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The overshoot in entry flow(*)
L.C. LI and G.S.S. LUDFORD (ITHACA)

EnTrY flow is re-examined analytically to determine whether the axial-velocity overshoots
found numerically are spurious or not. For large Reynolds number and uniform entry an over-
shoot is found inside each boundary layer, while for irtotational entry it lies at the edge. A model
equa;l;: is used in the latter case to demonstrate the existence of overshoots for all Reynolds
numbers,

Przeanalizowano ponownie problem przeplywu wlotowego w celu ustalenia, czy ustalone nu-

merycznie przeskoki nie majg charakteru przypadkowego. Przy duzych liczbach Reynoldsa

i wlocie jednorodnym stwierdzono przeskoki w obrebie wszystkich warstw przySciennych,

podczas gdy przy wlocie bezwirowym przeskok wystepuje przy krawedzi. W tym ostatnim przy-

Mgadkb mlosommﬂ o rownanie modelowe dla wykazania istnienia przeskokéw dla dowolnych
0 .

TToBTOPHO OPOAHAIM3KPOHA OPOD/IEMa BIYCKHOTO TEYEHHA C LIEJIBI0 YCTAHOBJICHHA HE HMEIOT
J THCCHHO HAleHHbIe MepecKOKH ciydaiimoro xapaxrtepa? ITpu Gompimmx umcmax Peit-
HOJIBACE H OJHOPOJHOM BITYCKE MEPEeCKOKH OOHAPY)KeHbI B OGJACTH BCEX MOTPARHHIHBLIX
CJI0eB, B TO BpeMs, Korjaa mpy GeaBuxpeBoM BIyCcKe MEPECKOK BBICTYIACT OpH rpany. B stom
MOCKICHEM CITy4ae MPHMEHEHO MOMOENLHOE YPABHEHHE [UIA YKASAHWA CYIIECTBOBAHHA IEpec-
KOKOB JUIA MPOH3BONLHBIX wHcen Peitmonmsmca.

1. Introduction

THE DEVELOPMENT of the velocity profile in a semi-infinite channel is re-examined for
both uniform entry and irrotational entry. Motivation comes from the numerical computa-
tions of BRANDT and GrLLis [2] who found (for uniform entry) that overshoots develop
and move toward the centerline; there they merge into a single maximum characteristic
of the ultimate Poiseuille profile. It was thought that such a phenomenon would contradict
the boundary-layer theory if the velocity maxima were trapped in the boundary layers
as the Reynolds number R became arbitrarily large. Accordingly, attempts were made
to show that the overshoots were real (i.e. not a consequence of numerical error) and to
determine (numerically) whether they lay inside or outside the boundary layers (cf,
ABARBANEL, BENNETT, BRANDT and GiLus [1]).

Such overshoots are in fact an inevitable consequence of continuity for any R if the
influence of the two plates that form the channel spreads gradually into the center: the
velocity defect near a wall must be compensated by an adjacent overshoot. Then the
boundary-layer theory, even for a single plate, should demonstrate the phenomenon and
we show that it does. In either case the overshoot is buried in the second-order theory, lying
inside the boundary layer for uniform entry and at the edge for irrotational entry.

(*) This work was supported by the U.S. Army Research Office.
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To be sure that the influence of the channel walls could not spread instantaneously
to the center, ABARBANEL ef al. (loc. cit.) obtained an exact solution for uniform entry
in the Stokes limit R — 0, corresponding for finite R to flow near the wall in the immediate
neighborhood of the entrance. They found the overshoot, but would not have done so
had they considered irrotational entry. Extension to finite R, say through the Oseen ap-
proximation, is clearly desirable but proves to be very complicated; so we have considered
the model equations
(1.1) v= —=Vp+R"'V?y, V:v=0
instead. The solution for irrotational entry can be written in closed form (by means of

a Fourier transform), and the presence of an overshoot at each station is easily demon-

strated for every value of R.
The phenomenon does not appear for entry into a cascade of channels since the walls
are able to influence the incident flow before it enters a channel.

2. Second-order boundary-layer analysis

WILSON [5] has treated the boundary layers of entry flow in a channel so that we could
quote his results in the limit of a channel of infinite breadth. However, since they contain
various minor errors and the limit is not taken, we derived the following formulas directly.
L [3] has given the details.

i) Uniform entry. The boundary conditions on the streamfunction are

2.1 ¥:(x,0) = 9(x,0=0, %0,))=1, 9(0,y)=0.
The boundary-layer expansion is

(22) v = RV ()" fy()+ R4 x4 f,(n) ...,

where

@3) R=Up, 75=RV2y/Qx)"2,

Here f, is the Blasius function and f, satisfies

@4 AL i i = O,

@5 LO=10=0, fL)~21Y7 as 5.
Here f = lim (p—f;) = 1.21678.... For the inviscid flow outside the boundary layer
the ¢orres;;n°:iing expansion is

2.6) . v=y+R "2 p,+ ..,

where _

@ vz = V2B{Q)"12 = [(x*+y?)"2 +y}12}.

We are concerned with the axial velocity ¥y, which the expansions (2.2) and (2.6)
give correct to O(R™1/*) and O(R~1/2), respectively. As noted by WiLsoN [5], there
exists an infinite number of terms between the first-order boundary-layer solution and
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the usual correction of relative order O(R~1/2). To obtain y, in the boundary layer correct
to O(R~1/2) would therefore require an-infinite number of terms, without which a composite
expansion correct to O(R~'/?) cannot be formed. Fortunately, the overshoot is exhibited
by f; so that the boundary-layer expansion to the order shown in the expansion (2.2)
suffices. For large 7 it gives

2.8) ¥y~ 14 (Rx) ™14y~ —exp,

where exp is an exponentially small term contributed by f;, and the second term on the
right comes from f,. Clearly, y, is greater than 1 for sufficiently large #, so that the axial
velocity must have an overshoot as R — 00. Figure 1 demonstrates the overshoot.
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FiG. 1. Graphs of the inner and outer — — — expansions of the axial velocity u at x = 1 for
uniform entry.

i) Irrotational entry. All the boundary conditions (2.1) apply except the last which is repalced
by

(2.9) ¥xx(0,y) = 0.
The solution for g, is now
(2.10) ¥2 = =Y 2B[(x?+y?) P2 -y

and the boundarylayer expansion is
@.11) y = RT2 Q02 f,()+ R+ ...,
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where f, satisfies

(2.12) 2 AL i =B,

(2.13) £0)=£0)=0, fi(n~p as 15— .
For large n we now find ]

.19 py~ 1+ (2Rx)~"? f—exp,

which has a maximum value, 1+ (2Rx)~1/2 §, at the edge of the boundary layer. To see
that the axial velocity does indeed have its overshoot there, we need only note that

_ (:c=+y‘)“"—y]"'z
(2.15) Y2y = W

has its maximum, S(2Rx)~1/3, at y = 0. _
From these results we can form the composite expansion of y, correct to O(R~'/?):

@16 o) =f£(rr)+(2Rx)“"’fz'(n)+ﬂ[]/ SR - ]/__21Rx] '

Various profiles are shown in Fig. 2. . .
Investigation of the leading-edge region proceeds via a coordinate perturbation (VAN
Dyke, [4]). For uniform entry, the governing Stokes problem is solved by ABARBANEL et
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FiG. 2. Graphs of the composite expansion of the axial velocity # at x = 1 for irrotational entry.
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al. [1], who find a maximum at an O(R™!) distance from the wall. The corresponding
problem for the irrotational entry is

(2.17) Vig=0 for x,y>0

with y subject to the boundary conditions of (ii) and x, y are measured the O(R™*") scale.
The solution to Eq. (2.17) is still of the form used by ABARBANEL et al., namely

(2.18) v(x,y) = xF(n) with 75 = y/x,
but now

(2.19) F(n) = (2/7)narctany.

This gives the axial velocity

(2.20) v,=F'(n) = —-(arctann-l— i-l’-? z),

which increases monotonically from O to 1 as y increases from 0 to co keeping x fixed.
We conclude that the overshoot does not occur in the O(R™!) leading-edge region.

Thus, for uniform entry the overshoot lies in the leading-edge region and the subsequent
boundary layer; for irrotational entry it lies outside both (though at the edge of the boundary
layer).

3. A model equation for all Reynolds numbers

BrANDT and GiLLIS [2] integrated the complete steady-state Navier-Stokes equations
for the inlet region of the channel numerically and found overshoots in the velocity profile
for all values of the Reynolds number. We have noted the inevitability of such a phenome-
non when it is assumed that wall effects cannot spread instantaneously. Since analytical
confirmation of this assumption cannot be obtained from the Navier-Stokes equations,
we turned next to their Oseen approximation. The analysis became very complicated,
if not intractable, so that model equations (1.1), retaining the essential features, were
substituted. These equations are Ossen’s equations with-v replacing dv/dx. For a two-
dimensional flow, the introduction of the streamfunction y reduces them to
@3.1) (V2-k?)V2p =0 with k= R'2
To this we append the boundary conditions for the irrotational entry to which we shall
confine ourselves.

By means of a Fourier-sine transform the solution may be written explicitly as

" —y 14 k3 —e yt sm‘fx
3.2 J' e i
32 y=y+— v . .
so that |

G —1+2 T et VE+k2e? VO singx dé

i Y = 2 5‘- .'/‘é“f:k—z_e : .
From this result it may be shown that, for all values of k (i.e. R),
- 2,8y
(3.4 Y(x, Y)~ 2x f '/ez.{.kz dE<0 as y- o,

9 Arch. Mech. Stos. or 3/80
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so that v, is decreasing for sufficiently large y. It follows that the axial velocity must have
an overshoot, though we were unable to show that it is unique. The details of the above
analysis will not be given here, but appear in L1 [3]. We conclude that the wall effect is
unable to spread instantaneously for any value of R.
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FiG. 3. Axial velocity u at x = 1 for the model problem.

Figure 3 shows velocity profiles for various values of k, for each of which there ap-
pears to be a unique maximum.
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