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Steady plane flow in a region between a porous wall
and a system of moving rods

W. KALITA and J. LUBONSKI (WARSZAWA)

IN THIS PAPER we consider steady laminar plane flows of an incompressible viscous heat-con-
ducting fluid and associated heat transfer in a semi-infinite channel between two parallel half-
planes which is bounded by a plane perpendicular to those half-planes. From one of the half-
planes the fluid is outflowing uniformly, with given velocity and temperature, into the channel.
The second half-plane contains the regularly placed axes of straight parallel rods moving along
their axes with a given velocity. The rods have a given initial temperature higher than that of
the forced outflow. Our analysis of flow and heat transfer in the channel is based on the assump-
tion of the small variability of flow parameters and temperature along the channel with respect
to their transversal variability. The main results of this analysis concern the influence of the
characteristics of rods motion and the forced outflow on the hydrodynamic and thermal con-
ditions in the channel and the cooling of the rods.

W niniejszej pracy rozwazane s3 ustalone laminarne plaskie przeplywy niescisliwego lepkiego
i przewodzacego cieplo plynu oraz towarzyszaca im wymiana ciepta w pdinieskoficzonym ka-
nale miedzy dwoma réwnoleglymi poélplaszczyznami, ktory ograniczony jest plaszczyzna pro-
stopadia do tych polplaszczyzn. Z jednej z polplaszczyzn jednorodnie, z dang predkoscia i tem-
peraturg, wplywa do kanalu plyn. Druga pélplaszczyzna zawiera regularnie rozmieszczone osie
prostych réwnoleglych pretow poruszajacych si¢ wzdhuz swych osi z dana predkoscia. Prety
te maja dana poczatkowa temperaturg¢ wyzsza niz temperatura plynu wyplywajacego z prze-
ciwleglej polplaszczyzny. Analiza przeplywu i wymiany ciepla opiera si¢ na zalozeniu malej
zmiennosci parametroOw przeplywowych i temperatury wzdhuz kanalu w stosunku do zmiennosci
tych wielkoéci w poprzek kanalu. Gléwne wyniki analizy dotycza wplywu charakterystyk ruchu
pretow i wymuszonego wyplywu na warunki hydrodynamiczne i cieplne w kanale oraz na prze-
bieg chlodzenia pretow.

B macrosueii pabGore paccMaTpMBalOTCA YCTaHOBHBIUMECA JIAMHHADHBIE IUIOCKHE TeYeHHSA
HECHKHMAaeMON BA3KON M TEIIONPOBOMHON MHKMAKOCTH, & TaHXKe CONMYTCTBYIOMMI MM TeIUIo-
obmen B momyDecKOHEUHOM KaHajie, MEXIY ABYMA Napa/UIebHBIMKM IMONYILNOCKOCTAMA, KO-
TOPBIH OrPAHHYEH IUIOCKOCTBIO NEPIIEHAMKYIAPHON K 3THM mosymuiockoctam. HMs omxoit mo-
JIYIVIOCKOCTH OJTHOPOJHBIM 00pa3oM, € JaHHOM CKOPOCTHIO M TEMIIepaTypoil, BTeKaeT B KaHaI
HHUIKOCTh. BTOpas mMONYIIOCKOCTE COAEPIKUT DPETYNAPHO PACHOJIOMKEHHBIE OCH MPOCTHIX
[apanesIbHBIX CTepKHeH , ABMWKYILMXCA BAOJIb CBOHX OCeH C JIaHHOM CKOPOCTHIO. ITH CTep-
HHH HMEIOT JaHHYIO HaYaNbHYI0 TemnepaTypy Gosee BBICOKYIO YeM TeMIEPATYpa MMAKOCTH
BLITEKAIOLIEH C NMPOTHBOJEYKALEH MONYIIOCKOCTH. AHaNMH3 TedeHHsA M TernnoobMeHa onmpa-
eTCA HA NPEANOJIOMKEHHI0 MAaJOr0 WIMEHEHHS NMaPaMeTPOB TEUYeHHA W TEMNEpPaTypbl BAOIb
KAHAJa MO OTHOUIEHHIO K MSMEHEHWSM 3THX BEJHYMH NONepeK KaHana. I'aBHble pesyis-
TaThl aHANH33 KaCAIOTCA BJIHAHHA XapaKTEPHCTHK MBH)KEHHA CTepikeil M BLIHY>KICHHOIO
BLITCKAHHA Ha THAPOAHHAMHUYECKHE M TEMJOBLIE YCAOBMA B KaHale, a TaloKe Ha XOf
OXJTAMH/IEHHA CTEePHKHEH,

1. Introduction

THE oBIJECT of the paper is a study of the laminar steady plane flows o fan incompressible
viscous heat-conducting fluid and the thermal processes in a semi-infinite region between
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two parallel half-planes, (I and 2), bounded from one 5|de by the plane (3) perpendicular
to those mentioned (see Fig. 1).

One of the parallel half-planes, (/), is an uniformly permeable wall and the uniform
blow with given velocity and temperature penetrates from it into the region considered.

Half-plane |-

(1)

Half-plane
(2)

Fic. 1.

The second half-plane (2) contains the axes of the same thin straight rods. These axes
are regularly placed and they are perpendicular to the plane (3).

All rods are moving along their axes outward the plane (3) with a given velocity which
is the same for all rods in planes parallel to the plane (3). We consider the case when this
velocity is variable along the rods (e.g. the rods may be stretched or compressed). The
temperature of rods on the edge of the half-plane (2) is given and is higher than that of
blow.

The problem stated above corresponds to a certain extent to problems concerning
flow in channels with porous walls [1-15]. In the majority of these studies the porous
walls of the channels were considered as immovable and non-deformable [I-12, 15]. In
some of them the distribution of the velocity component transversal to the walls is a priori
assumed [I1-11, 15].

Studies of flows in channels having moving and deformable porous walls are particularly
relevant to this paper.

In our study the half-plane (2) containing the axes of the rods is not to be treated as
a porous wall with no slip of velocity, but as an uniformly permeable structure where
the tangent component of velocity may differ from the local velocity of the rods.

The system of rods, the axes of which are placed in the half-plane (2), is assumed to
have a given permeability for transversal flow. Despite the deformation of the rods, it is
assumed that this permeability is constant.

The aim of this paper is to determine the effects the motion of the rods has on the
flow field in the channel between the half-planes (I and 2). We are also interested in
determining the influence of the motion of rods and the resulting flow in the channel on
the temperature distributions in the channel and especially along the rods themselves.
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We consider the case when the velocity of the rods changes slowly along the channel
and, for a large distance from the plane (3), approaches some asymptotic value. Also
we assume that the temperature of the rods on the edge of the plane (2), i.e. their “inlet”
temperature, is not much higher than the temperature of the blowing (on the half-plane I).
Additionally, we assume that the variability of the flow parameters and the temperature
along the channel is much weaker than their transversal variability.

The approximated method applied for the solution of the problem considered may
be traced back to the early work of O. REyNOLDS [16] on lubrication flow in a narrow
slit. This method is based on the asumption of small variability, both of the flow parameters
and the temperature along the channel.

The conditions of flows analysed in the paper may be consadered for example, as
a simplified model for so-called “melt spinning”, one of the technologies exploited in the
man-made fibers industry. i

2. Governing equations

Following Fig. 2 we introduce the Cartesian immovable coordinate system (x,, z,)
and denote the respective components of fluid velocity by w, and w,. The fluid has

Plane (3)
0 L h s
[ Rods axes
: —l— Uy
Blowing
E!am i —-'-U
+
bt
e Wy
A
Pl
ZJ
' FiG. 2.

constant physical properties: density oy, viscosity u, heat conductivity %, and capacity ¢;.
The fluid with the temperature T}, is blowing with the velocity U, from the half-plane (1)
uniformly and perpendicularly to it.

The rods have constant density g,, heat conductivity », and capacity ¢,. They are
regularly placed with the distance / between their axes. The ratio of their diameter d and
the distance / is assumed to be a small value. The velocity of the rods W, approaches
the value W, for z, — 0. From the mass conservation law for the rods, it follows that
nd*W, |4 = Q, is constant. The temperature of the rods T,,(z,) is equal to T,o, at
the edge of the half-plane (2). For x, > h (where & is the channel width) the pressure
and the temperature are assumed to be constant and equal respectively to p, and T, (h, z,).

7 Arch. Mech. Stos. or 5/80
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We introduce the foll_owing dimensionless quantities:
X=Xh, z=2ifh;
u=u,Weo, w=w, W, U=U,W, W=W,W,;
P = (P+—P)h|Wop), Q= Q./(Wsh?);
2.1) T, = (Tiy — Tpo)/ Ty where i= f(fluid) or r(rods);
a=Ih, e=dll, y=/(co)lco);
Re, = o;Woh/u, Re,= o U h/p,

I

Pe, = Re,Pr, Pe, = Re,Pr, where Pr= cpufx.

In the above definitions p, and 7}, are the dimensional pressure and temperature,
Re,, and Re, are the Reynolds numbers, Pr is the Prandtl number and Pe, and Pe, are
the Peclet numbers. '

The governing equations consist of the continuum, Navier-Stokes and energy equations.
For the channel region, 0 € x < 1, they may be written as follows:

L.
ox oz’
(2.2) gﬂ— +Re,u % = Au— Rcww%,
%;‘;—Rewu%i— —j; = —$+Reww%,
2.3 a(.:x? —Pewu%i}— = Pe:‘,,wa—;;l - 6;;:} +P,

The viscous terms, denoted by @, are to be neglected in the energy equation (2.3)
as small in comparison with the others.

The solutions u, w, p and T} of Egs. (2.2) and (2.3) have to be the continuous functions
of the coordinates (x, z) and have to satisfy the appropriate boundary conditions.

Since the fluid physical properties are assumed to be constant, the flow equations
(2.2) can be solved independently of the energy equation (2.3). In the following chapters
we will first determine the flow in the channel and the solutions obtained will be used
next in the analysis of the thermal effects.

3. Flow determination

The boundary conditions for the flow equations (2.2) are formulated in the following
way. For the half-plane (7), uniformly permeable for the blowing, we have:

(3.1) x=0 u=U, w=0.
Formulating the conditions for the half-plane (2), we should mention that here we

shall not search for the solutions of flow equations describing the local flow in the direct
vicinity of the rods. As the system of the rods has a given permeability for the transversal
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flow and, in general, the longitudinal component of flow velocity w on the half plane (2)
differs from the rods velocity W, we postulate:

u=oak,p,
L [fs 0! Ay |
(3.2) = I w—W:ak_,(gl B (:\\ ]
\ CX x=1+0 (X x={-0

The condition (3.2) postulates the proportionality of u to the difference of the pressures
on both sides of the half-plane (2). The condition (3.2) determines the slip (w—W) as the
quantity proportional to the difference of the derivatives of the longitudinal component
of flow velocity on both sides of the half-plane (2), the flow velocity being continuous on
the half-plane (2).

On the basis of the consideration of the flow in the channel close to the half-plane (2)
and for x > 1, we may assume additionally that the variability of the w component of
velocity is much weaker outside the channel. Hence the first term in the parentheses in
Eq. (3.2) will be neglected with respect to the last one. This last condition may be referred
to the Beavers-Joseph slip condition [17] on the boundary of the porous medium.

The coefficients k, and k5 in Eqgs. (3.2) are the given [18], weakly-variable functions of
¢, i.e. these coefficients depend only on the structure of a system of the rods.

The boundary condition on the plane (3) follows the assumption that the fluid flux
through this plane into the region between the half-planes (/ and 2), 0 < x < 1, is equal
to zero. Approximately, it is equivalent to the condition that no fluid is coming through
the boundary of the channel. As z — oo, the pressure should be finite, so the last flow

boundary conditions are as follows:
1

z=0: .wdx =0,
3.3 ]
zZ— 00 p<oo.

Now let us introduce two auxiliary functions f(x, {) and F(x, {) that will be convenient
in describing the solutions of the problem stated above. These functions depend on the x

coordinate and the parameters { and ak; and are defined as
. éx—1
J(x,0) = ‘e{ml‘ )

(3.4) ) oo
) = )dx = o i 70
TR off(x’ Odx = (¥ akat)=1 °

For the particular { — 0 these functions may be presented as follows:

fx,0 = =,
Fe 9= stemy

The method we applied for the solution of the flow problem is based on the assumption
of a small variability of the flow velocity components along the z axis in comparison with
their variability in the x direction.

T*
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In the first step we assume that », w, and W do not depend on z and g—‘: = P'is constant
(P(2) is considered in this step as a linear function of z). Then the right hand sides of
Eqgs. (2.2) are equal to zero and the solutions of these equations, satisfying the conditions
(3.1) and (3.2), are denoted by a bar as “basic” solutions:

u="U,
&) = WP, Re) +P LR (5, Re) £, O),
p=P.

In the next step we admit a slight dependence of Wand P’ on z and we take into account
a small perturbation of the ¥ component of velocity. Putting that ¥ = #+%, where # is
the perturbation, the perturbation term may be obtained from the continuity equation in
the relations (2.2), with the condition # = 0 on x = 0, as:

SRR R, 0~ F(x, Re)),
where by primes we denote the derivatives with respect to z.

In this way the solution for the transversal component of velocity is given by the
formulas (3.6); and (3.7). The solutions for the w component and the pressure are formally
given by Eq. (3.6), but with the quantities W and P’ that are no longer constant and are
still undetermined. The rods’ velocity W(z) has to be specified and the pressure function
P(z) should be found. This last function may be determined by the equation derived from
the condition (3.2) that was not exploited until now, where ¥ = u+1:

3.7 it = —WF(x, Re)+P"

(.8) 1;:"" [F(1, 0)—F(1, Re,)|P"' — ak, P = F(1, Rey)W'—U.
" Introducing the function II(z) defined as
- U
(3.9) m-p-_-,

Eq. (3.8) determining the pressure distribution along the z coordinate may be transformed
to: '
(3.10) ' pAT"—II = W',
where
B* = (1+aks) [F(1,0)—F(1, Re,)]/(xk; Re,),
_ o = F(1, Re,)/(ck,).
(It may be noticed that @ > 0 for any Re, > 0).

With the help of Eq. (3.10) we can eliminate (P” = IT"') from Eq. (3.7) and the final
solutions describing the flow field in the region considered may be presented in the follow-
ing form:

(3.11)

u=U+UW+U,II,
(3.12) w=  ViW+WlIT,
p = Uf(ak,)+11,
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where four auxiliary functions U, , and ¥ ,, independent of z, are defined as follows:
F(x, OF(l, Re)—F(x, Re)F(1,0)

U, = F(1,0)—F(1, Re,)
F(x, 0)—F(x, Re,)
(3.13) Uz = k2 B1,0)=F(1, Rey)’
=f(x, Re')
= (1 +aky) JE RS, 0

Re,

These auxiliary functions (3.13) characterize the profiles of the velocity component
across the channel. In Figs. 3 and 4 they have been plotted against x for some values of
Re, and ok;.

Us, Uz flock2)
10

aks=0
———— aky=01

as

For very small values of the blowing velocity, Re, — 0, and the no-slip condition,
k3 = 0, the distribution of the w component in the channel is given by the superposition
of the Couette flow, ¥V, = x, due to the rods’ motion and the Poisseuille flow, ¥, =

1
= —2—x(x— 1), due to the existence of the pressure gradient P’ = IT'.

Taking into account the slip (w—W) on the rods’ plane yields the deformation of
this flow picture. In the case of k; > 0 and Re, — 0, the w-component profile is described
by the superposition of the Couette flow: ¥, = x/(1+ aks), and the deformed Poisseuille
flow:
1+2ak,)

Vz = I]Zx.(x— W
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i,z
1
C(k3=9
————aky=01
Re,=0
05 Vs Function

Along with the intensification of blowing (when the Re, number increases), the formation
of a flow layer near the rods may be observed. The thickness of the layer, where the intensity
of flow is greatest, decreases with the growing values of the Re, number.

Something of special interest is the influence of the slip coefficient ak;. When this
coefficient grows, the longitudinal component of velocity strongly decreases. The values
of the functions U, and U, that determine the transversal component of velocity reduce
in the non-zero slip case (xk; > 0) only slightly. It means that if the slip of velocity on
the rods’ axes plane is taken into account, the streamlines may change their directions
radically. Then the flow may penetrate better into the system of the rods.

In order to complete the analysis of the flow, we have to find the pressure distribution
along the channel. For two particular examples of the rods’ velocity function W(z) chosen
as

W, = const = 1,

W[; = l—e"”‘,

Eq. (3.10) together with the conditions (3.3) yields the following distributions of pressure,
respectively:

(3.14)

: HI = "ﬁej_‘ms
(3.15) B g

Bl

(Be~P — Ae;").
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The quantity A is the parameter that describes the rods’ deformation. It may be noticed
that the quantities # and A can be treated as some characteristic lengths, respectively,
of the distance of a region where flow is effectively influenced by the channel boundary
(plane 3) and the distance of the intensive deformation of the rods. It can also be found
that when f decreases with respect to 4 (in the second case of the formulae (3.14)), the
non-uniformities of the pressure distribution along the channel become more affected
by the rods’ deformation. As f is defined through Eq. (3.11), it may be seen that its values
decrease with the blowing intensification (Re, increasing), with the growing permeability
ak, of the rods’ system and with the slip coefficient («k;) decreasing. All these tendencies
reduce the influence of the channel boundary on the pressure distribution.

4. Thermal effects

Analysis of the thermal effects consists in determining the fluid temperature field
in the channel and the temperature distribution along the rods themselves. There exists
an evident coupling between the fluid temperature field and the variability of rods’ temper-
ature. Due to this coupling, it is necessary to determine simultaneously the fluid and
the rods’ temperature fields. The system of the equations determining these fields consists
of the energy equation for the fluid (2.3) and the rods’ heat balance equation. The coupling
mentioned above appears in these equations and also in appropriate boundary conditions.

The rods’ heat balance equation is derived on the basis of the following simplifying
assumptions. First of all, we will not consider the effects due to radiation or to any physical
and chemical processes that may have -an influence on the heat balance of rods. Next
we assume that the effects of heat conductivity along the rods are neglectable as they are
small with respect to heat transfer due to the rods mass transport. However, in the cross
section of each rod the temperature is assumed to be uniform and equal to the rod sur-
face temperature. According to the above assumptions, we may write the approximate
heat balance for the fixed surface element /dz, of the rods’ axes half-plane (2) (Fig. 1) in
the following form:

@1 QuecdT = = 5%
where dT,, denotes the change of 7,, on the segment (z,, z, +dz,).

The left hand side of this equality presents the difference between the heat input and
output to and from the element /dz, due to the rods’ movement. The right hand side gives
the heat losses of the element /dz, resulting from heat exchange between the rods and the
fluid. From Eq. (4.1) we have the differential equation (written below in the dimensionless
form) describing the variability of temperature along the rods:

i __ wy o

42 S
52 dz QPe,, 0x lcoi-0

The boundary condition for this equation-has the form
4.3) : .z=0: T, = T,.
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According to our main assumption, about the small variability of the temperature
along the channel in comparison with its transversal variability, the derivatives with
respect to z in Eq. (2.3) will be neglected. Then the simplified energy equation (2.3) is

PL L 0T _
4.4 . Fr —Pe:,.,:.:-?ﬂ:w =

The variable z is considered here as a parameter, and thus the sufficient boundary conditions
for Eq. (4.4) have the following form
x=0:  T0,2) =0,

4.5 '
x=lt T(l,2)= T@)-uky T

0X |xm1-0
The second of these conditions is a result of the postulate [18] which claims that in the
half-plane (2) there exists a difference between the mean fluid temperature and the rods
temperature (“temperature jump”). The exact solution of Eq. (4.4) satisfying the condition
4.5)is

46) Tix,2) = THE, 2) [, () +aks L@,
where

Hy(x,2) = fﬂz@, 2)dx, Hy(x,z)= CXP{PC-!‘"(-’_‘, Z)di’},
0

Li(z) = Hy(1,2), I,(z) = Hy(1,2).
It may be noticed that the expression (4.6) for T, has until now only a formal character
because it contains the unknown function T,(2).
However, this last one can be found from Eq. (4.2) with the condition (4.3), after
substjtuting to the right hand side of Eq. (4.2) the expression of 97/0x|;.;_o obtained
on the basis of Eq. (4.6). Using this expression, one obtains immediately 7, in the form

4.7)

8 T.2) = Toexp [ K@)dZ,
o
where
49 K@) = - G L@@ +aks L) < 0.

The formulae (4.6) and (4.9) taken together give the complete solution of the problem
stated in frames of our simplifying assum'ptions. _

In the following we consider the asymptotic case of a large Peclet number (Pe, > 1).
It may be noticed that with growing Pe, the degree of accuracy of heat balance (4.1) becomes
higher. The asymptotic expressions for T, and T, have the following relatively simple
forms:

_ ay P,

(4.10) T(2) = Tmﬂpi- OPe, 1+ uksPe,,}’

and

@.11) Tl T e L = T.(2)" f(x, Pey)
’ A5 I T (14 aks Pe,)eP— 1 5 P
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ay Ty TeaksPe,

aks=0
——— grky=01

zZ

10 -

06

0zt

F(x,Pey)=Tr(x,2)/T ()
ak_;-a

———— ak3=01




722 W. KALITA AND J. LUBONSKI

As it follows from evaluations, these expressions bear all the important features of more
exact formulas for sufficiently large Pe,. The expressions (4.10) and (4.11) are illustrated
by Figs. 5 and 6. The continuous curves there correspond to the case when the half-plane (2)
is considered as the uniformly porous wall and the “temperature jump” on it is neglected.
The dotted lines present the picture in the case when the “temperature jump” does not
vanish and thus the structure of the half-plane (2) is indirectly taken into account.

It can be concluded that although the qualitative behaviour of temperature 7, and T
with a changing Peclet number is similar in both cases, their quantitative behaviour dif-
fers significantly.
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