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Unsteady one-dimensional extensions and small amplitude 
longitudinal waves in simple fluids 

S. ZAHORSKI (WARSZAWA) 

IT IS SHOWN that certain unsteady one-dimensional extensions of simple fluids, under the assump
tion of small amounts of extension, can be treated as particular cases of the motions with pro
portional stretch history (cf. [4]). Solutions of the governing equations are obtained for the 
case of harmonic oscillations, leading to one-dimensional longitudinal waves standing or pro
pagating in a compressible viscoelastic fluid. Various properties of such waves, e.g. the damping 
coefficients, the phase shifts, the maximum amounts of extertsion, the speeds of propagation 
etc., are discussed in greater detail for very low and very high (ultrasonic) frequencies. It is shown, 
among other things, that damping effects in theftuids considered are always weaker than those 
in purely viscous fluids with the same viscosities at zero frequency. Viscoelastic fluids subjected 
to high frequency disturbances may be more or less deformable than purely viscous fluids, 
depending on their limit behaviour at short times. 

Pokazano, i:e pewne nieustalone jednowyrniarowe przeplywy rozciclgaj~ce w ciec~ch prostych, 
w zaloi.eniu malych amplitud rozci~gania, moi:na traktowae jako szczeg6lne przypadki ruch6w 
z proporcjonaln~ histori~ dcformacji (por. (4]). Rozwi~nia odpowiednich r6wnafl, okre51a
jllce jednowymiarowe fate podlui:ne stoj~ce tub propaguj~ce si~ w 5cisliwej cieczy lepkosprc(
i:ystej, otrzymano dla przypadku harmonicznych oscylacji. Bardziej szczeg6lowo przedysku
towano r6i:ne wlasnosci fakich fal, jak np. wsp6lczynniki tlumienia, przesuni~ia fazowe, maksy
malne amplitudy rozci~gania, pr~dko5ci propagacji itp., zar6wno dla bardzo niskich jak i bardzo 
wysokich (naddiwi~kowych) c~to5ci. Wykazano, mi~zy innymi, i.e efekty tlumienia w roz
wai:anych cieczach ~ zawsze slabsze niz w czysto lepkich cieczach o takich samych lepko5ciach 
przy zerowej ~to5ci. Ciecze lepkosprc(i:yste poddane zaburzeniom o wysokich CZC(stoSciach 
moA deformowac si~ mniej lub bardziej niz ciecze czysto lepkie, w zalei:no5ci od ich zacho
wania przy kr6tkich czasach. 

fiOK83aHO, 'lTO HeKOTOpbie HeyCT3HOBI'{BUlHeC.R O.ln{OMepHbie paCT.RrHB3lOIIU{e Telle~ 
B fiPOCTbiX >l<llAKOCT.RX, B npe.lmOJIO)I(CHIUt MaJibiX aMIIJIHTY.rt paCT.R)I(eHWI, MO)I(HO TpaKTO
BaTb KaK llaCTHbie cnyqau .z:.tBif)l(emdt c nponop~OHaJibHOH HCTopueii .rtell>opM~ (cp. 
[4]). PemeHH.R COOTBeTCTB}'IO~HX ypasHeHitii, onpe.rteJI.RroiiUle o,rn~oMepHbie npo.rtom.HLie 
CTO.RliHe lfJIIf pacnpOCTpaH.RIO~HeC.R BOJIHbl B C)l(lfMaeMOH B.R3KOynpyroH >Kif.rtKOCTI'{, fiOJIY
lleHbl .rtJI.R CJIYlla.R rapMOHiflleCKHX oc~. Sonee no.rtpo6Ho o6c}'>l<.rteHbi pa3Hbie csoii
cma Ta.KifX BOJIH, KaK Hanp. K03cP<l>~eHTbi 3aTyXllHIDI, <l>aaoBble C.rtBI'{rK, MaKCI'{MaJIDHLie 
aMIIJIIfTY.rtbl paCT.R)I(eHWI, CKOpOCTH pacnpoCTpa.HeHIDI If T.n., TaK .rtJI.R OlleHb Hll3KHX, KaK 
If OlleHb BbiCOIOOC (cBepX3BYKOBbiX) 'IBCTOT. ilOKaaaHO, MeX.rtY fiPOllllM, 'lTO 3<l><l>eKTLI 3a
TYX8HWI B paccMaTpHBaeMbiX >Kif.l:n<OCT.RX scer.rta 6onee cna6bie, lleM B llllCTO B.R3KHX )l{lf.rt

KOCT.RX c TaKHMH CllMbiMH B.R3KOCT.RMH npH HYJieBoii t~aCTOTe. B.R3Koynpyrue )I(H.rtKOCTif, 
fiO.rtBeprsyTLie B03M~CHWIM C BbiCOKHMif llaCTOTa.Mli, MOryT .rte<l>opMHpOBaTbC.R MeHee HJIH 
OOJiee lleM llllCTO B.R3Kife )l{lf.rti<OCTH, B 3aBHCHMOCTH OT HX UOBe.rteHIDI fiPil .KOpoTKHX 0Tpe3• 
Kax BpeMeHH. 

1. Introduction 

IN OUR PREVIous papers [1, 2, 3] certain examples of unsteady shearing flows of incom
pressible simple fluids were analysed in greater detail. It has been shown, among other 
things, that various oscillatory shearing flows lead, under the assumption of harmonic 
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time-dependence, to finite amplitude plane shear waves with linear, circular or elliptical 
polarization [2, 3]. All the ftows considered belonged to particular classes of the motions 
with proportional _or superposed proportional stretch histories discussed elsewhere [4]. 

In the present paper -we consider the case of unsteady one-dimensional ·extensions 
and one-dimensional longitudinal waves in compressible simple ftuids (cf. [5]). Instead 
of introducing a priori any material restrictions, we assume that the amounts of extension 
inyolved are sufficiently small (small-amplitude waves) to linearize the corresponding 
governing equations. Various properties of such waves, e.g. the damping effects, the phase 
shifts, the maximum amounts of extension,. the speeds of propagation etc., are discussed 
in the full range of frequencies, that is from zero to infinity. To this end two types of limit 
behaviour at short times and very long times have been introduced (cf. [6]). 

2. Unsteady oaHimensional extensions 

Consider the following motions: 

(2.1) X= X +f!J(X)f(i), y = Y, z = Z, 

where x, y, z denote Cartesian coordinates of a particle at an arbitrary time r, X, Y, 
Z-Cartesian c;oordinates of the same particle in a reference configuration, fP -is a function 
of X only, and f is a smooth -function of time. If the motions considered are harmonic 
oscillations, f can be taken in the form 

(2.2) f( r) = exp(iwr), 

where w is a constant angular frequency. 
Assuming that the amounts of extension q/ and their derivatives are small enough to 

disregard terms of order f!J'2 and higher as compared with those of order f!J', the deformation _ 
gradient at time r with respect to a reference configuration can be written as 

(2.3) 
ox 
oX= F(r) = I +M/(t) ~ exp(~f(r}), 

where 

(2.4) 
[

(/J
1 0 0] 

[M]= 0 0 0 ' 
0 0 0 

and primes denote the derivatives with respect to X. For the assumed d~gree of accuracy 
the history of the right Cauchy-Green re!ative deformation t~nsor can be expressed in t~e 
form (cf. [5]) 

(2.5) C(s) = exp(2g(s)M} = exp(2g(s)L}, se [0, oo), 

where 

(2.6) g(s) =f(t-s)-f(t), g(s)= g(s)/f(t), L = M/(t) 

and t refers to present instant of- 'ime. 
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Under the assumption of small amounts of extension, the fto~ considered is a partic
ular case of the motion with proportional stretch history [4]. Thus the constitutive equa
tion of a simple fluid: (cf. [5]) 

00 

(2.7) T(t) = ~ {C(s); e{t) ), 
s=O 

where T(t) is the stress tensor at time t, ~ denotes an isotropic functional of C(s) being 
also a function of the time-dependent density e(t ), can be written in the form 

00 00 

(2.8) . T(t) ·= (f) (g(s); M, e(t)) = ~ (g(s); L, e(t)), 
s=O s=O 

where (f) and ~ denote functionals of scalars g(s) or g(s), being simultaneously isotropic 
functions of the tensor arguments M or L, respectively. 

Retaining terms of order q/ only, we arrive at the following representation: 

00 00 

(2.9) T(t) = a0 (g(s); trM, e(t))l+ a1 (g(s); e(t)}M, 
s=O s=O 

where the material functional a0 is a linear function of tr M. 
On the other hand, bearing in mind the representation theorem proved in [4], we can 

also use the following equation: 

~ 

(2.10) T(t) = 3 (g(s); A1 (t), A2(t), e(t) ), 
s=O 

where the Rivlin-Ericksen kinematic tensors are defined as follows (cf. [5]): 

(2.11) A,.(t) ·= ( -1)" d~C~s) I , n = I, 2. 
S s=O 

Under the assumed order of approximation, Eq. (2.10) leads to 

(2.12) .T(t) = (- p+.A.trA 1)l+1JA1 +a2A2+0(qJ'2), 

where p denotes a thermodynamic pressure, A., 1J and a2 are the material functionals of g(s) 
depending also on ·e(t). 

Since for the flow considered 

(2.13) l2qJ' 0 0] 
[Atl = 0 0 0 j, 

0 0 0 [

2qJ' 0 0] 
(A2l = 0 0 0 f+[O(fP' 2

)], 

0 0 0 

the continuity equation gives 

(2.14) e(t) = eoexp( -qJ'f) = eo(l-qJ'f+O(fP'2
)}, . 

where eo denotes the density at reference configuration. Therefore, it can be deduced that, 
within the assumed order of approximation, 1., 'YJ ·and cx 2 are functionals of g(s) depending 
on a constant parameter eo. 

According to Eq. (2.12), the non-zero stress components 

(2.15) 
T 11 = - p + 2AqJj + 21Jcpj + 2a.2 qJ'j: 
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890 S. ZAHORSKI 

substituted into the dynamic equations of motion lead to 

(2.16) 
a . . .. .. 

ax ( -p + 2).q/f + 2ncp'f + 2a2 cp' f)- eo cpf = 0. 

If pressure p is a barotropic one, i.e. p = p((!), we have moreover, 

(2.17) ap ap ae ''f op 
ax = ae ax = -eo({) ae' 

and Eq. (2.16) takes the form linear with respect to cp: 

(2.18) ( 
op ·) .. 

eo! ae + 2p,f cp"- eoff/J = 0' 

where 

(2.19) 

Equation (2.18) being the governing equation for the flow considered can, in prin
ciple, be solved for known functions p(e), p,(t, (! 0 ),j(t),j(t) and appropriate initial and 
boundary conditions. 

3. One-dimensional longitudinal waves 

If function/( -r) is of the harmonic form (2.2), then 

(3.1) 
i . . 

g(s) = -- (e-'"''-1), f = iwexpirot 
w 

and the material functionals )., 'fJ and a2 (cf. (2.12)) become functions of angular frequen
cy ro. The governing equation (2.18) takes the form 

(3.2) (eo ~= +2icop*(co))'l'" +(!oW
2

!p = 0, 

where p,*(ro) may be considered as the generalized complex viscosity function. This differ
ential equation can be solved effectively ·only if op/Be does not depend on time. This 
is the case of isothermal processes for which p = Ce, C = con~t. For adiabatic processes 
p = Cek, C = const, k = const and Eq. (2.14) implies that 

(3.3) eo ;: = eokCe"- 1 = e~kCexp( -(k~ l)cp'f) = kCe~(l-(k-l)cp'f+O(fP'2)). 

Thus, in both cases the term opfoe present in the linearized equation (3.2) can be treated 
as independent of time. 

A general solution of Eq. (3.2) can be written as 

(3.4) cp(X) = Aexp(P+iy)x+Bexp( -p-iy)X, 
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where A and B are integration constants, and 

(3.5) ({J+iy)2 = ie0 w 

2 *( ) . eo op p, w -1--
w oe 

where p* = p'- ip,". 

(2 11 eo 0p ) 2 • I -eow p, +Wl"ae + •eowp, 

4p,'2+(2 "+~~)2 p, w2 oe 

891 

Any solution of the form (3.4) describes small-amplitude one-dimensional longitu~inal 
waves, standing or propagating along the X-axis with the phase velocity c(w) = wfy. 
The coefficient of damping (attenuation) f3 and the phase shift (wave number) y can. be 
presented as follows: 

(3 6) . {3 2 = eow [-1- _ -~ ] = eow [-~- _ __r_] 
. 4p,'(w) ¥'1+~2 1+E2 

4 (p,"(w)+_!_~ op) y1+E2 1+E2 ' 
2 w oe 

(3 7) 2 = (!oW [ 1 + -~-] = ·· eow [ E + _r_] 
. y 4p,'(w) y1+E2 1+~2 , 4 (p,"(w)+_!_~ op.) Jl'1+~2 1+~2 ' 

2 w oe 

where the second 'forms are valid only for ~ :f= 0, and 

(3.8) 

The quantities 

(3.9) 

"( ) 1 eo op 
P w +2-w--o-e 

~( w) = --/1----:-, (-:-ro-:-) --

H'(w)+ _!_ eo _a_p 
2 0(! 

= --=-:----o----'--
H"(w) 

H'(w) = wp,"(w), H"(w) = wp,'(w) 

can be considered as the generalized dynamic moduli. 
For the majority of viscoelastic fluids (polymer solutions and melts) it is reasonable 

to assume that 

(3.10) limE(ro) = oo, limE(ro) = oo 
w-+0 W-+00 

and there exists a certain frequency at which ~(ro) takes a positive minimum value. For 
very low frequencies or very long times the fluid considered behaves like a purely viscous 
compressible liquid while for very high frequencies or very short times its behaviour 
is almost purely elastic. 

Thus, Eqs. (3.6) and (3. 7) imply that 

(3.11) lim/32 = 0, limy2 = 0, 
w-+0 w.-.0 

while for~ tending to infinity we can distinguish the following types of limit behaviour: 
a) the Kelvin-like behaviour at short times when the corresponding instantaneous 

modulus H(O) is infinite and 

(3.12) 
w2 

lim -----=----:c-- = const, 
w-.oo H'( ) 1 op 

w +2eoae 
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then 

Iim y 2 = lim (!oW = const; 
co-.ro co-.ro 2,u"'(w) + ~ op 

(J) 0(! 

(3.13) limfJ2 = 0, 
co-.ro 

b) the Maxwell-like behaviour at short ti~es when the corresponding instantaneous 
modulus H(O) is finite and 

(3.14) !~ (H'(~)+ ~ l!o ::) = const, 

then 

limy2 = 1im (!oW = oo. 
eo-. ro aH ro 2,U, ( (J)) + ~ !J!_ 

(J) 0(! 

(3.15) limfJ2 = const or oo, 
co-.ro 

The limit values of fJ2 may be finite or infinite depending on the rate at which ~(w) tends 
to infinity for increasing w. 

In. both cases the phase shifts y 2 increase monotonically with w, while p2 may reach 
maximum values for ~ = 1 I y3. It results from Eq. (3.6) that 

. (3.16) p2 _ (!Wcr 

max- 16(,u"{Wcr)+_!__~!J!_)' 
2 Wcr 0(] 

where the critical frequency Wcr is a solution of the following equation: 

(3.17) 

Existence of a critical frequency or a critical time in various polymer systems may be attri
buted to a passage from purely liquid states to highly elastic states (cf. [7]). 

A diagram illustrating variability of fJ2 and y2 is schematically shown in Fig. 1. It must 
be noticed, however, that the scale of abcissa refers to e(w); the corresponding values 

I --
2 I /.,. 

t· P.W 1-- / 
w-!co 2H'(w)·~rPp I - ~ r- - - - -

• I y2 

I 

~min 
wo 

FIG. 1. 

-------:-

w-co 
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of w are written for comparisons. Since for purely viscous compressible ftuids (oc2 = 0) 
we have 

(3.18) P2 2 eow 
= , = 4(l+1])' 

where A.+ 1J is a constant viscosity coefficient, the results (3.13) and (3.15) mean that damp
ing effects in viscoelastic fluids are always weaker, as compared with those in viscous 
fluids for which p2 _ increases proportionally to w. 

So far, we tacitly assumed that E(w) was never zero in-the full range of frequencies. 
It may happen, however, that for certain viscoelastic fluids (polymer systems) the equation 

(3.19) JL"(mo)+ __!__~~ = o 
2 Wo oe 

has one or more. positive roots ro0 • For such a root E( w0 ) = 0, and 

(3.20) P2 2 !!o00o 
o = 'Yo = 4,u'(roo) . 

The above result shows that the cerresponding curves of{J2 and y2 are mutually crossed. 
For two or more positive roots the curves of {J2 and y 2 may cross twice or more times 
at the points whe~e E( w0 ) are equal to zero. In the case of two roots,. for instance, values 
of e are negative in the interval between the roots, and some local extrema may occur 
fore= ± 1/ y3. Existence of a frequency Wo at which e(roo) = 0 may be useful to describe 
an internal structure breakage observed in certain polymer systems. 

lifll 
(I.)__.. CO 

FIG. 3. 

~-CD 

w-cx:» 

Diagrams illustrating the above discussed variability of {J2 and y2 are schematically 
shown in Figs. 2 and 3. It is worthwhile to note that similar pictures are observed for some 
fluid models with a number of discrete relaxation .times (cf. [8]). 

In general, the curves presented in Figs. 1, 2 and 3 resemble. those usually obtained 
for mechanical impedances resulting from acoustic measurements (cf. [8]). The relations 
connecting y2 and {J2 with the active Rm and the passive X m part of the mechanical impe
dance are as follows: 

(3.21) 

S Arch. Mcch. Stos. or 6/80 
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1/VJ 0 -1/v1" 0 1/v'r 
Wc:ri Woi Won Wern 

FIG. 2. 

4. Other properties of longitudinal waves 

When the waves considered are caused by harmonic disturbances applied at time 
t = 0 to the yz-plane (x = 0), the amount of extension or compression q/ essentially 
depends on angular frequencies ro. Since q/ is a complex function of X, we obtain from 
Eq. (3.4) the following maximum value of extension: 

(4.1) 2 _ I 'l2 _ C(jJ2+ 2) qmax- t:p - i' ' 

where C is composed of integration constants. Substituting Eqs. (3.6) and (3. 7) into 
Eq. (4.1), we arrive at 

. (4.2) 2 _ __!._ C eoro _ _!_ C eow -. / 1 __!_ 
qmax - 2 Jl'(ro) V 1 + ~2 - 2 (/l"(ro)+ __!._~ ~) V + E2 . 

2 ro ae 
Taking into account Eq. (3.8) and passing to the corresponding limits, we have 

(4.3) limq!ax = 0, 
w ..... o 

I. 2 _ 1 Cli eoro 
tmqmax - 2 m 1 a . 

w ..... oo cu ..... oo !l"(w)+ 2 ~ a~ 

According to Eqs. (3.13) and (3.15) the last limit is finite only in the case a), i.e. for 
the Kelvin-like behaviour at short times. In the case b), i.e. for the Maxwell-like behaviour 
af short times, q~.x tends to infinity almost proportionally to w2 • In the case a) q~ax for 
very Jllgh frequencies is less and in the case b) greater than the maximum amount of ex
tension in purely viscous fluids, viz. 

(4.4) 2 . 1 eoro 
qmax = TC A+1], 

where ;. + 1J is a constant viscosity. 
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The speed of propagation for one-dimensional longitudinal . waves in a viscoelastic 
fluid which had been at rest in a fixed reference configuration can be derived from the fol
lowing relation: [9]: 

(4.5) 

where c00 denotes the ultrasonic velocity. Taking into account Eq. (3. 7), we arrive at 

(4.6) U2 2 I li (2 "( ) op ) 11 =Coo=- m wp, w +eo~ . eo W-+00 ve 
If H(O) = H' ( oo) denotes the instantaneous extension modulus (initial value of the stress 
relaxation function), ,Eq. (4.6) leads to the following final result: 

(4.7) U~ = 2H{O) + ~. 
(!o oe 

The speed of propagation U11 (called the speed of sound in acoustics) is finite only for 
the Maxwell-like behaviour at short times, i.e. for fluids for which there exists finite in- · 
stantaneous extension modulus H(O). It can easily be seen that one-dimensional longi
tudinal waves propagate with a finite speed even in such ideal fluids for which H(O) = 0. 

At the end of the present considerations let us briefly summarize the most important 
properties of viscoelastic waves as compared with those in purely viscous compressible 
fluids. 

In the case of the Kelvin-like behaviour at short times the damping effects are much 
weaker than in purely viscous fluids and sometimes may be neglected for sufficiently high 
frequencies. The corresponding maximum amounts of extension or compression tend 
to constant values when frequency increases. Such fluids are less deformable than purely 
viscous fluids subjected to the same harmonic disturbances. Finite speeds of propagation 
do not exist at all. 

In the case of the Maxwell-like behaviour at short times the damping effects are weaker 
than those in purely viscous fluids but not so small as in the previous case. The correspond
ing maximum amounts of extension or compression may increase unlimitedly with in
creasing frequencies, and such fluids are more deformable as compared with purely viscous 
fluids subjected to similar initial disturbances. There exist finite speeds of propagation 
(speeds of sound), and because of weaker damping any disturbances can propagate at 
longer distances than in purely viscous fluids. 
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