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On the disintegration of an arbitrary discontinuity generated by 
a centrally-cumulated simple wave of finite deformation in an iso­
tropic elastic medium 

E. WLODARCZYK (WARSZAWA) 

The paper presents the solution of the problem of disintegration of an arbitrary discontinuity 
in an isotropic elastic medium, the discontinuity being generated by a centrally-cumulated 
simple wave of finite deformation. Two approximations of the motion occurring behind the 
wave front are considered, isentropic and adiabatic. It is shown that for each approximation 
there exists only one stable configuration of wave fronts which is created after the disintegration 
of an arbitrary discontinuity (cf. Figs. 3, 4-isentropic approximation-and Figs. 6, 7-adiabatic 
approximation). In the isentropic approximation the contact discontinuity is not formed; it ap­
pears, however, in the adiabatic approximation. The solution is presented in a closed form; 
it is one of a very few closed form solutions of dynamic proble!Jlsin nonlinear elasticity. 

W przedstawionej pracy rozwi~zano problem rozpadu dowolnej nieci~glo8ci w izotropowym 
osrodku sp~zystym, wygenerowanej przez centrycznie . kumulowan~ pros~ falct skonczonych 
deformacji. Rozpatrzono dwa przybliZenia ruchu za frontem fali uderzeniowej - izentropowe 
i adiabatyczne. Wykazano, i.e dla kai:dego przybliZenia istnieje tylko jedna stateczna konfi­
guracja front6w fat jaka powstaje po rozpadzie dowolnej nieci~glosci (patrz rys. 3 i 4 - przy­
blii.enie izentropowe oraz rys. 6 i 7- przyblii.enie adiabatyczne). W przyblii.eniu izentropowym 
nie powstaje nieci~glosc kontaktowa, natomiast pojawia sict ona w przyblizeniu adiabatycznym. 
Rozwi~zanie problemu udalo sict przedstawic w postaci zamkni~tych wzor6w. Jest to jedno 
z nielicznych zamkni~tych rozwi~n dynamicznych zagadnien nieliniowej teorii spr~zysto8ci. 

B npeACTaBJieHHOH pa6oTe pemeHa rrpo6JieMa pacn&Aa npoH3BOm.Horo pa3pbiBa a H30Tpon­
aoH: ynpyroH: cpeAe, reHepHpOB8HHOro l.leHTpH'llec~ KyMyJIHpoB8HHOH npOCTOH BOJIHOH 
KOHe'llHI>IX Aetl><>PM8llHH. PaccMOTpeHI>I ASa npn6JIWKeHIDI ASWKeHWI 3a Q>poHTOM YA&pHoH: 
BOJIHbl - H33HTponH'llecKOe H 3AUa6aTH'lleCKOe. IloK&38HO, 'llTO WU1 K~oro npH6JIH>KeHHH: 
cymecTByeT TOJibKO O;ni3 yCTOiltiHBIUI KOHQ>HrypaiUlH Q>poHTOB BOJIH, K&KaR B03HHK3eT 
UOCJie pacnaAa npoH3BOJibHOI'O pa3pbiB8 (CMOTpH pHCyaKH 3 H 4- H33HTpOUH'lleCKOe npH-
6JIH>KeHHe H pHCYHKH 6 H 7- aAHa6aTH'lleCKoe npn6JIWKeHne). B H33HTponu'llecKoM npn-
6JIH>KeHHH He B03HH'K8eT KOHT8KTHbiH pa3pbiB, UOHBJIH:eTCH >Ke OH B 8AH868TH'lleCKOM npH6JIH­
>KeHHH. PeWeHHe npo6JieMI>I YABJIOCI> npeACT8BHTL B BHAe 33MKHYTI>IX Q>opMyJI. 3TO OAHO 
H3 HeMHOI'O'l{HCJieHHbiX 33MJ<H'YTbiX peWeHHH ,JUIHaMH'lleCKHX 33A8'll HeJIHHeHHOH TeOpHH 
ynp~. ' 

1. Introduction 

THE PROBLEM of disintegration of arbitrary discontinuities was investigated in detail 
in gas dynamics [1-3]. Papers [4-7) represent a series of c~ntributions to the problem and 
enlarge the previous state of knowledge on the subject. In these papers considered were, 
among others, the methods of generation of unstable thermodynamic states in polytropic 
gases called arbitrary discontinuities. Their disintegration was found to produce stable 
configurations of weak (expansion waves) and strong (shock) wave fronts. 
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844 E. WtoDARCZYIC 

The problem of particular interest is to prove the possibility of isentropic cumulation 
of plane compression waves in a single plane by suitable selection of time configuration 
of the boundary .conditions [5], followed by the disintegration of an arbitrary disconti­
nuity generated in this manner and the creation of a stable system of weak and ~trong 
waves [7). 

Plane one-dimensional motion of an isotropic elastic medium subject to finite defor­
mations is des<?fibed by an equation similar to that governing the analogous motion of poly­
tropic gases (3, 8, 9]. Here the question may be posed as to the possibility of centric cumu­
lation of a plane acceleration wave and of decay of an arbitrary discOntinuity in an isotropic 
elas~c medium under finite deformations. The answer to the first question was discussed 
by this author in a previous paper [10]. Mereover, in [11] the problem analysed was the 
~eneration of a plane shock wave of finite deformations in the isentropic approach. 

The present paper deals with the problem of disintegration of an arbitrary discontinuity 
generated 'by a centrally cumulated simple wave of finite deformations. The problem will 
be solved in the isentropic and adiabatic approximations. It will be proved that in both· 
approximations mentioned there exists only one stable configuration of wave fronts which 
may be generated as a result of centric cumulation of a simple wave of finite deformations. 
This is a considerable difference as compared to the analogous problem studied in a poly­
tropic gas where three variants of wave systems appear ·[7). The solution will be presented 
in a closed form. 

The presented problems are of great significance for the analysis of extremal compression 
of matte~. . 

l. Formulation of the problem 

Let us analyse a plane one-dimensional motion of a half-space filled with the isotropic 
elastic medium and loaded at the boundary by a suitably designed load a(O, t) which 
generates the centrally-cumulated simple wave of finite deformations (Fig. 1 ). The dynamic 
deformation of the medium is assumed to proceed according to an isentropic or adiabatic 
process. The process will be described mathematically in Lagrangean coordinates x, t. 

t 

6(0,t) 0 h X 

FIG. 1. 
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A plane one-dimensional motion of a non-conducting, compressible isotropic elastic 
medium in a uniaxial state of finite deformation is governed by the equations 

(2.1) 

!!!_ = a2 (m) om ou at ax' v =at' 

om ov 
Tt = Tx' 

Ou 
m=ax· 

The equations may be reduced to a single hyperbolic type equation 

o2u o2u 
(2.2) ---ail = a2 (m) ox2 

or replaced by two equivalent· ordinary equations to be satisfied on the characteristics . ( 

(2.3) dv = ±a(m)dm 

provided 

(2.4) dx = ±a(m)dt. 

Here u denotes the displacement of the medium; particles, and a(m) is the propagation 
velocity of disturbances expressed in Lagrangean coordinates. It may also be expressed 
by the formula 

(2.5) ( 
1 d

2 w )112 
a(m)= --- , 

~o dm2 

where W(m) is the function denoting the pynamic· strain energy. In the case of isotropic 
medium·the energy is written in the form 

(2.6) 

with the notations : 

Eo= .l.+2,a, E1 =: 3(; +.a+iz+{l+-) •. 

;. and p, are Lame constants while a, p and , denote the third-order elastic moduli ; a0 is the 
. direction number of the first characteristic 00 L of the bunch of Riemann waves, the accel· 
eration (Fig. 1 ). 

The velocity of propagation a(m) of disturbances may be, after applying the reduced 
form of the expression (2.6) (without the terms O(m4) ), expressed by the formula 

(2.7) ( 
E )112 

a(m) = 1+2 E: m a0 , 

Equations (2.3) yield, after integration along the characteristics, the relation 

(2.8) 

and 

(2.9) 

2 Arch. Mcch. Stos. nr 6180 

v-F(m) = const if dx = a(m)dt 

v+F(m) = const if dx = -a(m)dt, 

http://rcin.org.pl



846 E. Wt.ODARCZVK 

where 

F(m) = l a(~)d~ = {;, [(t+2 !: m)"' -I ]a •. 
0 

(2.IO) 

The equations and relations derived so far hold true for a continuous motion of the 
medium. However, on the surfaces of strong discontinuities (shock waves) some of the 
formulae loose their sense. In such cases the conservation laws expressed in finite forms 
must be used: 

(2.11) 

(2.12) 

(2.13) 

[a] = - eoD[v], 

[fJ] = -D[m], 

1 
D[ W]+ 2 eoD[v2

] = - [av], 

the symbol Ul denoting the jump of the value off at the strong discontinuity wave front, 
and D-velocity of propagation of that front. 

The constitutive equation for the stress is assumed in the form 

(2.I4) a= ~= = E0 m+E1 m2 +0(m3
). 

Let us now pass·to the analysis of disintegration of an arbitrary discontinuity generated 
by a centrally cumulated simple w·ave of finite deformations (Fig. I) ; to this end formulae 
and relations derived above will be used. First of all, following the procedure outlined· 
in paper [I 0], let us derive the solution in the region of wave cumulation (region I in Figs. l, 3 
and 6). 

3. Centric cumulation of a simple wave of fiDite deformation 

According to the theory of quasi-linear dift"erential equations, the characteristics 
of a simple finite deformation waves are represented by straight lines [9]. For a bunch 
of characteristics shown in Fig. I the lines may be expressed by the equation 

(3.I) x = a(v) (t- t'), 

where -r: denotes the time at which the given characteristics originate at the boundary 
of the half-space (Fig. I). 

According to Eqs. (2.8) and (2.9), along the characteristics either 

(3.2) E [( E )
3

/

2 

] v(m) = --0
- I+2-1 m -I a0 3E1 Eo 

or 

. (3.3) m= - 0
- I---1 ~ -I . E [( 3E )

2

'

3 

] 
2E1 E0 a0 . 

After substituting the expression (3.3) into Eq. (2.5) we obtain 

(3.4) . ( 
E )1/3 

a(v) = I-3 E: :
0 

ao. 
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On putting in Eq .. (3.1) x = h and t = h/a0 (h is the space coordinate of the cumulation 
point 0 1 , Fig. 1) and using Eq. (3.4), we obtain after transformations 

(3.5) E0 
[( h )

3 

·] . v(O,-r)=- 3Et h-ao-r -1 ao. 

In order to set the boundary of the half-space into motion with the velocity expressed 
by Eq. (3.5), according to the constitutive relation (2.14) and Eqs. (3.3) and (3.5), the 
boundary must be loaded according to the functional prescription 

(3.6) . E~ [( h )
4 

] u(O, -r) = 4E
1 

h-aoT -I · 

The displacement gradient m is then written as 

(3.7) · Eo [( h )
2 

] m(O, T) = 2Et h-a.o -r -1 . 

Next, according to the Riemann invariants theory [3] and the derived formulae (3.5)-(3. 7), 
the solution of the problem in the zone of the centrally-cumulated finite deformation 
wave (region I in Figs. 1, 3 and 6) may be written in the form 

(3.8) a, (x, t) = :1, [(h~~:J -I], 
(3.9) 

(3.10) 

The relations given so far have been derived under the assumption that E1 > 0 and 
m > 0 (waves of expansion, dilatation) or E1 < 0 and m < 0 (waves of compression). 

Summing up the hitherto presented considerations it may be concluded that if the 
half-space boundary is loaded by the stress varying in time according to Eq. (3.6) or moves 
at the velocity (3.5), all the acceleration waves will catch up with each other in the plane 
x = h at the same instant of time th = h/a0 • Thus an arbitrary strong discontinuity will 
be generated in which the conservation laws will not be fulfilled. Hence the discontinuity 
disintegrates and gives rise to a thermodynamically · balanced system of weak and strong 
discontinuity waves. Configuration of those waves depends, among others, on the prop­
erties of the isentrope of the medium vs(u) and oftheshock adiabate v8 (u) [3]. Let us now 
pass to the analysis of the curves. 

4. Properties of isentrope vs(u) and shock adiabate v8 (u) 

The relation between the isentropic motion velocity .vs and stress a follows immedia­
tely from Eqs. (3.8) and (3.9) 

(4.1) 

2* 
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The· corresponding relation referring to the shock wave front, derived from the Hugoniot 
conditions (2.11)-(2.13) under the assumption that the medium ahead of the wave is un­
perturbed, and from the constitutive equations (in the isentropic approximation) (2.14), 
may be written in the following form : 

(4.2) 

Here 

(4.3)' m= 

vi(a) = am(a) . 
f!o 

a v ( :: r +4 :. _ :: r if a> o. E, > o. 

- _!_(,/(Eo )
2 

+4__!-"--- + Eo] if a< 0, E1 < 0 
2 J' E 1 Et E1 

in the isentropic approximation; and 

(4.4) 
! [V ( !: )\ ~ ;, :- !: ] if a> 0, E, > 0, 

m= 

- ~ [, 1(- Eo )
2 

+ __!_ -~ + Eo_] if a < 0, E
1 

< 0, 
4 V El 3 El Et 

in the adiabatic approximation. 
In order to compare the functions vs(a),and v8 (u) let us expand them into Maclaurin 

series; then the isentrope v,(a) may be written in the form 

(4.5) 
a a0 E 1 <12 5a0 Ef a 3 

vs(a) = -ao Eo +2 E
0 

E5 -6 E5 E~ + ... , 

while the shock adiabate v8 (a) is written either as 

(4.6) 
<1 ao E1 a 2 5.25a0 E: a 3 

Vn(a) = -ao E
0 
+2 E

0 
E~- 6 E~ ET+ ... 

in the isentropic approximation, or as· 

( 4. 7) ( ) a 1 Et 2 7 Ef 3 
Vn a = -ao Eo + 3 E~ aoa -.18 E~- aoa + ... 

~n the adiabatic approximation. Moreover,· from Eqs. ( 4.1}-( 4.4) it follows that 

(4.8) 

and 

(4.9) lim ''11;( a) = . lim v;,( o) = 0. 
a-+±oo a-±oo 

Analysis of EQs. (4.5}-(4.9) yields the conclusion that the origin of the system (a = 0, 
v = 0) is the point of second-order tangency of the isen~rope f1,(a) and the shock adia­
bate vs(a) (not only the first but also the second derivatives coincide) in the isentropic 
approximation, and the usual point of tangency in the adiabatic approximation. 
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The curves v,(a) and v8 (a) have no common points other than the single point mention­
ed above. Their gene.ral qualitative character in both approximations is shown in Fig. 2. 
In the case of adiabatic approximation the curves intersect each other also at the origin 

'I.H(Cf} 

FIG. 2. 

of the system, in spite of their first order tangency in the same point, since the change 
of sign of d is accompanied by the change of sign of the modulus E1 (cf. e.g. Eqs. (4.3) 
and (4.4)). 

Once the forms of v,(a) and vn(a) are identified, let us pass to the analysis of the wave 
fronts configuration resulting from the act of cumulation. 

S. Analysis of the wave froats coofiguration after tlae ad of cumulation in the isenCropic 
approximation (Fig. 3). 

Anylysis of the passage from the state d.,, v, lying on the isentrope v.s(O') to the state 
u2 , v 2 lying on the shock adiabate o8 (a) (cf. Fig. 2) yields the conclusion that this process 

is physically possible provided la, I > la21 and '"·' < '"2'· Other transition paths leading 

X 

FIG. 3. 
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to stat~s different from the one given here are physically unrealistic as long as interference 
of external interactions in the cumulation plane is not taken into. account. 

According to the inequalities derived above, in the region to the right of the cumulation 
plane (for x · > h and t > h/ a0 ), a shock wave front ·. 0 1 H(Fig. 3) will be propagated 
through the unperturbed medium: 

(5.1) 

Behind the shock wave front, the material cumulation plane 0 1 K moves with the material 
velocity v2 • It should be observed that in the isentropic approximation the plane does not 
constitute a contact discontinuity (that is why it is located within the region ll in Fig. 3). 
To the left from that plane a centered unloading wave 0 1.R1 -01 R2 (acceleration wave) 
is propagated reducing the stress u from the value u, to u2 • Reflection of that wave from 
the free boundary of the half-space will not be discussed in this paper. 

The wave configuration outlined above is shown in Lagrangean coordinates x, tin Fig. 3, 
and the corresponding qualitative stress variation profiles u, material velocities v and 
displacement gradients m are given in Fig. 4. 

lK 
I 

V I 
-------~-----. I I 

I I 
m I I 

·-·-·-·-·-·~·-·-·~ D 
.(5 ~ 

II 

Ot 

Fio. 4. 

Analytical solution of the problem in the individual regions of the phase plane x, t 
proceeds as follows. 

Regloa I 

Parameters of the state and motion of the medium in the zone of cumulation of the 
incident simple wave are given by the formulae (3.8)-(3.10). 

Region n 
In the zone contained within the region 11 (Fig. 3), motion of the medium is stationary, 

according to the theory of decay of arbitrary discontinuity [1-3]. Hence, making use 
of the Hugoniot relations at the shock wave front 0 1H, (2.11), (2.12) and the constitu-
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tive relations (2.14), the parameters of the state and motion of the medium in region 11 may 
be expressed as follows : 

(5.2) 

(5.3) E D [V D
2 

( D
2 

) ] v2 = --0
- 4-2 - 2 -I +1-I , 

2E1 a0 a0 

(5.4) 

It is seen ,that all the parameters are determined by the velocity D which will be found 
by solving the problem in the region HI. 

Region m 
In the region Ill a centered acceleration wave is propagated. Along the negative char­

acteristics 

(5.5) 

the following rel~tion is satisfied: 

(5.6) 

where 

(5.7) 

(5.8) 

v = _ eoa~ [(a"')3 -I] 
,. 3Et ao . ' 

Time -r,. is · shown in Fig. 3. . 
In addition, from Eq. (5.5) it follows that 

(5.9) 

Finally, after using the relations (5.6)-(5.9), the vel_ocity in region Ill is expressed by the 
formula 

(5.10) 

or 

(5.11) 
E0 h-x a,.· 

{[ ]3 ( )3 } 
v3(x, t) = 3Et ao(t-hfao) -2 a;; +I ao. 
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Then from Eqs. (2.5) and (5.9) we obtain 

(5.12) m3(a3) = Eo [(~)
2 

-1] 
2E1 ao 

or 

(5.13). 
E0 h-x 

{[ ]
2 } 

m3(x, t) = :ZE
1 

ao(t-h/ao) - 1 · 

Consequently, substitution of the expressions (5.12) and (5.13) into the constitutive equa­
tion (2.14) yields 

(5.14) 

or 

(5.15) 
E5 h-x 

{[ ]
4 } 

a 3(x, t) = 4E
1 

a0(t-h/a~Y - 1 · ' 

In- order to render the constructed solution unique, we must determine the velocity 
of propagation of the shock wave front D and the direction number of the characteristic 
0 1R1 denoted by a1 • To this end the condition of contiouity of stress (1 and material 
velocity v at the interface between regions 11 and Ill (characteristic 0 1 R1 , Fig. 3} will 

be used. 
Equating the stresses u2 arid u3 given by the formulae (5.2) and (5.14), we obtain 

_!!:__ (~ ~ 1) = _!_ (at _ 1) 
a5 a5 4 a~ · 

or 

(5.16) - [ 1 (a2 )]1/2 
D = 2 ai +1 ao 

and for 

(5.17)" 

(5.18) D ~ a1 /y2. 
Furthermore, the equality v2 = v3 combined with Eqs. (5.3), (5.10) and (5.16) yields 

This is a transcendental equation which enables the numerical evaluation of the direction 
number a1 of the characteristic 0 1 R1 • 

From the analysis of the left and right hand sides of Eq. (5.19) it is found that the 
equation has a single real root (solid lines in Fig. 5-root (a1/a0)s)~ Inequality (5.17) 
satisfied, Eq. (5.17) yields the result 

(5.20) a 1 ~ 0.99a111 • 

Thu~ the problem of disintegration of an arbitrary discontinuity in the isentropic 
approximation has been solved. Let us now pass to the adiabatic approximatipn. 
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6. Analysis of the wave fronjs ·configuration after the act of cumulation in the adiabatic 
approximation 

Since the shapes of the curves v5 (0') and v8 (0') in the case of adiabatic approximation 
are similar to those of the isentropic approximation (cf. Sect. 4), the wave configuration 
of the solution after the act of cumulation will also resemble the one determined previously 
(cf. Figs. 3 and 6). The difference consists in the fact that now in the cumulation plane 
0 1 K a contact discontinuity is generated Gump of the parameter m, Fig. 7). Line 0 1 K 
represents now the interface between two different regions. 

Here are the solutions of the problem in various regions of the phase plane. 

H 

X 

FIG. 6. 
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FIG. 7. 

Region n 
From Eqs. (2.11), (2.12) and (4.4) we obtain 

(6.1) 

(6.2) 

(6.3) 

Region m 
Here we have 

(6.4) 

E. Wl.ODARCZVK 

Ot 

Next, from the constitutive equation (2.14) and the relation (6.4) it follows that 

( )2 [( )2 ] 2 Eo 3 E0 D D 
m3 +-m3 -- -- -- -1 = 0 

E1 2 E1a0 a0 

or 

(6.5) 

I~ {Ji(i: )2 +6( :;~ )2 [(~)2 -ll-*} 
m,= l- ~ {Ji(i-f +6(-N.)'[(ff -IJ + !: l 

Region IV 

if a 3 > 0, E 1 > 0, 

i.f a 3 < 0, . E 1 < 0. 

Proceeding like in Region 11! of the case considered in the previous section, we obtain 

(6.6) a4{a4 ) = :;, [ ( :: r- I], 
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(6.7) 

(6.8) 

where 

(6.9) 

v.(a4) = - 3~. H :: r- [(::)'+I ]}a., 

m,(a4) = :;, [(:: r -I]. 
h-x 

.a 4(x, t) =--h-. 
t-­

Oo 

The condition of continuity of stresses and velocities along the characteristic 0 1.R1(Fig. 6) 
yields 

(6.10) 
1 

[ 
1 

... I ( )4.])
1

'

2 

D = {z I+ {3 V I + 2 :: a. 

and 

(6.11) : g [I+ J3 yl+2(::f]f"[v\ V~+2(::)'-~] 
= 2 ( :: r-( ::r -I. 

Equation (6.11) possesses, similarly to the case of isentropic equation (5.19), a single 
real root (dashed line in Fig. 5, root (a1/a0)0 ). Inequality (5.17) fulfilled, Eqs. (6.10) 
and (6.i 1) yield the respective results: 

(6.12) D ~ atff/6 ~ 0.64a1 , 

8}'27 
(6.13) a 1 ~ 4 , 1r. a'" ~ 0.63a'". 

9j12+8 f 27 . 

Thus the principa't aim of this paper has been achieved. To conclude, let us quote 
the main results following from the presented analysis of the problem. 

7. Final conclusions 

1. In an isotropic elastic medium centrally-cumulative simple waves of finite 
deformations may be propagated, and they are cumulated on a single plane. This cumu­
lation is achieved by proper design of the boundary value profile, Eqs. (3.5)-(3. 7). 

2. At the cumulation plane an unstable thermo-mechanical state of the medium is gener­
ated called the arbitrary discontinuity, which disintegrates to form a stable system of weak 
and strong discontinuity waves. 

3. Two approximations of the motion occurring behind the shock wave front have 
been considered, isentropic and adiabatic. It has been proved that in both approximations 
disintegration of the arbitrary discontinuity is followed by generation of only one stable 
wave configuration, shown in Fig. 3 for the isentropic approximation, and in Fig. 6-for 
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the adiabatic approximation. In a gaseous polytropic medium three wave configurations 
are possible after the disintegration of the arbitrary discontinuity (cf. author's paper [7]). 

4. Solution of the problem is represented in the form of . closed formulae. It is one 
of a very few closed-form solutions known in nonlinear elastodynamics. 
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