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Predictions for sound propagation in disparate-mass gas mixtures 

R. J. HUCK and E. A. JOHNSON (SURREY) 

DISPARATB·MASS gases can behave differently from more familiar gases in the continuum regime, 
because in some circumstances the light and heavy components of the mixture can have dif­
ferent temperatures. Sound propagation in such gases is considered here. At moderately hip 
frequencies, the existence of two different forced-sound modes is predicted. 

Mieszaniny gaz6w o wysoce zr6Znicowanych masach mo~~t zachowywae si~ inaczej nii lepiej 
znane gazy w opisie kontynualnym, poniewai: w pewnych warunkach lckkie i ci~ skladniki 
mieszaniny mQA ~ r6me temperatU!¥· Rozpatrzono przenoszenie diwi~u w takich mie­
szaninach. Przy umierkowanych ~to9ciaCb przcwiduje si~ mo:Zliwo8C istnienia dw6ch r6inych 
postaci drgan wymuszonych. 

CMeCH ra30B 3TOro THIII MOryr HMeTL ~pyroe DOBe~eHHe qeM 6oJiee H3BCCTHble 1'33&1 B KOH• 
TIUI}'am.HOM ODHC&HHH, T .J<. B HeKOTOpbiX YCJIOBHJIX JierKHe H TR>I<eJible KOMDOHeHTbl CMCCH 
MOlj"r HMeTL p33Hble TeMDepaTYPbl• PaCCMOTpeH DepeHOC 3ByKa B TaKHX CMecRX. flpH yMe­
peHIIhiX qacrorax npeACJ<a3b1BieTCR B03MO>I<HOCTL ~eCTBOBaHHR ~yx p&3H&IX B~OB 
Bbiii)'>I<.QeHHbiX J<OJie6aJmit. 

DISPARATE-MASS gases are those in which the molecules of one component of the mixt_!1re 
are very much lighter than those of the other component (m1 ~ m2). As discussed by 
ORAD (1], the relative inefficiency with which kinetic energy is interchanged between 
the heavy and light speCies in such a mixture can lead to a temperature separation L1 = 
= (T2 - T1) between the species. The relaxation frequency coLt for this ' temperature-dif­
ference is low compared to other characteristic relaxation frequencies in the gas. (Thus, 
if eo, is characteristic self-relaxation frequency for species i, then COJ - (mtfm2)112 co1 -

- (mtfmz)COt .). 
The presence of such a low characteristic relaxation frequency in disparate-mass 

mixtures means that there are circumstances in which the equations of ordinary hydrody­
namics do not . give a correct description of such gases even though they may correctly 
be used for other, more ordinary gases. Continuum equations which describe such mixtures 
in these circumstances have been developed by a number of authors, from several points 
of view [2-7], and there is now agreement about the form which these equations should 
take. 

We consider here the way sound propagates in a disparate-mass gas mixture when it 
is excited at a given frequency ro. We suppose eo low enough so that a continuum treatment 
is justified: eo ~ co2 • As discussed in Ref. [2], the continuum regime consists of two parts: 
the normal regime, for which eo ~ co.J, and in which the usual hydrodynamic equations 
apply, and the near-normal regime, eo ~ coLt, in which a correct description of the gas 
necessarily involves separate species temperatures.-The latter near-normal equations are 
correct throughout the continuum regime, reducing to the usual equations of hydrodynamics 
when w ~ ro,1. When w ~ w.::s, however, their nature is somewhat different. To zero 
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order (Euler level) the flow equations necessarily include several dissipative terms: light­
species heat flux, mutual diffusion and .s~ecies ·temperature-separation. To first order 
(Navier-Stokes level) these equations also include the heat flux and viscosity contributions 
of the heavy species (light species viscosity, a higher-order-term, is negligible). These 
equations, taken to first order, are expected to have·the same validity for a disparate-mass 
gas as the Navier-Stokes equations have for more ordinary gases. 

To obtain disparate-mass sound propagation predictions, we use the near-normal 
equations in the form given by GOEBEL, HARRIS, and JOHNSON', Eqs. (24)-(31) ·of Ref. [4] . 

. (This implies a restriction to mixtures of Maxwell molecules, repelling each other with 
forces proportional to ,- 5, where r is the intermolecular separation. This restriction must 
be improved upon, but is useful for obtaining initial results). In the presence of a small 
disturbance of the form expi(kx-wt), these equations may be linearized and nondimen­
sionalized to give 

(I) 

(2) 

(3) 

n1 =z(U-W), n2 =zU, 

U = z [~ x1n1+ T+P], 
I 

T= (2/3)}; [x1n1+zq1], 

; 

for the deviations from equilibrium of the hydrodynamic variables (species i number 
density, flow velocity, and temperature, respectively), and 

(4) 

(5) 

(6) 

(7)(*) 

W = (iwz)d[n 1 + T-x2L1], 

P-= -(iwz)mU, 

q 1 = - (iwz)l1 [T-x2L1], q2 = - (iwz)l2 [T+x1 L1], 

L1 = -(iwz)T[W-(q1 /x1)), r = 2/3(1-iro), 

for the dissipative variables (diffusion velocity w = u2- ul' heavy species pressure 
deviator, species i heat flux, and temperature separation/respectively). Here X; is the mole 
fraction of species i. Variables have been nondimensionalized with respect to equilibrium 
number density, equilibrium temperature, and reference speed c = (p0 /e0 )

112 (p0 and f!o 
are equilibrium pressure and mass-density, respectively, and c = (3/5) 112 V0 , where V0 

is the equilibrium speed of sound). The reference frequency is taken to be w . ; it has been 
shown [2-4] that 

(8) 

where D is the usual coefficient of diffusion [8). The reduced wave number z is by definition 

(9) ·z = kcfw. 

The nondimensional coefficients of diffusion, viscosity, and thermal conductivity are, 
respectively, 

(10) 

(•) See note on p. 710. 
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(11) 

(12) 

m = 8f-l 2 x2 /3g0 D, 
.. 

li = A., T0 w.J/p0 c2
, 

705 

where f-l 2 and A.; are coefficients of viscosity and thermal conductivity given by Eqs. (27.a) 
and (27.b) of Ref. [4]. 

The predictions of these equations for forced sound propagation is found from ·the 
dispersion relation, which gives the (complex) wave number k as a function of the frequency 
w; the latter is constrained to be real and positive. The dispersion relation itself is obtained 
by setting the determinant of the coefficients of Eqs. (1)-(7) equal to zero (a numerical 
solution is necessary). Usually, one root of this equation corresponds to sound propagation 
in the + x direction. The sound-propagation root is identified by its low-frequency be­
haviour: the absorption coefficient a has the behaviour 

1 

(13) ex = (5/3)2 Im(z) -+ o+, 

while the dispersion V0 /V goes as 

1 

(14) (V0 /V) = (5/3)2Re(z)-+ 1, 

w-+0 

FIG. 1. Dispersion in Xe-He for helium mole-fractions 0.46 < Xc and 0.47 > Xc. Solid curve: sound 
root; dashed curve: interfering root. For c.o ~ 75 MHzfatm, the dispersion of the sound mode for x1 = 
= 0.46 (0.47) overlaps that of the interfering mode with x1 = 0.47 (0.46), to within graphical accuracy 
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where z is the reduced wave number of Eq. (9), and V is the speed of propagation at 
frequency w. 

To facilitate comparison with experiment, we have considered mixtures of xenon with 
helium, for which m1/m2 = 4/131.3. As specific experimental input we have used the 
_pure-gas viscosities, and the Xe-He coefficient of diffusion, as given in Ref. [8], Chs. 12 
and 14. The present predictions refer to mixtures at standard temperature and pressure. 

Perhaps the most striking thing to emerge from the present study is the prediction 
of double sound propagation in disparate-mass gases. Specifically, there is predicted to 
be a range of compositions in the region of a critical He concentration Xc for which two 
propagating modes are predicted if the input frequency w is higher than a critical frequency 
We. The two modes are predicted to have comparable absorption, but very different sound 
speeds. The situation is illustrated in Fig. 1 which shows the dispersion predicted in two 

0·5 
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~ 
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w(MHz/atm) 
~ 

100 

FIG. 2. Absorption curves associated with Fig. 1. 

Xe-He mixtures of helium mole fraction x 1 = 0.460 < Xc and x 1 = 0.470 > Xc. Figure 2 
shows the associated absorption. 

The existence of two propagating modes is made possible through the interference 
of two roots of the dispersion relation. For a mixture of composition x1 = Xc, the sound 
root of the dispersion relatien coincides with a second root of the di~persion relation (in 
both real and imaginary parts) at the critical frequency we. For lower frequencies, this 

. second root describes a highly-damped dissipative mode in the mixture; for frequencies 
higher than we, however, there are two different but comparably-damped modes, both 
of which may properly be called sound modes. For compositions near the critical composi­
tion, the sound root changes its behaviour qualitatively as x1 goes through the critical 
value, showing clear signs of the interference of the second root. Indeed, the sound prop­
agation predictions for a range of compositions in the neighborhood of the critical com-
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position cannot be understood without reference to the behavior of this second. root. These 
facts make it physically reasonable to call the general effect, for x1 in the neighborhood 
of Xc and w ~ We, double sound propagation. 

Figure 3 illustrates the way in which the two relevant roots of the dispersion relation 
interact with each other in the vicinity of the critical values 0.46 < Xc < 0.465 and 0.64 < 

l 

FIG. 3. Argand diagram for (S/3)i" z as a function 
of x 1 (solid curves) and ((J)/Wd) (dashed curves) in 

the vicinity Of Xc t aJc • 
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0o~·5~~~~--~-1.~0----L--L-JI·3 
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Fto. 4. Dispersion in Xe-He for various compositions x1. Solid curve: sound root; dashed curve: in­
terfering root. 
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- - ------

< (wcfwLJ) < 0.66 (for Xe-He, w~ = 110 MHz/atm). The figure shows contour lines of 
1 

the function (5/3)2 z(x1 , w). Solid lines are lines of constant x 1 , and dashed lines are 
lines of constant w. ' 

Figures 4 and 5 show the p_redicted dispersion and absorption curves, respectively, 
in Xe-He mixtures, for a range of compositions. For He fractions less than critical, 

..0·5 

t 
~ 

·0 50 100 
w(MHz~tm) _ 

FIG. 5. Absorption curves associated with Fig. 4: 

. the sound mode is seen to tend to the slow wave (V < V0 ) as w increases above we, while 
for He fractions greater than critical, the sound mode tends toward the fast wave (V> 
> V0 ) as w increases above We. 

The effects predicted here are expected to be even more striking for mixtures in which 
the mass-ratio (m 1 /m2 ) is smaller than its value for Xe-He. In mixtures of He or H 2 

with UF 6 , for instance, to the extent that internal excitations could be neglected, double 
sound propagation is predicted to occur at I.ower frequencies, and with smaller damping. 
To see this in a qualitative way, we may assume we are dealing with mixtures of Maxwell 
molecules for which the intermolecular force constants Kii scale with mass in the manner 
discussed by JoHNSON [5]: 

(15) 

This mass-scaling of forces is roughly true in practice, as pointed out, e.g. by Fox . and 
EATON [9]. We may thus generalize the present predictions to mixtures of arbitrary (but 
small) mass ratio m1 /m2 , at least qualitatively, by using xenon-helium input data, as 
before, together with the mass-scaling of Eq. (15). The frequency w~ (and therefore also 
the critical frequency we) is found to be lower than W_j (Xe-He), since 

3 

[ 
m1 mxe]

4 
Wj = --- w~(Xe-He), , 

ml mue 
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if (m 1 jm2 ) < (mHe/mxe). A second effect concerns the importance of first-order corrections, 
due to the thermal conductivity /2 and viscosity m of the heavy species. These transport 
.coefficients are smaller than their values in Xe-He by the factor 

so that first-order corrections to -the zero-order predictions become progressively less 
important as (m 1 /m2) decreases. Calculations show that the presence of first-order cor­
rections contributes greatly to the absorption of the slow wave (in the double sound regime), 
while scarcely affecting that of the fast wave. Thu_s, for (m./m2) < (mHt!mxe), the damping 
of the slow wave is smaller than its damping in Xe-He, at a given value of x 1 and of 
(wfw). Since the damping of the slow wave increases with increasing x1 , we see that 
the slow wave should be more readily observable, up to higher values of x 1 , in more 
highly disparate-mass mixtures. 

In conclusion, we emphasize that the present predictions could be tested by~experiment 

at the present time. The frequencies of interest are well within present experimental ca­
pability, as well as being within the range of validity of the basic equations. A two-temper­
ature calculation using more realistic intermolecular potentials might be expected to 
give slightly different predictions for Xc and we from those reported here. (In this connection, 
we mention that calculations using the usual equations of hydrodynamics, with the simplified 
transport coefficients appropriate to disparate-mass mixtures [4], also predict double 
sound · propagation in Xe-He, with a similar critical frequency we ~ 84 MHz/atm, 
but at a much lower critical composition 0.225 < Xc < 0.250). 

It is now of interest to explain the existence of two propagating--sound modes in dispar­
ate-mass gases in simple physical terms. In this contex, it is of interest to note that double 
sound propagation at moderate frequencies was predicted by LIBOFF [10]. on the basis 
of simple model equation considerations, for gas mixtures characterized by a set of intrinsic 
frequencies of disparate magnitudes. 
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Note addecl in proof: 

In order to indude first-order corrections, Eq. (7) should read 

A= -(iwz)t'(W+(qzfxz)-(qlfxi)]. 

This change has negligible effects except for an increase of"' 11% in the slow-wave absorption shown 
in Figs. 2 and 5, for frequencies w ;;:; 80 MHzfatm. 
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