTPOMHYECKOe MPH-
Gmmxenue ¥ pUCYHKM 6 m 7 — anuabaruueckoe npubimxenpe). B ussHTponmuueckom npu-
BKeHWH He BOSHHKAeT KOHTAKTHEIA pasphIB, MOABIIACTCA JKe OH B afuabaTiuecKom npubm-
sxernu. Pemexue mpobmemel ynanock MpeACTaBHTs B BHOE 3aMKHYThIX (opmyn. 310 omfio
M3 HEMHOTOYHCJICHHBIX 3aMKHYTLIX pellleHMH MHHAMHYECKMX 3a/auy HeMHEHHOH TeopHH
YIpYTOCTH.

1. Introduction

THE prOBLEM of disintegration of arbitrary discontinuities was investigated in detail
in gas dynamics [1-3]. Papers [4-7] represent a series of contributions to the problem and
enlarge the previous state of knowledge on the subject. In these papers considered were,
among others, the methods of generation of unstable thermodynamic states in polytropic
gases called arbitrary discontinuities. Their disintegration was found to produce stable
configurations of weak (expansion waves) and strong (shock) wave fronts.
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The problem of particular interest is to prove the possibility of isentropic cumulation
of plane compression waves in a single plane by suitable selection of time configuration
of the boundary conditions [5], followed by the disintegration of an arbitrary disconti-
nuity generated in this manner and the creation of a stable system of weak and strong
waves [7].

Plane one-dimensional motion of an isotropic elastic medium subject to finite defor-
mations is described by an equation similar to that governing the analogous motion of poly-
tropic gases [3, 8, 9. Here the question may be posed as to the possibility of centric cumu-
lation of a plane acceleration wave and of decay of an arbitrary discontinuity in an isotropic
elastic medium under finite deformations. The answer to the first question was discussed
by this author in a previous paper [10]. Mereover, in [11] the problem analysed was the
generation of a plane shock wave of finite deformations in the isentropic approach.

The present paper deals with the problem of disintegration of an arbitrary discontinuity
generated by a centrally cumulated simple wave of finite deformations. The problem will
be solved in the isentropic and adiabatic approximations. It will be proved that in both:
approximations mentioned there exists only one stable configuration of wave fronts which
may be generated as a result of centric cumulation of a simple wave of finite deformations.
This is a considerable difference as compared to the analogous problem studied in a poly-
tropic gas where three variants of wave systems appear (7). The solution will be presented
in a closed form. ,

The presented problems are of great significance for the analysis of extremal compression
of matter.

2. Formulation of the problem

Let us analyse a plane one-dimensional motion of a half-space filled with the isotropic
elastic medium and loaded at the boundary by a suitably designed load (0, f) which
generates the centrally-cumulated simple wave of finite deformations (Fig. 1). The dynamic
deformation of the medium is assumed to proceed according to an isentropic or adiabatic
process. The process will be described mathematically in Lagrangean coordinates x, 1.
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A plane one-dimensional motion of a non-conducting, compressible isotropic elastic
medium in a uniaxial state of finite deformation is governed by the equations

= om v ou
| ¥ i m= FrR
The equations may be reduced to a single hyperbolic type equation
@2 R L
or replaced by two equivé]ent- ordinary equations to be satisfied on the characteristics
@2.3) - do =. Laliydn r
provided
(2.49) dx = ta(m)dt.

Here u denotes the displacement of the medium. particles, and a(m) is the propagation
velocity of disturbances expressed in Lagrangean coordinates. It may also be expressed
by the formula

(2.9) a(m) = (—

1 2w\
0o dm? ) j

where W(m) is the function denoting the dynamic strain energy. In the case of isotropic
medium- the energy is written in the form

1

(2.6) W(m) = -;ﬁ Eom?+

E,m*+0(m*)
with the notations:

Eo= A+2u, E,= 3(%+,u+'a+ﬁ+r),l
A and p are Lamé constants while «, # and » denote the third-order elastic moduli ; a, is the
direction number of the first characteristic 00, of the bunch of Riemann waves, the accel-
eration (Fig. 1).
The velocity of propagation a(m) of disturbances may be, after applying the reduced
form of the expression (2.6) (without the terms 0(m*)), expressed by the formula

@7 a(m) = (l+2-§—;’]—m)m1 a,, ap= %’.
Equations (2.3) yield, after integration along the characteristics, the relation
(2.8) v—F(m) = const if dx = a(m)dt
and
2.9 T v+F(m) = const if dx = —a(m)dt,

2 Arch. Mech. Stos. nr 6/80
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where

(2.10) F(m) = f (E)d§—~ [(1+2 g; )m—l]ao

The equations and relations derived so far hold true for a continuous motion of the
medium. However, on the surfaces of strong discontinuities (shock waves) some of the
formulae loose their sense. In such cases the conservation laws expressed in finite forms
must be used: '

@11) i [e] = —eoDlel,
(2.12) [¢) = —D[m],
@13) DIWI+— 0o Dle?] = ~fov],

the symbol [f] denoting the jump of the value of f at the strong discontinuity wave front,
and D—uvelocity of propagation of that front.

The constitutive equation for the stress is assumed in the form
(2.149) g = % = Eqm+ E,;m*+0(m3).

Let us now pass-to the analysis of disintegration of an arbitrary discontinuity generated
by a centrally cumulated simple wave of finite deformations (Fig. 1); to this end formulae
and relations derived above will be used. First of all, following the procedure outlined
in paper [10], let us derive the solution in the region of wave cumulation (region Lin Figs. 1, 3
and 6).

3. Centric cumulation of a simple wave of finite deformation

According to the theory of quasi-linear differential equations, the characteristics
of a simple finite deformation waves are represented by straight lines [9]. For a bunch
of characteristics shown in Fig. 1 the lines may be expressed by the equation

(E3)) x = a(v) (t—1),
where 7 denotes the time at which the given charactensucs originate at thc boundary

of the half-space (Fig. 1).
According to Eqgs. (2.8) and (2.9), along the characteristics either

E 32
(3.2) v(m) = -ﬁ[( 425 Eo ) -l]ao

or
1— 3E, v 2’ —l]
ZE, E, a, i

(3.3) S
After substituting the expression (3.3) into Eq. (2.5) we obtain

1/3
(3.4) a(w)_( gu ;:) ap.
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On putting in Eq. (3.1) x = h and ¢ = h/a, (h is the space coordinate of the cumulation
point OQ,, Fig. 1) and using Eq. (3.4), we obtain after transformations

E O
(3.5) _.w(o, 7) = _ST;.I(W) —1].:;0

In order to set the boundary of the half-space into motion with the velocity expressed
by Eq. (3.5), according to the constitutive relation (2.14) and Egs. (3.3) and (3.5), the
boundary must be loaded according to the functional prescription

o ¢ T
3.6) 00, 7) = 2b ( ) =i},

h—ayt

The displacement gradient m is then written as

E, '(_.& )’_l'
2E1 | h—ﬂof _.

Next, according to the Riemann invariants theory [3] and the derived formulae (3.5)-(3.7),
the solution of the problem in the zone of the centrally-cumulated finite deformation
wave (region I in Figs. 1, 3 and 6) may be written in the form

(338) 0 (1) = 72 [(J_Gi;) _'J’
(3.9) 0, (x, 1) = __3%[(%) _,]am

-(3.10) m, (x, :)_ _‘“[(F%)z'l]'

The relations given so far have been derived under the assumption that E; > 0 and
m > 0 (waves of expansion, dilatation) or E; < 0 and m < 0 (waves of compression).

Summing up the hitherto presented considerations it may be concluded that if the
half-space boundary is loaded by the stress varying in time according to Eq. (3.6) or moves
at the velocity (3.5), all the acceleration waves will catch up with each other in the plane
x = h at the same instant of time #, = h/a,. Thus an arbitrary strong discontinuity will
be generated in which the conservation laws will not be fulfilled. Hence the discontinuity
disintegrates and gives rise to a thermodynamically balanced system of weak and strong
discontinuity waves. Configuration of those waves depends, among others, on the prop-
erties of the isentrope of the medium v,(c) and of the shock adiabate vy (o) [3]. Let us now
pass to the analysis of the curves.

3.7

4. Properties of isentrope v,(c) and shock adiabate vy(0)

The relation between the isentropic motion velocity o, and stress o follows immedia-
tely from Egs. (3.8) and (3.9)

3/4
@&.1) v,(0) = — f;l (1+1,“‘; ) —1]%

2%
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The corresponding relation referring to the shock wave front, derived from the Hugoniot
conditions (2.11)~(2.13) under the assumption that the medium ahead of the wave is un-
perturbed, and from the constitutive equations (in the isentropic approximation) (2.14),
may be written in the following form :

@2) vh(o) = .
Here

_[]/( ) i g" if o>0 E >0,
4.3) m= a B

E, E] .
"T[I/(El) +4E El] if o<0 E <0

in the isentropic approximatlon,' and

RVET 8] e e
_._[]/(Eo) K E‘:I if 6<0, E, <0,

in the adiabatic approximation. -
In order to compare the functions v;(¢) and vg4(c) let us expand them into Maclaurin
series ; then the isentrope v,(¢) may be written in the form

)

4.5 (o) = "aoE—o+‘——'—‘—;--—.—-—+ sy

while the shock adiabate v4(o) is written either as

o ag E, ¢* 5254, E? &

(4-6) _ ﬂﬂ(a) = _QQE‘+TE—0'—E—E-——'-6—-E§"-E3-+

in the isentropic approximation, or as

4.7 vg(o) = ~a°%+—;»ﬁ—§aoa’ 173 ;.E;: a,0°+ .
in the adiabatic approximation. Moreover, from Egs. (4.1)-(4.4) it follows that
(4.8) lvg(e)| > v (0)] for o #0
and
4.9 lim ‘v)(0) = lim vg(o) = 0
o+ Foo o-»t00 -

Analysis of Egs. (4.5)-(4.9) yields the conclusion that the origin of the system (¢ = 0,
v = 0) is the point of second-order tangency of the isentrope v,(c) and the shock adia-
bate vg(0) (not only the first but also the second derivatives coincide) in the isentropic
approximation, and the usual point of tangency in the adiabatic approximation.
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The curves v,(c) and vy (c) have no common points other than the single point mention-
ed above. Their general qualitative character in both approximations is shown in Fig. 2.
In the case of adiabatic approximation the curves intersect each other also at the origin

) v
e Gz,
V(o) 2,V2
EM!Vm
]
qﬂj Vm
_ %)
Gz, V2 l’ﬁ,r(o-)
Fig. 2.

of the system, in spite of their first order tangency in the same point, since the change
of sign of ¢ is accompanied by the change of sign of the modulus E, (cf. e.g. Eqgs. (4.3)
and (4.4)).

Once the forms of v,(¢) and vy (o) are identified, let us pass to the analysis of the wave
fronts configuration resulting from the act of cumulation.

5. Analysis of the wave fronts configuration after the act of cumulation mtheisenﬁ'oplc
approximation (Fig. 3).

Anyl}sis of the passage from the state 'or,.., o. lying on the isentrope v,(c) to the state

02,9, lying on the shock adiabate vy(0) (cf. Fig. 2) yields the conclusion that this process
is physically possible provided |o.| > 03] and |v.] < |0;|. Other transition paths leading
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to states different from the one given here are physically unrealistic as long as interference
of external interactions in the cumulation plane is not taken into, account.

According to the inequalities derived above, in the region to the right of the cumulation
plane (for x'> h and t > h/a,), a shock wave front 'O, H(Fig. 3) will be propagated
through the unperturbed medium:

(5.1) x—h = D(t—t)), t= hfa,.

Behind the shock wave front, the material cumulation plane O; K moves with the material
velocity v,. It should be observed that in the isentropic approximation the plane does not
constitute a contact discontinuity (that is why it is located within the region I in Fig. 3).
To the left from that plane a centered unloading wave O, R; — O, R, (acceleration wave)
is propagated reducing the stress o from the value o, to 0,. Reflection of that wave from
the free boundary of the half-space will not be discussed in this paper.

The wave configuration outlined above is shown in Lagrangean coordinates x, ¢ in Fig. 3,
and the corresponding qualitative stress variation profiles o, material velocities ¥ and
displacement gradients m are given in Fig. 4.
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Analytical solution of the problem in the individual regions of the phase plane x, ¢
proceeds as follows.

Region I

Parameters of the state and motion of the medium in the zone of cumulation of the
incident simple wave are given by the formulae (3.8)-(3.10).
Region II _

In the zone contained within the region II (Fig. 3), motion of the medium is stationary,

according to the theory of decay of arbitrary discontinuity [1-3]. Hence, making use
of the Hugoniot relations at the shock wave front O, H, (2.11), (2.12) and the constitu-
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tive relations (2.14), the parameters of the state and motion of the medium in region II may

be expressed as follows:
2 2 2
(5.2) 0, = . [ (—9— 1),

E, a} \ a}

(5.3) 0, = — ‘g':ED []/4%:;(:2—:-—1)“*1],
(——1)+1—1]

It is seen that all the parameters are determined by the velocity D which will be found
by solving the problem in the region III.
Region I

In the regioﬁ III a centered acceleration wave is propagated. Along the negative char-
acteristics

(5.4)

(5.5) x—h = —as(mj3) (f—%),
the following relation is satisfied : |

(5.6) vy = F(m3)+0n—F,,
where

ron = S {[22] -}
?;: () -]
=) )

T =do ( h—ao‘r,,.)

Time 7, is shown in Fig. 3.
In addition, from Eq. (5.5) it follows that
h—x
(5.9) as(m;) = T=hjag

Finally, after using the relations (5.6)-(5.9), the velocity in region III is expressed by the
formula

w0 e Bl el

or

3 3
G.11) vs(x, 1) = eii’l {[ ao(:l__;:}ao) —2(2:) +l}

(5.7

(5.8)
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Then from Egs. (2.5) and (5.9) we obtain

: &l

G13). my(x, 1) = 212 {[ag(:l—_’:!ﬂo) _]}'

Consequently, substitution of the expressions (5.12) and (5.13) into the constitutive equa-
tion (2.14) yields

(5.12) ms(as) =

(5.14) aatas)-—ﬁ“—[( )
or
E2 *
(5.15) a;(x, t)— {[ao(t “hlay) 1}. %

In order to render the constructed solution unique, we must determine the velocity
of propagation of the shock wave front D and the direction number of the characteristic
O, R, denoted by a;. To this end the condition of contiguity of stress ¢ and material
velocity v at the interface between regions II and III (characteristic O, R, Fig. 3) will
be used. _

Equating the stresses g, and o5 given by the formulae (5.2) and (5.14), we obtain

) -+(3-)
ata Y -whe

or
2 12
(5.16) D= [-%- (%H)] ao
and for
: a,
(5.17) 7y > 1,
(5.18) Dz afy2.

Furthermore, the equality v, = v, combined with Egs. (5.3), (5.10) and (5.16) yields

o sffaf ()2 -2 -

This is a transcendental equation which enables the numerical evaluation of the direction
number a, of the characteristic O, R, .

From the analysis of the left and right hand sides of Eq. (5.19) it is found that the
equation has a single real root (solid lines in Fig. 5—root (ay/do)s). Inequality (5.17)
satisfied, Eq. (5.17) yields the result

(5.20) ' a, ~ 0.99,,.

Thus the problem of disintegration of an arbitrary discontinuity in the isentropic
approximation has been solved. Let us now pass to the adiabatic approximation.
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6. Analysis of the wave fronts configuration after the act of cumulation in the adiabatic
approximation

Since the shapes of the curves vs(o) and vy(0) in the case of adiabatic approximation
are similar to those of the isentropic approximation (cf. Sect. 4), the wave configuration
of the solution after the act of cumulation will also resemble the one determined previously
(cf. Figs. 3 and 6). The difference consists in the fact that now in the cumulation plane
0, K a contact discontinuity is generated (jump of the parameter m, Fig. 7). Line O, K
represents now the interface between two different regions.

Here are the solutions of the problem in various regions of the phase plane.
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From Egs. (2.11), (2.12) and (4.4) we obtain
3 (goﬂl)1 B 3 EZ Dz( )
(6.1 g2 = - S -EI (D?*—a}) = 3 E, & -1},
3o 3 E,
(6.2) U= — —2— 3 = iy E, ( )D
2
EI2 D? [ D? Eo
63) ‘/ Ef) “g (“o l) E: }
Region III
Here we have
(6.4) 0y = 03, Uy = Uz.

Next, from the constitutive equation (2.14) and the relation (6.4) it follows that

w3 (2) (&) -1]-o

69
WETARTET L8« omo e
ms =
_-;_{I/(E_‘: E;ao [(ao) -IJ } f 03<0, E, <0.
Region IV

Proceeding like in Region III of the case considered in the previous section, we obtain

©9) aad = 2 (%) ).
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S RCR

E;
©8) mia) = - [( ao) —1],
where
h—x
(6.9) ag(x, t) = =
s PR
Qo

The condition of continuity of stresses and velocities along the characteristic O, R, (Fig. 6)
yields

(6.10) D= {% [1+ ~'}—3]/ ?@anm{:o
©.11) %{%[HVL‘/Hz( )] [V ]/:;(—%_L_T—l]
<afie] - Ll

Equation (6.11) possesses, similarly to the case of isentropic equation (5.19), a single
real root (dashed line in Fig. 5, root (a,/ao)o). Inequality (5.17) fulfilled, Egs. (6.10)
and (6.11) yield the respective results:

(6.12) D ~ a,/}/6 ~ 0.64a,,
—_—
(613) a; =~ ‘,E—'/zz—_- Ay ~ 0.638,“.
9y 2+8y/27

Thus the principal aim of this paper has been achieved. To conclude, let us quote
the main results following from the presented analysis of the problem.

7. Final conclusions

1. In an isotropic elastic medium centrally-cumulative simple waves of finite
deformations may be propagated, and they are cumulated on a single plane. This cumu-
lation is achieved by proper design of the boundary value profile, Egs. (3.5)-(3.7).

2. At the cumulation plane an unstable thermo-mechanical state of the medium is gener-
ated called the arbitrary discontinuity, which disintegrates to form a stable system of weak
and strong discontinuity waves.

3. Two approximations of the motion occurring behind the shock wave front have
been considered, isentropic and adiabatic. It has been proved that in both approximations
disintegration of the arbitrary discontinuity is followed by generation of only one stable
wave configuration, shown in Fig. 3 for the isentropic approximation, and in Fig, 6—for
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the adiabatic approximation. In a gaseous polytropic medium three wave configurations
are possible after the disintegration of the arbitrary discontinuity (cf. author’s paper [7]).

4. Solution of the problem is represented in the form of closed formulae. It is one
of a very few closed-form solutions known in nonlinear elastodynamics.

References

-

. B. Puman, O pacnpocmpaneruu niockux 8014 Koneunoi aunaumyds, Counsenusi, Mocksa 1948.

2. H. E. Kounn, K meopuu paspusos scudxocmu, Cobp. Counnennii, 2, Mockea 1948.

3. B. JI. Poxxnaecreenckuii, H. H. Auenxo, Cuauuu KOAIUAUHETHNX VPASHEHUNT U UX NPULONCEHUR
K 2asosoti dunamuxe, Mocksa 1968.

4, S. KaLisk1, Disintegration of a préfiled shock-wave at the cumulation point, J. Tech. Phys., 19, 2, 1978,

5. S. Kauski, E. WLODARCZYK, Optimalisation of compresion parameters of plane cumulative .dwck waves
in a closed tube, Proc. Vibr. Prob., 14, 2, 1973.

6. E. WLODARCZYK, On disintegration of arbitrary discontinuity resulting from collision of two stationary
shock waves overtaking each other' in polytropic gas, J. Tech. Phys., 20, 4, 1979.

7. E. WrODARCZYK, On disintegration of an arbitrary discontinuity generated by a centered compression
wave in a polytropic medium [in Polish], Biul. WAT, 27, 8, 1978.

8. Z. WesorLowskK1, Dynamic problems of nonlinear elasticity [in Polish], PWN, Warszawa 1974,

9. D. R. BLAND, Nonlinear dynamic elasticity, Waltham, Mass. 1969.

10. E. WLODARCZYK, On the centric cumulation of the simple waves of finite deformations in an isotropic
elastic medium, Bull. Acad. Polon. Sci., Série Sci. techn., 27, 5/6, 1979.

11. E. WLODARCZYK, On the problem of formation a plane shock wave of finite deformations in isotropic

elastic. medium, J. Tech. Phys., 20, 4, 1979,

Received February 16, 1979.





