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On necking phenomena and bifurcation solutions(*)
J. P. MILES (MANCHESTER)

Various theoretical approaches to necking phenomena in inelastic solids are discussed with
particular emphasis on Hill’s theory of bifurcation. Overall, largely intuitive, stability criteria
are considered, the concept of eigenstates under all-round dead loading being shown as provid-
ing simple stability conditions for quasi-static deformation processes. In the bifurcation ap-
proach, the poss:ble existence of non-trivial solutions (eigenmodes) to homogeneous boundary-
-value problems is investigated. A number of such solutions which appear successfully to model
necking in various simple situations (for elastic/plastic materials) are presented, On extending
the theory to other situations such as homogeneous biaxial tension, however, at least for the
classical elastic/plastic material satisfying a Mises yield criterion and normality rule, the diffi-
culty appears that the predicted critical stresses are unrealistically high from a physical point
of view. Some ways of overcoming this difficulty are discussed, including modification of con-
stitutive equation, modification of prescribed boundary eondmons, and the investigation of the
possible existence of shear-band modes, as often observed in thin metal strips when necking
occurs. Finally, a number of criteria for localization of deformation based on the study of the
growth of initial geometrical or material imperfections are presented.

Przedyskutowano roine teoretyczne podejécia do zagadnien powstawania szyjki w cialach
niesprezystych, ze szczeg6lnym podkresleniem teorii bifurkacji Hilla. Rozwazono ogbine, w znacz-
nym stopniu intuicyjne, kryteria statecznosci wykazujgc, ze koncepcja standéw wlasnych przy
wszechstronnym obcigzeniu zachowawczym przewiduje proste warunki statecznosci dla quasi-
-statycznych procesow deformacji. Przy podejéciu bifurkacyjnym zbadano mozliwos¢ istnienia
nietrywialnych rozwiazafi (modéw wlasnych) jednorodnych zagadnied na wartoéci brzegowe.
Przedstawiono pewna liczbe rozwiazani dobrze modelujacych zjawisko powstawania szyjki
w roznych prostych sytuacjach (dla materialéw sprezysto-plastycznych). Jednakze przy probie
rozszerzenia teorii na inne sytuacje, takie jak jednorodne dwuosiowe rozciaganie klasycznych
materialéw sprezysto-plastycznych spelniajacych warunek plastycznodci Misesa i zasade nor-
malnosci, powstaje taka trudnos¢, ze przewidywane naprezenia krytyczne przybieraja wartosci
nierealistycznie wysokie z fizycznego punktu widzenia. Przedyskutowano pewne sposoby poko-
nania tej trudnodci, a w szczegdlnodci modyfikacje rownari konstytutywnych, modyfikacji
danych warunkow bmgowydx oraz zbadanie mozliwosci istnienia modow w zakresie $cinania,
ktére czgsto obserwuje si¢ przy powstawaniu szyjki w cienkich metalowych paskach. Przedsta-
wiono wreszcie pewng liczbe kryteriéw dla lokalizacji deformacji, opartych na badaniu wzrostu
poczatkowych niedoskonaloéci geometrycznych lub materialowych.

OGcy)xaeHb! pasHble TEOPETHUSCKHE MOAXOAB! K 3aJaYaM BOSHMKHOBEHHMA IUCHKH B HEYyImpy-
THX Teax, ¢ 0cobeHHbIM MoguepKuBannem Teopun 6Gudypraipm Xunna. Pacemotpens! obmme,
B 3HAYMTEBHOH CTENEHH HMHTYMTHBHBIE, KDHTEPUA YCTOWUHBOCTH, MOKAa3kiBasA, UTO KOHIE-
ms COGCTBEHHBIX COCTOAHHNA HPH BCEXCTOPOHHOM KOHCEPBATHBHOH HATpYy3Ke INIpeNcKa-
3BIBaeT MPOCTBbIE YCIOBHA YCTOHUMBOCTH Ul KBA3HCTATHYECKHX MpoleccoB nedopmarmmit.
Ilpu GudypKalMOHHOM NOAXOAE MCCTENOBAHA BOSMOMKHOCTH CYILECTBOBRHWS HETPHBHAIG-
HBIX pemleHHi (COGCTBEHHBIX MOJIOB) OMHOPOAHBIX 3a/a4 JUIA rPaHMUHBIX 3HadeHuH. lpex-
CTaBJIeHO HEKOTOpOe KOJMUYECTBO pellleHHHA XOPOLIO MOMEHPYIOLIMX FBJIEHHE BOIHHKHO-
BEHHS 1LeHKH B PA3HEIX OPOCTBIX CHTYAIHAX (/1A YIpPYTo-IUIacT4eCKHX Matepnanos). Omua-
KO NPH TONLITKE PacllHpPeHHA TeOPHH HA [JPYIHE CHTYAlMH, TaKHE KAK OJHOPOAHLIC NBY-
XO0ceBhIe DACT/DKEHMA KIIACCHYCCKHX YIPYTO-IUIACTHYECKHX MATEPHAIOB, YHAOBICTBOPHIO-
IMX YCIOBHIO IUTACTHUHOCTH Museca ¥ INpUMHIITY HOPMAJTBHOCTH, BO3HHKAaeT TaKasd TPYA-
HOCTh, YTO NpPEACKASLIBAEMblE KPUTHUECKHE HANMDPAYKEHHA TNPHHAMAIOT HEPEATHCTHUECKH
BBICOKMe 3HaYeHHs ¢ (usHUecKoi Touwky spenns. OGCyKaeHsl HeKOTOpBIe cocoGul ofxona

(*) Paper presented at the Euromech Colloquium 117 on “Flow and Fracture of Inelastic Materials”
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31Ol TPYIHOCTH, 4 B YacTHOCTH MOmubHKalHA OmpeAeNAIONHX YPaBHCHHMH, MmomadmKaimsa
AAHHBIX PAHHYHBIX ycuonnﬁ, a TaKMe MCCIeJOBAHHE BO3MOM(HOCTH CYILEeCTBOBaHHA MOOOB
B o0nacTH CABHTa, KOTOpBLIE YacTOo HalIOJalOTCA IPH BOSHMKHOBEHHH IIEHKH B TOHKHX
METAJUTHYeCKHX monocax. IIpefcTaBieHO HaKOHEI HEKOTOPOE KOJMYECTBO KPHTEPHEB [UIA
JoKann3anmn Aedopmamuii, OMMparoLMXCH Ha HCCICJOBAHHH POCTa HAYAILHBLIX IEOMETPH-
YeCKHX HJIH MaTePHANBHBIX HEHICATBHOCTCH.

1. Introduction

IN PRESENTING a survey of the present state of theories of instability and necking phenom-
ena in inelastic materials, I am well aware of the excellent review given by STORAKERS [1]
to a previous Euromech Colloquium. I apologise in advance for the inevitable coverage
of much of the same ground. The issues raised by Stordkers are still very relevant, as a glance
at the recent literature will confirm. Here I shall attempt to give a reasonably self-con-
tained, account of the field, concentrating on applications involving predominantly tensile
states of stress rather than those concerned with buckling under compression.

It is hardly necessary to stress the importance of an adequate theory of necking in plastic
flow, since its occurrence in diverse practical problems of metal-forming is so familiar.
The phenomenon is not necessarily one of instability. In practical terms the stability of
deformation after necking depends on the stiffness of the loading device as well as the
material and geometric properties which influence the rate of development of the neck
and the rate of growth of cracks in the neck. For certain materials, e.g. polymers or hot
glass, stable plastic flow may continue long after a neck has conspicuously formed. Bifur-
cation is probably a more appropriate concept in this context than stability That is, the
phenomenon may be regarded as an abrupt transition from one, perhaps fairly homo-
" geneous, mode of deformation to a different mode characteristic of necking, whether “diff-
use” or “localized”. The problem is then to formulate a criterion for bifurcation. However,
intuitive notions of stability still seem to be of service, particularly in the materials science
literature.

Here I have attempted to classify the various approaches under three main headings,
i.e. (i) instability (ii) bifurcation (iii) analysis of imperfections. Each area will be surveyed
in a somewhat selective manner, in view of the quantity of relevant work in the literature.
In particular, I shall concentrate on necking under relatively simple states of stress, for
the most part uniaxial or biaxial homogeneous states (apart from the discussion of im-
perfections, where the stresses are necessarily inhomogeneous from the outset). While
sophisticated computer programs for evaluating critical stresses in rather complex situ-
ations are currently available (see, for example, [2]), it is felt that simple stress-states
present a sufficient number of outstanding problems of interest for the purposes of this
discussion.

2. Instability
2.1. Intuitive stability criteria

Our familiar starting-point is the uniaxial tensile test on a bar of unspecified material.
Deformation is assumed to be initially homogeneous, at least within some gauge-length
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of the specimen. When will necking occur? The intuitive approach to be found in books
such as [3] is that plastic flow involves both work-hardening, which is stabilizing, and soft-
ening (destabilizing). In the early stages of the flow the hardening outweighs the soft-
ening, and the flow becomes unstable when the two effects are in balance. Although this
approach is apparently not concerned in a direct way with bifurcation, it is worth noting
in passing that exclusion conditions (which preclude the possibility of bifurcation) are still
commonly expressed in terms of critical values of hardening parameters.

Hardening is assumed here to be a material property, whereas softening may be either
“material” or “geometrical”. In a tension test, softening is attributed to the continuing
reduction in cross-sectional area A4, and so is geometrical. For an increment of strain de,
with corresponding true-stress increment do, it is convenient to define the hardening corres-
ponding to that incremental deformation as Ado, and the softening as —ad4, both relating
to the change in load-carrying capacity of the bar. The critical state occurs when these
quantities are equal, i.e. when

do
(2.1) . E, =g,

(assuming isochoric flow) where E, is the tangent modulus. This is of course the condition
for the load o4 on the specimen to be an analytic maximum (with respect to, say, &).
In fact it was presumably the maximum load condition which motivated the above defi-
nitions of hardening and softening. This condition still effectively plays a major role in dis-
cussions on necking. Thus, high values of E,, as for example in austenitic stainless steels
transforming martensitically during deformation, are associated with high resistance to
necking. Also, the stability of the necks formed in tensile tests on polymer specimens
is regarded as characteristic of a load-extension curve which exhibits a load maximum
followed by gradually increasing load with further extension, the increasing values of E,
inhibiting neck development.

For other deformation processes in which there may be no geometrical softening
it may be possible to define “material” softening. In [3], for example, ‘it is assumed that
a constitutive equation may be expressed as an equation of state:

(22 o=o(c, & T, v, ...),

where ¢ is a representative stress (in the tensile test the longitudinal stress averaged over
a cross-section), and the other parameters included are representative strain, strain-rate,
temperature, and surface energy, respectively. The differential of stress is then given by
do = -35; de+%;‘.i dé+%d7‘+ —gf;;dy+
and material softening is associated with any term on the right-hand side which is negative.
This approach may yield apparently useful physical insights, and detailed physical mecha-
nisms may be investigated. In the case of uniaxial compression at high temperatures,
Jonas, HoLT and COLEMAN [4] have considered the possibility that a point of instability
may arise when the rate of material softening, i.e. negative hardening, exceeds the geo-
metrical hardening due to increasing cross-sectional area. Here the approach seems to be

6*
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in competition with well-established theories of elastic and plastic buckling. Buckling
theories, of course, involve a three- (or perhaps two-) dimensional model.

The essentially one-dimensional model which incorporates a mean longitudinal stress o
still has its place, particularly in the treatment of strain-rate sensitive materials, For example,
HART’s theory [5] of instability under uniaxial tension has been quite influential. An account
of this approach may be found in {6], which contains an equation of state and a rate-con-
stitutive equation incorporating possible dependence on hydrostatic stress, and which
also draws a distinction, following Hart, between the maximum load criterion and a cri-
terion for localization of deformation under uniaxial tension. We shall return to .this
in our discussion of imperfections. For strain-rate insensitive deformation we remark
" that no such distinction is necessary, i.e. it is accepted by followers of this approach that
the localization commences at the maximum load point.

The problem of how to generalize the maximum load condition to necking phenomena
under more complex states of stress than uniaxial ones has been frequently discussed.
For thin or thick cylindrical or spherical shells under internal pressure it is natural to take
a maximum pressure criterion (see JOHNSON and MELLOR [7]). But for cylindrical tubes
under combined internal pressure and longitudinal tension quite arbitrary criteria have
been proposed. Another problematic case is the tensile specimen under lateral fluid pre-
ssure, where simple but misleading arguments indicated that the effect of the fluid pressure
would be to delay the onset of necking, whereas bifurcation theory predicted no such
effect (see [8, 9, 10]). Here we shall discuss the generalization of the maximum load con-
dition implied by HILL'S theory of eigenstates [11], and the following section will contain
mathematical preliminaries relevant to the subsequent discussion of bifurcation theory.

2.2. Eigenstates

We assume here that the deformation processes to be considered are time-independent
and isothermal. A state of deformation is an eigenstate if it admits the possibility of in-
cremental deformation under all-round dead loading, i.e. with the loads on surface ele-
ments momentarily constant in magnitude and direction. This definition offers a con-
venient generalization of the basic notion of a tensile specimen at maximum load, and
intuitively seems to retain the association with instability, at least in situations where
© “soft” loading devices are involved.

At an eigenstate, then, a possible velocity mode v and a corresponding nominal stress-
-rate field 7,;; (taking the current configuration as reference) exist, satisfying the condition
of stationary loads ’

2.3) _ 0%, = 1,62 =0

over the whole surface of the body, where f‘, are the components on a background Car-
tesian frame of the nominal traction-rate T (rate of increase of load per unit reference
area), and 40X is a vector surface area element of magnitude 42

In addition the equations of continuing equilibrium (neglecting body forces)

@4) i =0
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must be satisfied, where the comma denotes partial differentiation, here with respect
to the x;-coordinate of the Cartesian frame.
The material is assumed to have a rate-constitutive equation of the form

QTU = av
2t 0g,°
where 7;; is the Kirchhoff stress, 2/@¢ denotes the Jaumann (rigid-body) derivative, &;;

is the strain-rate (v;;+9;,;)/2, and V is a potential function, homogeneous of second
degree in &;;. It follows that

(2.5)

. Dt au
2.6 =Y - =
(2.6) n; g1 TInCn=OnEn ;.
in terms of a potential function U of velocity gradient, satisfying
1
2.7) U=V+ 7 OO0~ Oyt

Here w;; is the local spin (v;;—v;,:)/2, and o;; is the Cauchy stress tensor.

The existence of such potential functions is convenient from a mathematical point
of view so that rate-boundary value problems which arise naturally in quasi-static deform-
ation processes are self-adjoint and the existence of corresponding variational principles
is assured. The class of materials admitting such potentials apparently includes hypere-
lastic and elastic/plastic solids. (For more details of the basic framework, see [12] and,
for a recent and more general view of the field, [13]).

The classical elastic/plastic material element, for example, is conventionally taken
to deform incrementally at yield in accordance with

9
AL (g ikl % ;-uﬂu) €xi»

(2.8) AL

where
{0 if A&, < 0 (elastic unloading),
o=

1 if A& > 0 (further plastic loading),

and 2 are the elastic moduli.
Thus the corresponding function ¥V is given by

1 97,
2 9t
It is also convenient to define u;; and & by the equations

Ay= Limba, &= h+Aymy;

then /i can be regarded as a measure of hardening and p;; as the normal to the yield sur-
face in stress-space if a normality rule is assumed.

For metal single crystals deforming by multi-slip, or for polycrystals at a yield vertex,
it would be necessary to take ¥ to be a different quadratic function of ¢;; in each of a num-
ber of different pyramidal domains of strain-rate space. The most suitable rate-consti-
tutive equation for metals, especially when deep in the plastic range, is in fact still a subject
of debate, and we shall return to this question later.

1 o
(2.9) V= &y = 7 {-g’uuaueu— ‘é‘ (A 3:1)2} -
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In an unstressed state it may be expected that U and ¥ are positive definite functions.
Then a path of deformation may exist such that for all states on the path the volume i}negral
of U over the body satisfies

(2.10) Ju@,pav>o

for arbitrary non-vanishing velocity gradient fields. States for which Eq. (2.10) holds
are “quasi-stable” ([14]) in that the work of internal deformation exceeds to secord order
the work done by the dead loads in any virtual motion. (Such energy criteria for sta-
bility of continuous systems have been criticised by, for example, KNoPs and WILKES [15]
on the basis that they may not correspond to any acceptable dynamical stability criter~
ion.) The relevance of Eq. (2.10) to bifurcation will be discussed in Sect. 2.

In order that Eq. (2.10) be not violated by rigid-body rotations, the relevant stress-
-states under consideration must satisfy the three inequalities

(2.11) G +02,>0, G,403>0, G345, >0,

where a,, 0,, 03 are the principal values of the mean stress tensor ¢;; = fdidefivqume
of body). Thus we are concerned here with predominantly tensile states of stres. Note
that a state of homogeneous uniaxial tension does not strictly satisfy Eq. (2.11), but may
remain in the set of stress-states to be considered if we agree in this particular case toexclude
rigid-body rotations about the tensile axis from class of admissible fields in Eq. (2.10),
on the grounds that such rotations have a neutral effect.

Suppose that we first consider “linear” materials for which U is simply a qiadratic
function of velocity gradients. A path of deformation on which Eq. (2.10) hods may
terminate in a state at which the inequality

(2.12) fuav=o0

holds, the equality holding for some non-trivial velocity gradient field. Since sucl a field
then minimizes | UdV, the calculus of variations can be used to show that it is an eigznmode,
the associated stress-rate satisfying Eqs. (2.3) and (2.4). The state is then called a primary
eigenstate. As will be discussed further in Sect, 2, there can be no bifurcation of the ieform-
' ation path under a variety of loading conditions before the primary eigenstate is reached.
Primary eigenstates certainly exist for homogeneous bodies under uniform stress-
_ -states, for which Eq. (2.12) is completely equivalent to ;

2.13) U>0

for non-trivial velocity gradient fields. The primary eigenstate is reached when the qiadratic
form U becomes positive semi-definite. Since the coefficients of this quadratic forminvolve
only material moduli and stresses, it is evident that in this case the primary eijenstate
is independent of the specimen geometry. X

For piecewise-linear materials as in (2.8), HiLL’s procedure ([12]) was to deconpose U
into Q + R, where Q is a single quadratic function and R is a convex function of ¢;;. In partic-
ular, we choose for the elastic/plastic material Eq. (2.8).

1 1 1
0= 3 {-guu&u &g — P (1:131::)2} + 3 015 (Os, 1%k, s — 260 €105
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and
0 if ).,,;s,,; > 0,

R=1{1 .
2% (Aag)? if  Ageu <O.

Primary eigenstates of U and Q then coincide if the directions of the eigenmodes for Q
are chosen to make R vanish. It is thus sufficient to look for the eigenstates of the “compar-
ison linear solid” given by the velocity gradient potential @ (whose incremental moduli
are the relevant plastic moduli for both the “loading” and “unloading” conditions).

Hill found that for homogeneous rigid/plastic bodies under a uniform triaxial state
of stress satisfying Eq. (2.11) the condition excluding eigenstates (assuming a Mises yield
condition and normality rule) could be expressed as '

(0,—0)*+(0,—0)°+(05—0)°
(0,—0)*+(0,—0)*+(0,—0)*’

where o = (¢, +0,+03)/3. (It should be stated that while rigid/plastic materials do not
strictly admit the potentials U or V, eigenstates can still be defined as above). Primary
eigenstates exist when the equality holds in Eq. (2.15), which for uniaxial tension (¢,!=
= ¢3 = 0) implies '

(2.15) h> o+

2 2
2.16 -
(2.16) h 3 E, 3

i.e. the maximum. load condition, and for biaxial tension (o3 = 0) implies

(2.17) ki s _l_ (01 +0,) (401—T0, 6, +403) .

6 (61—0,0,+03)

The latter result had in fact been previously obtained by SwiFr [15] on the basis that
for instability the loads in the directions of ¢, and o, should be simultaneously stationary.
However, as we shall see, it does not follow that at an eigenstate both loads are necessarily
stationary with respect to some monotonically increasing deformation parameter in an
actual experiment.

Essentially the same results were obtained by MiLes [16] for elastic/plastic solids
on the assumption that the elastic moduli were much greater than the plastic moduli.
The eigenmodes existing in states (2.16) or (2.17) have homogeneous strain-rate fields
coaxial with the stress. For a non-classical constitutive equation such as that correspond-
ing to a Hencky “deformation theory”, the value of the plastic modulus for incremental
shearing might be considerably decreased from its classical value (the elastic shear modulus),
and there would be the possibility of a shearing eigenmode at an earlier stage in the de-
formation process.

The practical significance of the above eigenstates is not always straightforward to
assess. With “soft” loading devices, applying dead loads incrementally, eigenstates are
presumably critical if a load maximum is involved. The eigenstate (2.17), however, is not
necessarily associated with a load maximum. If the tensile loads L,, L, acting on two oppo-
site pairs of faces of a rectangular body in biaxial tension are increased proportionally,
then naturally they both attain a maximum simultaneously at the eigenstate (2.17). For

al:
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a different loading history, e.g. one in which the stresses are increased proportionally,
the increments in L, and L, may have opposite signs at the eigenstate, implying that
one load is still increasing while the other is decreasing beyond a maximum. In fact, a simple
rigid/plastic Mises analysis shows that at the eigenstate (2.17), unless L, and L, reach
a maximum simultaneously, we have

dinL;)  a(l-2q)
dinL) - (@-a)°

(2.18)

where a = ¢,/0,. This is negative if % <a<?2

The experimental results of NEGRONI and THOMSEN [17] on the biaxial stretching
of aluminium sheet specimens indicated that tensile instability did occur roughly at the
eigenstate (2.17), but that a more satisfactory criterion (which they called Dorn’s criterion)
was that based on one of the load parameters L,, L, first attaining a maximum. It should
be noted, however, that a number of factors, including the particular choice of yield surface,
will effect the calculation of the primary eigenstate. TADROS and MELLOR [18, 19] have
recently applied a combination of the Swift stability criterion (2.17) and the analysis
of Marciniak and Kuczynski (to be discussed later) to the problem of limit strains in the
in-plane stretching of sheet metal, and have compared the theory with experimental results
on steel, aluminium, and brass sheets. Limit strains were taken here to be the strains at
fracture rather than at the onset of necking.

The situation is further complicated by detailed consideration of the loading condi-
.tions. For loading by fluid pressure, Eq. (2.15) is not appropriate. The existence of primary
eigenstates under stationary fluid pressure has been considered by MiLEs [10] with refer-
ence to the above-mentioned problem of the tensile specimen under lateral fluid pressure.
HiLr and MILSTEIN, in a series of papers on the behaviour of single crystals at large strains
with particular emphasis on stability (see, for example, [20, 21]), have investigated the ex-
istence of primary eigenstates under all-round fluid pressure loading (tensile or compres-
sive). The corresponding eigenmodes involve either incremental uniform dilation or shear-
ing. Again the body may be regarded as quasi-stable up to the attainment of the primary
eigenstate,

The theoretical existence of primary eigenstates thus continues to be of interest from.
a stability point of view. The stability criterion always involves specifying the behaviour
of the surface tractions, and so the loading conditions. relevant to a particular problem
must be carefully considered. The other principal difficulty is the specification of the
appropriate constitutive equation, i.e. of the potentials U and V.

3. Bifurcation
3.1. The rate-problem

First we review the general analysis due to HiLL [12, 13] of the quasi-static isothermal
deformation of time-independent materials, with particular reference to uniquemess.
" This work, now well-known, involves the formulation of mathematical boundary-value
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problems, and leads to variational principles which have been fruitful in yielding finite-
-element p'mcedures (e.g. [22]) for applying the theory to problems of practical interest.

The configuration of a body is supposed to be completely known at a certain instant
during a deformation process, together with the distributions of stress and strain within
the body, surface tractions, and the distribution of all relevant material parameters. To de-
termine the incremental deformation of the body, we suppose firstly that nominal traction-
-rates T are prescribed on a part of the surface £, with velocities v on the remainder Zy
(or perhaps complementary components of Tandvona part of the surface). A “rate’’-
-boundary value problem is thereby established in which the field equations are, combining
Egs. (2.4) and (2.6),

i) -o

while the boundary conditions are

- au
niyn; = —— n; prescribed on X,
(2) M . 0,4 1 P T

v, prescribed on Xy,

where n is a unit outward normal on Zy. The possibility of two velocity solutions ",
v®, with corresponding stress-rate fields n{}’, n{P’, is considered. These fields must
satisfy the equation

0= [ Gip-if) @fO—ofImdz = [ 4 (;—") AwpnidZ,

where 4 denotes the difference (  )®-( ).

Transforming by the Divergence Theorem gives

au
fA (E) AﬂdeV: 0-

If the material is incrementally linear, with

(3.3) Ry = Cimix
and
1
(3.4) U= 2 Com1Y,iVk5

where the “pseudomoduli” ¢;;y; are instantaneously constant (independent of v;;), the
above integral becomes

[udo,pav=o.
Uniqueness is then guaranteed whenever
(3.5) [v@,pav>o

for arbitrary (piecewise differentiable) velocity fields vanishing on Zy.
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A connection between uniqueness and the “quasi-stability” criterion (2.10) is now
apparent. Satisfaction of Eq. (2.10) implies that of Eq. (3.5). Thus for states of stress
satisfying Eq. (2.11) a primary eigenstate given by the inequality (2.12) will provide lower
bounds for the stresses (or an upper bound for the hardening parameter) at which bifur-
cation (failure of uniqueness) is possible under the given boundary conditions. This simple
bounding property of the primary eigenstates is associated only with predominantly tensile
stress-states.

Elastic/plastic solids are only piecewise linear, but on applying the above theory with Q
as in Eq. (2.14) instead of U it follows that bifurcation in a homogeneous Mises rigid/plas-
tic or elastic/plastic solid in a uniform triaxial state of stress satisfying Eq. (2.11) cannot
occur under the given boundary conditions before the state given by equality
in Eq. (2.15). Indeed, such materials admit trivial bifurcations under boundary condi-
tions of prescribed nominal traction-rate on the whole surface as soon as the inequality
in Eq. (2.15) is reversed. For example, a bar under uniaxial tension can continue to deform
plastically or else unload elastically under negative load increments at any point after
the attainment of maximum load, and similar modes are available in biaxial and triaxial
stress-states. Necking modes are not specifically involved here, and in order to generate
them further attention must be paid to the detailed boundary conditions. Restrictions
on velocities are required.

A path of deformation for which Eq. (3.5) holds at each point, assuming now that 2y
does not vanish, may terminate in a state for which

(3.6) [uv@,pdv=o

in the same class of velocity fields, the equality holding for some velocity field vanishing
on 2. Such a mode then minimizes f UdV,and by the calculus of variations it again follows
. that this mode is an eigenmode satisfying Eq. (3.1) and the homogeneous boundary
conditions. The velocity solution to the rate-problem is then undetermined to within
an arbitrary multiple of the eigenmode. For plastic materials, if we assume that there
is a “fundamental solution” for which continued plastic loading takes place everywhere,
it is, more precisely, a question of adding a sufficiently small multiple of the eigenmode
so that the loading condition is nowhere violated (consistent with the approach of SHAN-
LEY [21]). The arbitrariness of the bifurcation mode would presumably be resolved by the
specification of higher-order rate problems at the given instant, involving more detailed
specification of the quasi-stati¢ loading conditions (nominal traction-accelerations, etc.).

In applications of the theory it is normally assumed that primary eigenstates given
by Eq. (3.6) exist. This is not necessarily the case, however. In an analysis of plane-strain
bifurcation for a rather general class of materials (which includes incompressible elastic/
[plastic solids), HiLL and HUTCHINSON [24] demonstrated the existence of certain states,
which, while not actually eigenstates, are points of accumulation for a spectrum of eigen-
states. Thus it is possible to envisage a deformation process for which Eq. (3.5) holds
everywhere up to a certain point which, though not itself an eigenstate, is critical in the
sense that on proceeding with the process a finite distance along the deformation path
an infinite number of eigenstates would be encountered. Similar critical states have also
been noted by NEEDLEMAN [25]. It is possible that other pathological situations may exist.
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3.2, Applications

We confine our attention here to applications involving inelastic materials, although
finite elasticity has been a major area of interest. The first detailed application of Hill’s
theory of uniqueness in rigid/plastic solids was to tension specimens in plane strain [26].
Although rigid/plastic solids do not strictly admit potentials U and ¥, exclusion conditions
sufficient for uniqueness in rigid/plastic bodies had been obtained [28] before the general
theory outlined above had been established. The difficulty with rigid/plastic materials
is that an extremely restricted class of modes is available in uniform stress-states when
a normality rule is assumed. This class does not include axially symmetric necking modes
for cylindrical bars under uniaxial tension.

Incorporation of elasticity into the material model does allow such modes to exist,
and axisymmetric necking modes for circular cylinders of incompressible elastic/plastic
material were found by HurcHinsoN and MiLes [27], following earlier work by CHENG,
ARIARATNAM, and DuBgy [28]. Boundary conditions were taken as follows:

(@) the lateral surface of the bar traction-free (T = 0);
(3.7) (b) on the plane ends of the bar, zero components of T tangential to the surface
_ (shear-free conditions) and prescribed (constant) axial component of velocity.

Similar boundary conditions had been adopted in [26]. A mode consisting of uniform
stretching is always available.

Incompressibility permits the introduction of a function @(r, z) such that

oD 1
(38) U = —E U= — r 61' (l"@),

and if v is to be an eigenmode satisfying homogeneous boundary conditions, @ may be
taken in the separable form

(3.9) = ¢(r)sin(%), k=1,2,3,..,

where L is the cylinder length and the origin for the axial coordinate z is taken at one end.
The field equations reduce to a fourth-order ordinary differential equation for ¢(r), with
the solution

(3.10) ¢ = Re {CJ‘_ ( ’“’f" )}

when J; is the Bessel function of the first kind of order one, and g is a complex constant
depending on the elastic and plastic moduli. An eigenvalue equation is obtained by applying
the boundary conditions at r = R, the cylinder radius. Asymptotic analysis of the equa-
tion yields the following expression for the bifurcation stress o,:

<y 1 4
(3.11) o, = E$+ 5 y? a',,.+ 192 +0(y 0o Yo1),

where E7 is the tangent modulus at bifurcation, u is the elastic shear modulus,
and y = knR/L. The lowest critical stress is given by k = 1, corresponding, perhaps
surprisingly, to necking at one end of the bar, whereas necking at the centre (the case
considered in [26] for a plane-strain specimen) corresponds to k = 2.
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It can be seen that the necking mode is initiated affer the maximum load point (at
which Eq. (2.1) holds), the delay depending on the geometry of the bar (being shorter
the smaller the ratio R/L). Uniqueness holds at least as far as the maximum load point.
The delay is further shortened by considering the effect of decreasing tangent modulus
after the maximum load point. Thus Eq. (3.11) seems to be a satisfactory result which
conforms broadly to practical experience. Whether detailed agreement with experiment
could ever be demonstrated, however, is an open question. '

Approximate (upper-bound) solutions for a flat rectangular bar under uniaxial tension
were obtained by MILEs [16], showing much the same features as the cylindrical bar so-
lution, provided that the specimen is sufficiently thin. Explicitly, the upper bound takes
the simple form

(3.12)

( V'?.a-{-sm Y 2a )

y/ 2a+3sin /2«

for sufficiently thin specimens, where a = kab/L, the length of the specimen being L
and the width 2b; k is an integer. For certain values of b/L the lowest value of ¢, is not
obtained with k = 1.

The solution of CowPER and ONAT [26] for rigid/plastic rectangular blocks under
plane strain was extended to elastic/plastic materials by ARIARATNAM and Dusey [29],
and subsequently in greater depth by HiLL and HUTCHINSON [24], who carried out the
analysis for a class of orthotropic, incrementally linear, incompressible materials with
rate-constitutive equations independent of hydrostatic pressure. The equations are

7} Do
T (011—022) = 2!"(‘-'11“"‘:1); 9:2‘ = 2pue,,,

i) g:+&,=0,

where the two independent moduli z and p* (functions of the deformation history, as
usual) represent instantaneous moduli for shearing parallel to the axes of the rectangular
block and at 45° to them, respectively.

A stream function yp(x,, x,) exists such that

o . 4
(3.19) v, = Ez v, = ox,

and in terms of p the field equations become

' 1 oy i oty ( 1 ) oty
(3.15) (}‘4'30')“&7;""2(2# —#)T%axz+ k=50 axs 0,
where ¢ is the (uniaxial) tensile stress in the x,-direction.
Equation (3.15) can be classified as (a) elliptic (b) hyperbolic (c) parabolic, according
to the number of real roots », /v, of the equation

(3.16) (p-!- -;—a) vi+2(2u* —p)vlvz (,u- %o‘) =0

is (a) zero (b) four (c) two. The elliptic regime is the most relevant for the incompressible
elastic/plastic material, regarding Eq. (3.13) as defining the “comparison linear solid”.
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We might then expect u to represent an elastic shear modulus and 4u* to correspond
to the tangent modulus, so that the maximum load point occurs when o = 4u*.

In the elliptic regime Eq. (3.16) has an exact solution in terms of functions of two com-
plex variables, but it has not yet been possible apparently to exploit this using methods
familiar in the theory of anisotropic elasticity. Hill and Hutchinson obtained separable
solutions of the form

(3.17) Y= f(xz)sin(mf‘ ) n=12,3,..,

where L is the length of the block, using the boundary condition (3.7) of prescribed
uniform longitudinal velocities and zero shearing tractions on the ends. Eigenvalue equa-
tions for the bifurcation stresses were found for each of the elliptic, hyperbolic, and para-
bolic regimes, for both symmetric and anti-symmetric modes (corresponding to odd and
even functions f(x,), respectively). If u > 2u*, the lowest bifurcation stress for a given
geometry factor b/L (when b is the width) lies in the elliptic regime, and for small /L
is slightly greater than the stress at maximum load. Asymptotically,

Oc

(3.18) =

1+ % y:+ ;5— e +00°, yout ),
where y = nab/2L.

For the case ¢ < 2u*, however, there is the interesting result that the elliptic/parabolic
boundary in parameter space (where ¢ = 2x) is the locus of points of accumulation of
bifurcation points for both symmetric (n even) and anti-symmetric (» odd) modes. As soon
as the boundary is crossed from the elliptic regime (where the exclusion condition holds
in this case), modes of sufficiently short wavelength become available. Such solutions
had previously been found by Bior [30] in his work on “internal stability” in a rigidly
confined medium. _

In the hyperbolic and parabolic regimes the possibility of additional solutions of the
field equations in the form of localized shear-bands exists. We shall discuss this presently
in more detail.

Bifurcation under compressive stress (buckling) in the same situation was investigated
by YouNG [31]. The lowest bifurcation stress still occurs in the elliptic regime, and for
sufficiently slender blocks the corresponding- mode is anti-symmetric (Euler buckling).
Solutions are again of the separable form (3.17).

The plane-strain problem has been extended by NEEDLEMAN [25] to deal with rather
more general constitutive equations than Eq. (3.13), while rétaining the mathematical
convenience of incompressibility. His equations can be interpreted in terms of the total
loading of an elastic/plastic solid for which a normality rule does not hold. Given the current
interest in shear-band solutions, the intention here may be to make the hyperbolic or para-
bolic regimes more accessible, raising the possibility of the initiation of a localized shear-
band mode before a “diffuse” necking mode.

Other situations in which the classical elastic/plastic model with smooth yield surface
and normality rule apparently gives physically reasonable results are the spherical shell
and long cylindrical shell under internal pressure (NEEDLEMAN [37] and CHu [33]). Here,



922 _ ' J. P. MiLES

if the rate of increase of internal pressure is prescribed, an eigenstate is reached when
the pressure reaches a maximum with respect to, say, the internal radius. For thin-walled
shells the critical states are as given in [7]. Under prescribed internal volume, however,
bifurcation does not necessarily occur at the maximum pressure point. No simple exclu-
sion condition precluding bifurcation before this point has apparently been found, except .
for rigid/plastic shells under certain conditions (MIiLES [34], STORAKERS [35], STRIFORS
and STORAKERS [36]).

For elastic/plastic spherical shells under prescribed internal volume, the results in [32]
show that a bifurcation mode involving thinning around a point and thickening at the
opposite pole becomes available at an instant significantly beyond the maximum pressure
point. This is true even for thin shells, for which the state of stress is essentially biaxial.

It is worth mentioning at this stage that when fluid pressure p acts on a surface with
an instantaneous rate of change p, the loading conditions take the form

(3.19) iy = —pny+p(Os, ;1 — Ve xn))

and that the relevant uniqueness functional for the boundary value problem in which p
is prescribed on X, and velocity v on the remainder 2, is, instead of f vdv, -

1
(3.20) f{b’— 5 p(vk_,v,.,—vk.ka_J)} dv,

while that for the problem in which fluid pressures p, , p,, ..., px and their rates are prescrib-
ed on the complete internal or external surfaces X(*), 2'(?), ..., Z(k), respectitely, as
in the case of the shells above, can be expressed as

(3.21) f {U“f‘ '%- U‘J(vj.kﬂt—vglk‘vj)';} dv.

The latter problem is still variational and the loading conservative, but the analysisis more
difficult because of the presence of second derivatives of velocity components in the u-
niqueness functional.! '

Another application of the theory for which detailed calculations have been carried
out [37] is necking in rotating elastic/plastic discs under increasing angular velocity, where
it appears that for a sufficiently ductile material a nonaxially-symmetric bifurcaticn mode
may occur before the instant at which the angular velocity attains a maximum with respect
to, say, the radius of the disc.

In all the applications so far mentioned the bifurcation stresses seem to be roughly
in accord with physical intuition. The theory has been less successful so far in dealing
with problems of biaxial ténsion. The bifurcation stress calculated by DUBEY and ARIARAT-
NAM [38] for a rectangular solid under equal biaxial tension is of the same order ol magni-
tude as the elastic shear modulus, and thus physically unreasonable. The boundiry con-
ditions adopted were of prescribed normal velocity components and shear-free nominal
traction-rates on the two opposite pairs of faces subjected to traction, enabling a siparable
solution (in the Cartesian coordinates x,, x,, X,) to be obtained. A similar resut holds
for circular plates under prescribed radial velocity components around the edge, according
to BRUHNS and THERMANN [39] and NEeDLEMAN and TVERGAARD [40]. Here the velocity
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solutions are separable in the polar coordinates r, 8, z. One might speculate about the
possibility of non-separable solutions, and regard the above calculated bifurcation stresses
as merely upper bounds to the true values. The gap between these upper bounds and the
lower bounds given by (2.17) is, however, uncomfortably wide.

It is at this point that we make contact with the well-known paradox of plastic buckling,
that, as has been commonly accepted since the 1940's, the predicted buckling stresses
of the classical elastic/plastic model are for many problems highly unconservative com-
pared with the more acceptable predictions of the so-called deformation theory due to
Hencky. Much has been written on this subject (e.g. see HUuTCHINSON [41]). The present,
rather unsatisfactory, situation appears to be that computer programs for the calculation
of .buckling stresses, e.g. [2], provide for the optional use of either “J,-flow theory”
(basically the classical Prandtl-Reuss equations) or “J,-deformation theory”. The use
of Hencky’s equations, which lack a certain respectability, is often justified by appealing
to the fact that the associated incremental behaviour corresponds to the fully-active loading
of a material in which the current stress lies at a vertex on the yield surface(e.g. SEWELL [42]).
From an experimental point of view the existence of such vertices is still an open question,
although particular physical models of polycrystal deformation do predict the formation
of a vertex at the loading point on the yield surface (HurcHinsON [43]). Since Hencky’s
is a small strain theory, it is also necessary to specify the precise form that is to be used
at finite strain. :

The root of the problem seems to be that bifurcation modes from a state of uniaxial
compression usually involve a substantial shearing component. The corresponding stress
thus depends on the instantaneous shear modulus, which according to the classical theory
retains its elastic value, but which is considerably reduced in value using deformation
theory. A further point is that structures are often highly imperfection-sensitive as regards
buckling. This factor may also help to resolve the “paradox”, while leaving the theoretical
bifurcation stress of dubious practical value. Similar considerations may apply in necking
problems. _

The possibility of varying the boundary conditions for biaxial tension was considered
in [16] and an approximate (upperbound) solution was.obtained for the bifurcation stresses
in equal biaxial tension when “hard” loading devices act in one direction (prescribed
uniform normal velocity components, with shear-free tractions) and “soft” loading devices
in the perpendicular direction (prescribed nominal traction-rates). A separable solution
is not available for this problem. The bifurcation stresses, while occurring beyond the
eigenstate (2.17), are of a physically reasonable order of magnitude for sufficiently thin
specimens. The upper-bound expression for o, is, explicitly,

(3.22) o, = Ef(l + 3"—"%9) .
where « = kab/L,k = 1, 2, 3, ..., if the specimen is thin enough. The sensitivity of the
critical stress to the particular boundary conditions appears, therefore, to be large.

The simplest mathematical loading conditions corresponding to an elastic loading
device would seem to be, as suggested by HiLL [45], taking ('.'",-+K;p,) to be prescribed
on the loaded surface, when K;; could represent the moduli of a distributed set of elastic
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springs performing the loading. The rate-problem is still variational, even for a set of n
loading devices with different moduli K{?, s = 1,2, ..., n, acting on n different parts
of the surface Z,. The appropriate functional is

(3.23) f Udv+ zl > f KiP0,0,d5,,

§=1

whose variation is to be zero for bifurcation in the class of continuous, piecewise contin-
uously differentiable vector fields v. It is obvious that if all K’ are positive definite and the
principal mean stresses satisfy Eq. (2.11), then bifurcation still cannot occur before the
primary dead-loading eigenstate. Separable solutions for this class of problems are again
unavailable, but upper bounds for critical stresses can be formulated in terms of a Rayleigh
quotient. In the case of uniaxial tension, for example, taking Ki; = Kd;, 8;, for simplicity,
where x, is in the axial direction, it is easy to show that the critical stress lies between
that at maximum load (the primary eigenstate for dead loading, corresponding to K = 0)
and that for the hard loading device (K — c0) in which axial velocities are prescribed
on the ends. Thus, as might be expected intuitively, a loading device with finite K; will
serve to reduce the bifurcation stress from the above-mentioned unacceptably high values
associated with hard loading devices.

It may be that specification of normal velocity components on a surface is, from a theo-
retical and possibly practical point of view, an over-severe restriction on the possible
velocity modes in the classical elastic/plastic solid. On the other hand, the in-plane stretch-
ing experiments of AZRIN and BACKOFEN [46] do seem to involve rather stiff loading
conditions, corresponding to high values of Kj;. It appears, therefore, that there are still
serious difficulties in applying bifurcation theory directly to the problem of limit strains
in sheet-metal forming.

3.3. Localized solutions

There is currently much interest in localized shear-band solutions, regarded as bifur-
cation on some fundamental path of deformation. It is suggested that such modes can
serve as models for failure in over-consolidated clay soils [47], in rocks under compressive
stresses [48], and in sheet metal under biaxial tension [49]. At this colloquium a similar
approach to the phenomenon of localized shearing in single crystals has been presented
by Dr. Asaro. The instability involved is regarded as essentially “material”, or “consti-
tutive”, rather than “geometrical”, and the modes contain discontinuities in velocity
gradients,

The possibility of a discontinuity surface that does not move relative to the material
(a “stationary discontinuity™) exists for a material with the constitutive equation

(3.29) My = Cipi¥ks
whenever there exist vectors v satisfying

(3-25) ] dCtCﬂ =0
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with Cj; = ¢y (see [45]). If the matrix C is positive definite for all v at a point, the
system of equations of continuing equilibrium.

(3.26) (Comv).=0

is said to be strongly elliptic (SE) there, and no discontinuity surfaces are admissible
when the SE condition holds everywhere. In the plane-strain bifurcation problem of [24],
Eq. (3.25) reduces to Eq. (3.16), making allowances for incompressibility. Thus disconti-
nuity surfaces are precluded in the elliptic regime, but not in the hyperbolic and parabolic
regimes, where the corresponding straight lines v, x,+v,x, = constant are character-
istics, across which there can be discontinuities in velocity gradients (but continuity of trac-
tion-rates). Although the lowest bifurcation stress (when 2u* < u) corresponds to a diffuse
mode in the elliptic regime, it is argued that shear-band solutions (with deformation con-
centrated between two characteristics) may become available soon afterwards on the
path of uniform deformation (the precise moment depending on the behaviour of x nad u*
with continuing deformation), and that the shear-band might become the ultimate failure
mode. Thus diffuse necking would be followed by localized necking and fracture, in accord-
ance with observations on flat metal bars [3].

A possible objection to these discontinuous solutions is that, although the field equa-
tions (3.26) hold everywhere, the boundary conditions, a basic part of the deformation
of the rate-problem, cannot be satisfied, in particular where the band meets the free surface.
Writers have so far responded to this difficulty only in an intuitive way by regarding the
band as “vanishingly thin”. Alternatively one might regard the modes as solutions in an
infinite medium for which detailed boundary conditions are not relevant. The theory is,
however, not easy to reconcile with Hill’s general analysis of bifurcation, and shear-band
solutions receive no mention in [13]. The band analysis is, of course, distinct from the
imperfection method of MarCINIAK and Kuczynski [51], although it appears that there
is some correspondence in the limiting case as the amplitude of the imperfection tends to
zero (TVERGAARD [61]).

Discontinuous solutions for plane-stress problems have been given by STOREN and
RICE [49] in their model of localized necking in thin sheets. Here the c;;,; represent the appro-
priate moduli for continued plastic loading. The classical elastic/plastic solid still presents
difficulties, however. HILL [52] had previously shown that for rigid/plastic solids localized
necking is possible in the hyperbolic regime, shear bands being in the characteristic di-
rections, which are the lines of zero extension in the plane of the sheet. Thus localized
necking when no such lines.of zero extension exist, as in the case of equal biaxial tension,
should not be possible. To permit shear-band formation, and to use this as a basis for the
calculation of “forming-limit diagrams”, Stéren and Rice proposed a constitutive equ-
ation based on Hencky’s deformation theory, regarded as equivalent to the incremental _
equations for a solid with a vertex on the yield surface at the current stress. The calcula-
tions seem to agree reasonably well with experimentally derived forming-limit diagrams.
An alternative modification of the classical model involves non-normal strain increments
to the current yield surface, a feature of the constitutive equations introduced, with the
help of physical arguments, by RUDMCK{ and Rice [48] to predict the failure of brittle
rocks under compressive stresses.

7 Arch. Mech. Stos. nr 6/80
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Further discussion of this approach and applications for various constitutive equa-
tions may be found in [53] and [54). An advantage over the formulation in terms of a rate-
boundary value problem is that the critical states may be found by straightforward algebra
once the constitutive equation has been formulated. For example, in plane stress the-crit-
ical conditions may be obtained by assuming a shear-band solution, writing down the
condition for continuity of nominal traction-rate across the band, and then putting equal
to zero the 2 x 2 determinant of coefficients in the homogeneous linear equation obtained.

Another line of enquiry which it seems relevant to mention here bears on a remark
by HiLL [11] to the effect that the divergence between two quasi-static equilibrium paths
“might grow from just a single point of the continuum.” The coefficients c;;; are called
semi-strongly elliptic (SSE) if they satisfy the condition

(3.27 Cima ¥t ;M = 0

for all v, n. According to Hadamard, it is necessary (at least for unconstrained materials)
that this condition holds everywhere if the exclusion condition

(3-28) fUdV= f—;— cm;vj,m,_ldV> 0

is to hold for the “Dirichlet problem” in which v is specified over the entire surface. YOUNG
[56] has extended a proof of this result by NoLL [55] to cover incompressible materials,
for which Eq. (3.24) becomes

Ry = Cia¥ic+pouy,

where p is an undetermined scalar field. The coefficient c;;, are assumed to be piecewise
continuous. The proof involves dividing up the body into a finite number of cells, choosing
a point 0 in the interior of a particular cell, and then considering appropriate continuous
velocity fields which vanish outside the cell (thereby satisfying homogeneous boundary
conditions). It is then shown that the exclusion condition (3.28) implies that the ¢;;; are
SSE at 0. Thus, once the c;;; fail to be SSE at a point in the body, a bifurcation localized
in the neighbourhood of that point might be possible.

4. Imperfection analysis

We conclude with a brief survey of .current methods of assessing the influence of im-
perfections on localization and necking. Such approaches often appear completely unre-
lated to bifurcation theories, but generally involve some intuitive choice of stability cri-
terion. In the field of elastic structural stability the general theory, initiated by Koiter,
of the effect of unavoidable geometrical or material imperfections is well-advanced, offer-
ing a comprehensive account of bifurcation, imperfection sensitivity, and post-bifurcation
behaviour. For plastic stability, the only comparable work seems to be that of HUTCHIN-
SON [42]. A number of simpler approaches, however, deserve consideration.

In the materials science literature much discussion of instability under uniaxial tension
is based on the work of HART [5], who proposed a stability criterion that takes account
of the effect of strain-rate sensitivity. A specimen is assumed to have uniform cross-section-
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al area A,(z) at time ¢t except for a non-uniform region where the minimum cross-section-
al area is A(t). The mean longitudinal stresses at these sections satisfy 04 = 0,4, at all
times for equilibrium. Hart’s linearized analysis yields

Ao (m+y—1)
—'A: A AA,

d
4.1) =1 44 =
where 44 = A—A,, and y and m are material parameters, expressible as y = ¢~1do/de,
m = &0~ 'dc/0¢ in terms of an equation of state o = (e, &). Instability is taken to occur
when 44 is instantaneously increasing in magnitude, giving the instability criterion (for
m positive)

4.2) m+y < 1.

If m = 0 (no strain-rate sensitivity), the instability point coincides with the maximum
load point (y = 1). .

JONAS et al. [4] observed that Eq. (4.1) is valid only when the non-uniformities are
mechanically imposed on an initially uniform specimen, and also proposed an alternative
instability criterion that the strain difference |de| = |e—g,| should be growing in magni-
tude. In fact this is equivalent to the criterion that the relative size |44/A4,| of the area
nonuniformity should be increasing. The instability condition is then

(4.3) y <1,

independent of m. According to SAGAT and TAPLIN [57], however, neither of the condi-
tions (4.2) and (4.3) agree with experimental results for rate-sensitive materials in that they
considerably underestimate the critical strains at localization.

A linearized analysis for an initially. non-uniform specimen (for which Hart’s assump-
tion that Ae = —AA4/A, is not valid to first order) shows that

d oy
4.9) 77 @A +h(DAA = — A,

where 7 is the initial relative non-uniformity [1— A4(0)/4,(0)], and h(t) = &;(m+y—1)/m;
see HurCHINSON and OBRECHT [58]. Thus it is not surprising that Eq. (4.2) is not a satis-
factory condition for localization, since the characteristic time for growth of |44| is
0(h~*) = 0(g,"') when m is not too small. Therefore necking may develop very slowly.
If m is small (and positive), a neck may develop more quickly, but the criterion simply
reduces to the maximum load condition.

Hutchinson and Obrecht also carried out an exact three-dimensional linearized analy-
sis on the particular example of a circular cylinder of power-law creeping material (defined

1/2

by &, = —;— oos~'s;;, where s;; is the deviatoric stress and o, = (7 58 ,—) is the effective
" stress), in order to provide a check on the validity of the above, essentially one-dimensional,
apprdximation in which the three-dimensional constraint effect of the material on either
side of a developing neck is neglected. They showed that Eq. (4.4) holds in this particular
case provided that the wavelength of the initial (sinusoidal) nonuniformity in the specimen
geometry is not too small.

T



928 J. P. MiLes

HuTcHINSON .and NEALE [59] have applied the “long-wavelength” approximation
to the development of a neck in a bar of material satisfying ¢ = Ke¥&™. An initial non-
uniformity apparently develops slowly at first, but then rapid growth occurs, with the
strain &, in the uniform section eventually reaching a maximum with respect to the strain &
in the necking region. This condition (dgy/de = 0) can serve as a new criterion for instab-
ility or localization, corresponding essentially to a one-dimensional version of the cri-
terion proposed by MARCINIAK and Kuczynski [51] for failure in thin sheets under quasi-
‘static biaxial deformation.

In the so-called M-K analysis a thickness inhomogeneity is assumed in the form of
a narrow groove lying at right-angles to the direction of the greater (logarithmic) strain,
say g,. A state of plane stress is assumed inside and outside the narrow band, so that,
as in the “long-wavelength” approximation for uniaxial tension, the three-dimeasional
constraints acting on an incipient neck are neglected. If it is assumed that proportional
straining takes place outside the band, with ¢, /e, = &,/é, = p, a constant, and if quanti-
ties inside the band are denoted by ( )°, we have, for compatibility and continuing
equilibrium, .
(62 =&, and (0,))f" = 041,
where ¢ denotes current thickness. Assuming incompressibility

& B 6 t
— = —&,—¢&; and 3

‘l
" Then, with incremental behaviour given by

= _-él —éz-

0y = L&+ Lyye,,
&2 = Lnél"‘ Lzzézs

solving for &} shows that de}/de, — oo as o% — L,, so that the critical stress for locali-
zation is 1°L5, /1.

This approach has been regarded as equivalent to a bifurcation analysis in the limit
1/t - 1, when &} becomes indeterminate at the critical stress o, = L,,. NEEDLEMAN [60],
for example, has considered the problem of localization in pressurized spherical m:mbra-
nes, taking into account the curvature of the sheet. See also TVERGAARD [61], who showed
that forming limit diagrams calculated on this basis for classical elastic/plastic solds are
closer to those found experimentally if kinematic hardening is assumed rather than tle usual
isotropic hardening law.

The physical assumptions underlying the M~K method were examined by AZRIN
and BACKOFEN [46], who showed that unrealistically large imperfections were required
if the model was to predict limit strains corresponding to those observed experimitally.
It is now commonly assumed that the simple geometrical imperfection of the madel re-
presents the overall (geometrical and material) imperfection of the sheet,.

Another analytical method for following the growth of an imperfection is a -egular
perturbation analysis as employed in the investigation of the extreme imperfectioi-sensi-
tivity of the cruciform column in buckling by BUDIANSKY and HUTCHINSON [62[. The nethod
is valid only for small deviations from the basic state of stress, and for elastic/plasti solids
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it must be assumed that no elastic unloading occurs, so that effectively a “hypoelastic”
material is considered. The perturbation expansion is not valid in the neighbourhobd
of a bifurcation point, when a singular perturbation analysis is required. However, the
perturbation method can give an indication of the rate of growth of imperfections of diffe-
rent wavelengths (see, for example, NEEDLEMAN and TVERGAARD [40]).

Finally we must mention the powerful computational procedures, in particular finite
element methods, so impressively employed in recent years in calculating the growth of im-
perfections in different situations. These methods do not of themselves provide criteria
for instability and localization, but have been used to assess the validity of the various
approximate theories and models discussed above.

5. Conclusion

Hill's bifurcation theory is now evidently well-established and, of the theories discus-
sed, is the only one leading to critical stresses dependent on the overall dimensions of the
specimen, a commonly observed feature of necking (see Napa1 [63]). However, the theory
seems to predict excessively high critical stresses for the classical elastic/plastic solid
in a number of situations, both tensile and compressive. If the method is to serve as a basis
for design purposes, the safest course at present seems to be to use a deformation-theory
constitutive equation. Such constitutive models may be justified by appealing to the possible
existence of vertices on the yield surface, and there are other constitutive equations, for
example exhibiting non-normality, which are equally effective. A complete imperfection
analysis may yet justify the use of the classical model, but the need for a relatively simple
theory, which can be applied by engineers in practical situations, is apparent.

The band analysis and the M~K method produce values for critical stresses in a straight-
forward manner, HUTCHINSON and NEALE, in an important series of papers [64] on sheet
necking under uniaxial and biaxial tension, have studied the validity of these approxima- .
tions, as compared with the fully three-dimensional model, and have compared the pre-
dictions of these two approaches with experimental data for both the “J,-flow theory”
and a finite strain version of deformation theory. They point out, for equal biaxial tension,
the large imperfection-sensitivity of the flow theory (using the M-K analysis), which does
not even admit a localized bifurcation solution in this case, and conclude that the classical
theory is unlikely to be able to predict localized necking in the range &,/e; = ¢ > 0.
The implications for computer programs being developed for studying particular sheet-
metal forming operations are not encouraging. On the other hand, a deformation theory
is unlikely to give satisfactiory predictions if the loading history leading to the current
value of g is strongly non-proportional.

The computer still has an important role to play, of course, in elucidating the effects
of particular choices of constitutive equations and also of imperfections. Other important
features such as plastic anisotropy, temperature, and, at a microscopic level, void growth,
may also be incorporated. New insights on the nature of localization and instability may
also come from experimental work. Current theories of necking may prove to be adequate
if appropriate constitutive equations can be formulated.
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