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Laminar flow in an annular channel with moving permeable walls

W. KALITA and A. SZANIAWSKI (WARSZAWA)

A sTEADY laminar flow of an incompressible viscous fluid in the annular channel between coaxial
cylindrical permeable surfaces is investigated. The fluid of constant density and viscosity is uni-
formly emitted from the inner immovable cylinder and it flows to the outer moving porous wall
contained between two other cylindrical surfaces. This porous wall moves axially with given
velocity that may vary slowly with the channel axis. The flow analysis is based on the assumption
of small variations of flow velocity components along the channel with respect to their radial
variations. The flow in the channel is described through an approximated solution of the Na-
vier-Stokes equations while the flow in the moving porous wall is obtained from the filtration
theory.

W niniejszej pmcy badany jest ustalony laminarny przeplyw niesciliwego lepkiego plynu w pier-
$cieniowym kanale ledzy wspolosiowymi cylindrycznymi powierzchniami przepuszczalnymi.
Plyn o stalej gestodei i lepkodei jednorodnie wyplywa z nieruchomego wewngtrznego cylindra
i przepltywa do zewnetrznej ruchomej porowatej cianki zawartej miedzy dwoma powierzchniami
cylindrycznymi. Porowata $cianka porusza si¢ wzdluz osi kanalu z dana predkoécia, ktéra moze
by¢ wolno zmienna wzdhuz kanatu. Analiza przeplywu opiera si¢ na zalozeniu matych zmien-
nosci skladowych predkosci przeplywu wzdiuz kanalu w stosunku do ich radialnych zmiennosci.
Przeplyw w kanale opisany jest przez przyblizone rozwiazanie réwnart Naviera-Stokesa, podczas
gdy przeplyw w ruchomej porowatej $ciance otrzymano z teorii filtracji.

B mactosueit pafoTe MCCHERYETCA YCTAHOBHBILUEECH JIAMHHADHOE TEUEHHE HECHKMMAEMO
BA3KOH >XMIKOCTH B KOJIBLEBOM KAHAJIE MEMIY COOCHBIMH LWIMHIDHYECKUMH IPOHMIlae-
MBIMY TIOBEPXHOCTAMH. JKHOKOCTE C MOCTOAHHON MIOTHOCTBIO M BA3KOCTHIO MCTEK4eT OHO-
POIHBLIM 00PasOM M3 HEMONBHYKHOTO BHYTPEHHEIO LMIMHIPA M IPOTEKAET K BHEMHell mof-
BHHONM NOPHCTOH CTeHKe, COAEp)KaBlliciicaA MEMIy ABYMA NHIHHAPHYCCKHMH NOBEPXHO-
cramy. ITopscTas cTeHKa QBIIKETCA BIOJE OCH KaHANA C JAHHOH CHKOPOCTHIO, KOTOPAA MOMKET
ME[JICHHO M3MEHATHCA BJOJL KAHANA. AHAUIH3 TeUYCHHA OMHPAETCA HA MPEAIIOJIOMHCHHH Ma-
JIOT0 H3MEHEHUA COCTABIIIONIMX CKODOCTH TeUeHMA BJOJL' KAHANA MO OTHOLIEHMIO K MX pa-
JAHANLHBIM H3MCHEHHAM, TeueHue B KaHAJe OMHCAHO IPHOMKEHHBIM pellleHHeM YpaBHEeHMH
Hasgpe-CroKca, B TO BpeMA KaK TeUeHHE B IOABHMKHOM MOPHCTON CTEHKE MOMYYeHO M3 TEOPHM
drmsTpam.

1. Introduction

A STEADY laminar flow of an incompressible viscous fluid in the annular channel between
coaxial cylindrical permeable surfaces is investigated. The fluid of constant density and vis-
cosity is uniformly emitted in a radial direction from the inner immovable cylinder and
it flows to the outer moving porous thick wall contained between two other cylindrical
surfaces (Fig. 1). This porous wall moves axially with assumed velocity that, in the case
of a deformable wall, may vary with the axis coordinate, The pressure outside the wall
is constant.

A large number of theoretical studies has been reported on the flows through channels
with porous immovable walls [1-13]. In most of these papers the distribution of the veloc-
ity component perpendicular to the wall has been assumed a priori at the walls. In our
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case we determine this distribution from the filtration flow solution. The studies of the
flows in porous channels are generally motivated by many different practical problems.
Recently, for example, flow investigations in systems containing porous regions have been
performed to evaluate hydrodynamic effects accompanied with the spinning processes
of artificial fibres [14-20]. Some results of the present paper could also be applied to these
problems.

The aim of this work is to determine the influence of the motion of the porous wall
on the flow field in the channel described above. We assume that the fluid flux through
the channel inlet is equal to zero. The channel is assumed to be long enough and we con-
sider the case when the porous medium velocity changes slowly along the channel and,
for a large distance from the channel’s inlet, approaches some asymptotic value, Partic-
ular attention will be given to the plane flow between plane surfaces. This case may be
considered as a limiting case of the annular flow when the radii of the cylinders tend to
infinity.

Our analysis of the flow field is based on the assumption that the variations of the flow
parameters along the channel are much smaller than their radial variations. Taking advan-
tage of this assumption, we apply the method of small perturbations in searching for the
flow parameters distributions in the region of a free flow (Fig. 1). The lowest order solu-
tions are obtained (following BERMAN :[6]) provided the longitudinal derivatives of the
velocity components are neglected in the flow equations. The applied method allows us
to determine afterwards the next approximation for the radial velocity component and
to find the longitudinal pressure distribution that is undetermined in the lowest order
solution. Our method is essentially based on the method introduced early by O. REYNOLDS
[21] in his study of the lubrication flow in a slit.

In order to find the flow in the porous medium of the wall, we assume that the rela-
tionship between the filtration velocity (relative to the medium) and the pressure gradient
is there linear according to Darcy’s law. However, the pressure variability along the wall
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is assumed to be small in comparison with its variability across the wall. Hence the filtra-
tion velocity (with respect to the porous medium) is assumed to have only a transversal
non-zero component [18]. The filtration properties of the porous medium are described
by the filtration coefficient. The variations of this coefficient, in the case of a deformable
medium, will be neglected here.

2. Flow equations and boundary conditions

Let r be the radius of the inner immovable cylinder and R; and R, the radii of cylinders
that bound the porous wall (Fig. 1). The fluid of density ¢ and viscosity u is emitted radially
from the inner cylinder with the constant flow rate Q per unit length along the channel
axis. The velocity of the porous medium W,, directed along the channel, approaches
the value W, at a large distance from the inlet. We assume that the pressure outside
the channel is equal to p,.

By u, and w, we denote the components of fluid velocity (in the free flow region)
or the filtration velocity (in the porous region of the wall) respectively in the directions x,.
and z, of the cylindrical immovable coordinate system (x,, z,) with z, coincident with
the channel axis. We have to mention that the filtration velocity, defined through the flow
rate per the complete area of the cross section containing the porous medjum, is lower
than the mean flow velocity. The ratio of the filtration velocity and the mean flow velocity
(the flow rate per the area of the pores) is equal to the porosity & of the medium. On the
other hand, the flow rate of the incompressible porous medium in one-dimensional motion
considered remains constant in case of the deformation of the medium: (1—&)W, = const.

We introduce the following dimensionless quantities:

(x+ —R)/(Ry—T) for r<x, <R,
- {(x+_Rl)/(RO_RI) for R, <x;<R,,

z=z,[(Ri=1r), u=u, /Wy, w=w./W,, W=W,.W_,,

P = (p+—po) (Ri—n)/(Wep),
(2.1 = (Ro—R)/R;, B= R-1)/Ri;, y=1cff,

Re, = o(R;—r) W/, Re, = 0Q(R,—1)/(2nR;p),

K = K./[(Ro—R)) (R;~T1)],
where p, is the dimensional pressure, Re,, and Re, are the Reynolds numbers and K,
is the dimensional filtration coefficient. K, depends weakly on the structure of the medium

but its variation is here neglected. -
The Navier-Stokes equations for the free flow region, —1 < x < 0, may be written as

o[(1+pxu] _ ow

+pxyox oz’
ap ou 0 [ow) 0% du
&) 7 TRewt 5= _E(‘a‘z‘)*? Reww—s

op ow 1 @ ow 32w ow
oz PR o TaBx "a?[(”f"‘)a] =7E R
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For the porous region, 0 < x < 1, the system of the flow equations contains the con-

tinuity equation
o(l+ex)u] ow”
@3 (raox =~ T

and the equations of filtration in the radial and axial directions. Here u and w are the
filtration velocity components. With the axial filtration velocity component (relative to the
medium) assumed to be zero, [18], the filtration equations are

P2

= -Kﬁx’

24
A4 w= We.

The solutions, u, w, p of Eqs (2.2)-(2.4) have to be continuous functions of the coordi-
nates x, z and have to satisfy the following boundary and compatibility conditions:

x==1: u=Q/2urW)="U, w=0;

(2.5) x=0: up=uy, Wy=Wy/¢, p=pn;
x=1 : p=0,

where the indexes I and II denote the free flow region and the wall region respectively.

3. Method of solution

At first let us introduce some auxiliary functions defined as follows:
1
Sf(x,8,9) = ?[(Hﬁx)“‘”-—(l -B)A,

fGx,8,9) _ (1+px)"—(1-p)*

Foa b0 =76,5,0) = 1-(=p#

Fex,,0) = gz [ (+BOFC. 8.0
3.1 -1

[ﬂx 8942 (o S5 B, 2@] 1
" fo, ﬂ q) q+2p 28 1+px
ﬁ(x! B, 25)_F(xa B,4)
F(©,8,28)-F0,8.9) ’
F(x, 8, 2p)F©, B, 9)~F(x, B, 9F(, B, 28)
F(0,8,2)-F (0, ,9)

For the particular case of a plane flow (8 — 0) these functions are
(32) f(x,0,9) = eé*—e79,
e*—e™9
l—e™2’

G(X, ﬁsQ) =

H(x,f,9) =

F(x,0,q) = F(x,0,0) = x+1,
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1 e —e~ x+1 (x+1)?

32 F(x,0, PR “e«—z’ F(x,0,0 = 2522,
N F(x,0,0)-F(x,0,q) _ (x+1gl(x+1) (1= D+ 2]+ 21 —ex=+ 0]
5 00) = F(0,0,0)—F(0,0,q) q@+D+2(1—&9)

G(x,0,0) = (x+1)*(1-2x),
F(x, 0, 0)F(0, 0, )—F(x, 0, 9)F(0, 0, 0)
_F(0,0,0)—F(0,0,q)

_ G+D[Gx+Det—x(g+1)]-x—er=+D
q(ea+1)+2(1—-¢9) ’

H(x,0,q) =

H(x,0,0) = —x(x+1)2

The lowest order solutions of the system (2.2) for the free flow region are obtained
provided the velocity components do not depend ‘on z [6]. In this case all right-hand side
terms in Eqs. (2.2) are equal to zero and these solutions are [6]

(3.3) I

w= WF(x,B,Re,)+P 2(R2—5215’) [F(x, B, Re,)—F(x, 8, 2p)],
(3.4)
Re, 1- ,B

P= U imy.

(By prime we denote the derivatives with respect to 2).

It can be stated that the solutions (3.3) and (3.4) would satisfy Eqs. (2.2) exactly, pro-
vided the quantities U, W and P’ are constant.

In the applied method we admit now a slight dependence of W and P’ on z. Moreover,
we take into account a small perturbation of the radial component of velocity in the free
flow region, i.e. we put u = %+, where the basic solution # is determined by Eq. (3.3)
and # is a perturbation term. -

From the continuity equation in Eq. (2.2), our approximation for the u component
that satisfies the condition u = U for x = —1 can be found as

+P(z).

(G.5) u= U-l—l;ﬁ%—W'ﬁ‘(x,ﬂ, Re,)+ P” 2(112 A B [F(x, B, 28)-F (x, B, Re,)]

for —1<x<0.

The solutions of Eqgs. (2.3) and (2.4) for the porous region, 0 < x < 1, satisfying the fol-
lowing boundary conditions in the relations (2.5): x = 0 : w; = wy/e, py = pu; x = 1:
p = 0, can be written in the following form:

Ao (1—p)Re, Ka
(3.6) u—(P v 3 )(]+ux}ln(l+€!)

24+ (1+mx)‘]

+(e W)'zﬁwax[zln(lw) —
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(36) w= We,
[cont.]
(1—p)Re, In(1+ ax)
(P be=—g )['"’ in(1+2)
ln(i+ax)

In the solutions (3.4)-(3.6) we can distinguish the functions that do not depend on z.
These functions are multiplied by the constant U or variable quantities W and P (or their
derivatives) that depend only on the z coordinate. In the present investigation W/(z) has
to be specified but P(z) is the function we are searching for.

The function P(z) characterizes the longitudinal pressure variation in the channel.
This function or its derivatives enter also in expressions for the velocity components.
In this way it describes the influence of the longitudinal pressure nonuniformity on the
velocity field. The unknown function P(z) can be found from the differential equation
derived from the condition (in the relations (2.5)) concerning the continuity of the radial
component of velocity at x = 0.

This condition has not been used until now. Setting u; = uy for x = 0 and taking
advantage of the mass conservation law of the porous medium to obtain W' = (¢WY),
we have the following equation for P(z):

3.7 &P"'—P = oW —0U,
where

O ¢ ﬁ)ln(l+a)[F(0 B,28)—F(0, B, Re,)],

2Ka(Re,—28)
(3.8) o = {2In(1+a) [2BF(0, B, Re,)— 1]+ a(2+ a)}/(4Kap),
0= %ﬁ[zf%ﬂ—ne.].
Introducing the function 71(z) defined as
(3.9 IT=P-0U,
Eq. (3.7) may be transformed into a simpler form:
(3.10) "I = o W'.

The solution 1/(z) of Eq. (3.10) may be determined provided the movement and defor-
mation of the porous medium is known, i.e. the function W(z) is given. The analysis of
Eq. (3.10) for particular functions W(z) and the boundary conditions will be given in Sect. 5.

4. Solution of the problem

With the help of Eq. (3.10) we may eliminate P = IT"” from Eq. (3.5). Also, the func-
tion I7 defined through Eq. (3.9) may be introduced into the formulas (3.4) and (3.6).
In this way the solutions describing the flow field in the channel both in the region of free
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flow, =1 < x < 0, and in the porous wall,0 < x < 1,canbe presented in a uniform com-
pact form: .
u= WU +IIU,+UU,,
@.n w= WV, +I'V,,
p= WP +IIP,+UP;.

(For the free flow region the porosity is equal to 1).

The auxiliary functions U, ,,3, ¥y,, and P, , ; in Egs. (4.1) do not depend on z and,
for the cylindrical channel, are defined as follows (the upper expressions are for the free
flow region, —1 < x < 0, the lower ones for the porous wall, 0 < x < 1):

a(2+a)—2In(l + )
Ut =1 02+ 0) = 2(1 +ax)?In(1 +a)
|~ 4pIn(i+w) 2
Ke 1-8
In(1+0) e P Reds 1+px’
U= Ka 1 Us = ' 1-8
In(I+a) T+ax’ 1+ax’
2-p
(42) Vl — {’l:(xs ﬁ, Rew)’ Vz — Z(Re zﬂ) [F(x ﬁ Re,) F(x ﬁ 2ﬁ)]’
] 0,
0, 1,
P, = In(1 + ax) P, = In(1+ ax)
4Kﬁ Hta)= @) n(+a) |’ i Tn(i+a) °
In(1+a) Re.(l+ﬁx}’-—l
5 (1- ﬁ)[ 2— _m_ﬂﬁi_]’
-lk?ﬁ[ln(lﬂ)!(lwx)]-
5. Discussion

The expressions (4.1), describing the flow field in the channel, have been found in the
form of sums of products. In these products one of the factors is a quantity that may depend
only on z while the second factor (auxiliary function from Egs. (4.2)) depends only on x.
Such a form of expressions (4.1) gives an opportunity to analyse separately the radial
and the longitudinal characteristics of fluid motion in the channel.

With the functions W(z) and II(z) still undetermined, we first analyse the influence
of different factors on the radial distributions of flow parameters. It may be considered
that the functions U; and P; in Egs. (4.2) take into account the effect of the forced flow
from the inner cylinder. The direct influence of the velocity W of the porous medium on the
radial distributions is characterized by the functions U,, ¥; and P,. In the same way
the modifications of the radial distributions introduced by the functions U,, V', and P,
can be interpreted as the effect of the pressure nonuniformity along the channel. This
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nonuniformity may arise from the deformations of the porous medium or it may be the
consequence of the conditions at the channel’s inlet.

When the thickness (R, —R;) of the porous wall and the width (R,—r) of the free flow
region are much smaller than the radius R;, the flow conditions in the channel are then
close to the conditions of a plane flow. The asymptotic case, a plane flow, can be obtained
when the parameters «, f tend to zero with y being finite. For this case the functions (4.2)
may be presented in a much simplified form:

_;_ G(x, 0, Re,)+H(x, 0, Re,)

KG,(x,0, Re,) 1
UI= y ] U2={K ] U3={la
5 (1-2x)
F(x,0,Re,) [F(x, 0, Re,)—F(x, 0, 0)]/Re,
(5'1) Vl = {l ] VZ = =0 »
1
¥ I X
Eie %x(x—-l)-’ Pa=li—x P =)1-x
K
GH |}
1
08—
G(x,0,Re,)
06 —
¥
¢ N‘q o
04 -
0z~
g
i
H(X,G,REUJ
a 1 25 L o
-1 -08 -06 -04 -02 0 x

FiG. 2. Diagrams of functions G(x, 0, Re,) and H(x, 0, Re,).
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The diagrams of the functions G and H, for the plane case, are presented in Fig. 2,
the other auxiliary functions (5.1) are plotted against x for some values of Re,, y and K
in Figs. 3-5.

Uizal
U,
g Us 3
=2
)
Y
as - ¢§" 9 A =1
[ 2
> Uy ;
1 5 3=1/2
Uy (K=1/10)
D 1
T = -
g -1 -05 ] . a5 1 x
e i Free Flow region Porous wail
-1

Fic. 3. Diagrams of auxiliary functions U,, U,, U; for a plane flow.
For Re, — 0, in the free flow region, we obtain a superposition of the Couette flow

(¥, = x+1) due to the wall motion W and the Poiseuille flow (V2 = —‘—lf x(x+ I)) due

to the existence of the pressure gradient P’ = II' (Fig. 4). The outer blowing (Re, > 0)
gives the velocity distribution described by the solution obtained partly in [6]. It
approaches, for higher Re,, almost uniform flow (¥, ~ 0) with a thin boundary layer
close to the porous moving wall. An increasing Re, number gives also the reduction of the
influence of the pressure gradient /7’ (values of ¥, decrease) and leads to a strong defor-
mation of the Poiseuille type flow. .

The pressure does not change (in a plane case) across the free flow region decreasing
linearly in the porous region due to the outer blowing (U > 0) and the pressure difference I7
(Fig. 5). The deformation of the porous wall (W’ # 0) may additionally provoke inside
the wall suction with a parabolic pressure distribution. This suction is the cause of the
linear distribution of the transversal velocity U, in the porous wall (Fig. 3).



906 W. KALITA AND A. SZANTAWSKI

Viz
i Vs
s Yy
&N
&«
®
0 ! v i =
-1 = 25 0 05 1 X
g
Free Flow region Porous wall
FiG. 4. Diagrams of auxiliary functions ¥, and V; for a plane flow.
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FiG. 5. Diagrams of auxiliary functions P,, P; and P; for a plane flow.

From the diagrams of the functions U, and ¥, we may notice that for the free flow
region the influence of the pressure nonuniformity along the channel on the radial dis-
tributions of flow parameters becomes smaller with the growing value of the Re, number.

To complete the analysis of the flow field we have to specify the porous medium motion:
and to determine, from Eq. (3.10) and appropriate boundary conditions, the pressure
distribution along the channel. One of the boundary conditions for Eq. (3.10) follows
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from the assumption that the fluid flux through the channel inlet, —1 < x <0,z =0,
is equal to zero. Approximately, it is equivalent to the condition that no fluid comes through
the inlet. Setting also that for z — oo the pressure should be finite, p < oo, we have

0 0
z=103 fwdx+ﬁfwxdx=0,
g =

(5.2)
z—=00 : Il < 0.

Two particular examples of the function W(z) are considered, namely,
W, = const = 1,
W, = 1—e**, )
where for the second case 1 may be treated as a dimensionless parameter characterizing

the deformation length of the porous wall. For these particular functions (5.3), Eq. (3.10)
with the conditions yields (5.2) the following distributions of the pressure, respectively:

I, = —de~,

(5.3)

(5.4)

2

m,=-o- ‘5 gz (e = 1e~%).

It may be noticed that the quantity , in the same way as 2, can be treated as the char-
acteristic dimensionless length of the distance of a region where the flow is strongly affect-
ed by the channel inlet conditions. It can also be noted ‘that the ratio between é and 1
determines the length of the region where the pressure longitudinal nonuniformities are
essential. With the value of § decreasing with respect to 4, the effect of 1 on the pressure
distribution along the channel becomes dominant. Hence, for 1 > 48, the pressure distri-
bution depends mainly on the chdracteristics of the deformation of the porous medium.

The value of the quantity & decreases with the growing value of the filtration coefficient X
and with the increasing value of Re,. This means that both the growth of the porous medium
permeability ‘and the intensification of the forced flow from the inner cylinder decrease
the effect of the channel inlet conditions.

In the asymptotic case, when Re, > 1, the expression (5.4) for II,(z) in a plane case
may be simplified to the following:

et vy
(5.5) I = Y 7 ZKW'
In this case the nonuniformities of the pressure profile along the channel are related
only with the deformation of the porous medium.
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