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An exact solution of the problem of unsteady fully-developed
viscous flow in slightly curved porous tube

Z. ZAPRYANOV and V. MATAKIEV (SOFIA)

THE FULLY-DOVELOPED flow in a pipe of circular cross-section which is coiled in a circle is studied,
the presure gradient along the pipe varying sinusoidally in time with the frequency w. The nature
of curved-tube viscous fluid motion, as compared with simple straight-tube parabolic flow,
causes a higher critical Reynolds number for transition to turbulent flow, relatively high average
heat-transfer and masstransfer rates per unit axial pressure drop and significant peripheral
distributions of the transport rates. In order to simplify the problem, the radius of curvature
of the pipe is assumed large in relation to its own radius. Of special interest is the secondary
flow generated by centrifugal effects in the plane of the cross-section of the pipe. A closed form
analytic solution is derived for arbitrary values of the frequency parameter «. The secondary
flow is found to consist of a steady component and a component oscillatory at the frequency 2w.

Zbadano w pelni rozwinigty przeplyw przez rur¢ o przekroju kolowym zwinigta spiralnie, przy
czym gradient ci$nienia wzdluz rury zmienia sie sinusoidalnie w czasie z czgstodcia w. Wlasci-
wosci ruchu plynu lepkiego w zakrzywionej rurze w porOwnaniu z prostym przeplywem para-
bolicznym w rurze prostej prowadza do wyzszych liczb Reynoldsa przejécia do przekroju burz-
liwego, do stosunkowo wysokich wartosci $rednich predkosci przenoszenia ciepla i masy na
Jednostke réznicy ciSnienia osiowego oraz do istotnych réznic w obwodowych rozkiadach
predkosci transportu. Dla uproszczenia zagadnienia przyjeto, ze promieni zakrzywienia rury jest
duzo wigkszy od promienia jej przekroju. Szczeg6lnie interesujacy jest przeplyw wtérny wywo-
lany efektami sit odérodkowych w plaszczyinie przekroju rury. Otrzymano zamknigte rozwig-
zanie analityczne przy dowolnej wartoci parametru czgstodci «. Stwierdzono, ze przeplyw
wtorny zawiera skladnik staly i skladnik oscylacyjny o czestosci 2w.

Hccneorano BriosiHe pasBepHYTOe TeueHHe uepes TpyOy, C KPYTOBBIM CEUEHHEM, CBEPHYTYIO
B CIIHpAaJb, IPHYEM TPaJHeHT JABJIeHHA BAONb TPYObl H3MEHAETCA CHHYCOMJANBHbIM obpasom
BO BpEMeHH C 4acToToif w. CBoiicTBa NBMyKeHMA BAIKON YKHIKOCTH B MCPHBIIeHHOH TpybGe,
0 CPaBHEHMIO C MPOCTLIM NapaboIHUeCKUM TedeHHEM B IPOCTOi TpyGe, MPUBOMAT K BHICIIIM
yncnam PeiiHonsaca nepexona B TypOyieHTHOE TeueHHe, K CPABHHTENLHO BHICOKHM 3HAYECHMAM
CpeIHHX CKOPOCTeii mepeHOCca TeIia M Macchl Ha eHHULY PasSHHIEI OCEBOTO [AABJIEHHA H K CY-
INECTBEHHLIM DasHHIAM B IIEPHMETPHUECKMX PAacHpefefieHHAX CKopocTs nepeoca. s
VIPOILEHHA 3aaYd NMPHHUMAETCS, UTO PajHyC HCKPMBIEHHA TPyObI mHOro Gonelie pamayca
ee cedenns. OcofeHHO MHTEPECHBIM ABJIAETCS BTOPHUHOE TedeHHe, BbI3BaHHOe 3dbexramMu -
HeHTPOOEKHBIX CHI B IUIOCKOCTH cedenms TpyObl. IlomyueHO 3aMKHYTOE AHAMHMTHYECKOE
pellieHHe NPH MPOM3BOJILHOM 3HAYEHHM Mapamerpa uacToThl . KoxcTatupoBano, 910 BTOpHI-
HOE TeueHHe COMNEPYKMUT MOCTOAHHYIO COCTABJUIIOIIYI0 M COCTABJIAIOLIYIO OCIHJLIMPYIOLIYIO
¢ vactotoit 2w.

1. Introduction

CURVED tubes or pipe bands are used extensively in industrial equipment such as helical
coils or spiral heat exchanges, trombone, coolers chemical, reactors and various heat
engines.

Toroidal flow is the limiting case of helical flow with a zero pitch. The mode of fluid
flow in a curved tube is characterized by a secondary flow field which is superimposed
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462 Z. ZAPRYANOV AND V. MATAKIEV

upon the axial-velocity flow field. The nature of toroidal viscous fluid motion, as compared
with simple straight-tube parabolic flow, causes relatively high average heat-transfer
and mass-transfer rates per unit axial pressure drop and significant peripheral distribution
of the transport rates.

This is why the flow of a fluid in a curved tube of circular cross-section which is coiled
in a circle has been widely studied both experimentally [1, 2] and theoretically [3—10].
DeaN [3] found, to the first approximation, that relation between the pressure gradient
and the rate of steady flow is not dependent on curvature. In order to show its dependence
he modified the analysis [4] by including terms of higher order and was able to show that

. ; 2a
the reduction in flow due to curvature depends on a single variable K = T Re?, where

ais the radius of the tube, L is the radius of curvature of the pipe axis and Re is the Reinolds’
number.

However, Dean’s analysis of the secondary flow and the consequent increase in friction
factors were restricted to small values of K. BARUA [5] considered fully-developed motion
for large K and obtained an approximation solution using the Karman-Pohlhausen mo-
mentum integral method. MCCONALOQUE and SRIVASTAVA [6] extended Dean’s work and

adopted the parameter D = 4Re '/ 2%. Physically this parameter can be considiered

as the ratio of the centrifugal force induced by the circular motion of the fluid to the
viscous force. Their numerical solutions were given over the range D = 96 to 605.72,
the value D = 96 corresponding to the upper limit K = 576 of Dean’s work.

TrUSDEL and ADLER [7] have obtained results up to D = 3578 and GREESPAN [8]] has
centered his interest on the following range of

0 < D < 576.

In contrast to the case of steady flow, the problem of unsteady flow in a toroidal itube
has been, for the most part, ignored.

Recently, LYnNE [9] has considered the unsteady flow in a toroidal pipe with circcular
cross-section, the pressure gradient along the pipe varying sinusoidally in time with the
frequency . In order to simplify the problem, the radius of curvature of the pipe: was
assumed large in relation to its own radius.

An asymptotic theory was developed for small values of the frequenc}f parammeter

B = ]/%’ where  is the kinematic viscosity of the fluid. For sufficiently small vaalues

of B it was found that the secondary flow in the interior of the pipe is in the oppcosite
sense to that predicted for a steady pressure gradient.

ZavrosH and NELSON [10] have also treated laminar fully-developed flow in a cuarved
tube of circular cross-section under the influence of a pressure gradient oscillatingg si-
nusoidally in time. A solution involving numerical evaluation of finite Hankel transfoorms

was obtained for arbitrary values of the frequency parameter « = a"l/-t:’l .
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The numerical solution of the ordinary differential equation produced consistent re-
sults at low and moderate frequency of oscillation, but difficulties were encountered at
high frequencies. These difficulties were due to the lack of the Hankel transforms.

In the present paper we shall study the unsteady motion of a viscous fluid in a porous
curved tube with circular cross-section. The assumptions we shall make are a large radius
of curvature of the tube in relation to its own radius and fully-developed laminar flow
under the influence of a pressure gradient oscillating sinusoidally in time. As opposed
to Zalosh and Nelson’s work, we shall apply another method and obtain an exact solution
of the problem. It is worth noting that Zalosh and Nelson’s problem is a particular case
of our own problem.

2. Formulation of the problem

Consider an unsteady hydrodynamically, fully-developed laminar flow of a viscous
fluid in a porous pipe of circular cross-section coiled in the form of a circle. Figure 1 shows.
the system of toroidal coordinates (v, @, 8) for considering the motion of the fluid through

4 |

‘Fig. 1.

the pipe. The distance down the pipe is measured by L6, where 0 is the angle which the
cross-section makes with some fixed axial plane containing OZ. Let (', ', w) denote
the corresponding velocity components in the (v, @, 6) directions at time ¢.

The equation of continuity is
v’ u'sing v'cosg

. — =0
% T Z¥rsng  Lirsing

7}
2.1 — (Lr'u’
(2.1) o (Lru)+
For a slightly curved tube (L > a) we Shall have the approximation
a a
2.2 — (L'r'u)+ — (Lv") = 0.
22) px (L'r'u)+ 39 (L) =0

The equation can be identically satisfied through the introduction of a stream function
v’ such that

,_ 1 oy e
2.3) V= U

2%
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The unsteady Navier-Stokes equations in this coordinate for %’ and the axial velocity
function Q = W'L have the form

& o0
. i il 2ant 4
@4 rL+rsing)’ - (D 'P)‘f'z-Q(" i i v —sin Pacp) [ﬁr 390( )
a’P'i 24t : zf(' ﬂ—' ﬂol)
=5 o O)|(L+7sing)+ 2Dy \rcosp - —sing -
= wr'(L+1r'sing)?*D*y’,

a0 1 dy' 0 oy a@] 1 0P

. e T . s T A 29
23) ar t Wersing)r | op oF ~ o o9 - R

where P denotes pressure, ¢ the density, » the kinematic viscosity and

potrsgla( v 0} o( 1 2]
- r o' \L+r'sing o' dp \r'(L+r'sing) dp /|’

When L > a, we have the approximation

a2 1 @ 1 2
L ~ 2 o~ o e T e
L+r'sing ~ L and_ D? » wE Y 7o + 3 02 ¥+

We now impose a single sinusoidal pressure gradient along the tube

1 oP ;
(2.6) - E— 0= Gceosot',

where the amplitude G is a prescribed constant.
It is convenient to introduce the following nondimensional notation:

v a2 aw

r r
y = —- I = wit _—— W= ——=—,
ﬂ’ ’ v av’

Equations (2.4) and (2.5) now become

ow ow op @
2 2 =
2.7 ar—(V 1p)+2w(rcosgv ar sing —- 7% ) L[

6r6tp(z)

—@i(vz )-f-2(—ﬂ—)2 (rcos —m—sinqa—q-"i-) Vip = rV*%p
ap ar ¥ L L op
and
ow al|dy gw dy ow Ga®
: o 2y = t,
L a Ty [6¢> or  or op —Viw 7 %

a’ .
where a? = wT is the frequency parameter.

Since the ratio a/L = 3 has been assumed to be small, we can linearize the governing
equations (2.7) and (2.8). Substituting y and w by

(2.9 v = Yo+ 0y, + 0%y, + ...,
(2.10) W = Wo+ Ow, + 83w, ...
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into Egs. (2.7) and (2.8), we obtain the following equations:

e 6w° Gﬂs

(211) ' —V2W0 = TCOSI,
d 2w, ow ow
2 7 (U2 YUy — =0 0 _ in, FWa
(2.12) o 3 (Vyo)— Viy, +|Teosp—5— —sing 7 ],
3“1'1 1 avo awu 6% aWo
2 o - L) au
(2.13) o T Viw, 799 or or oo |

Let us assume that the wall porosity of the toroidal tube is described by the following
boundary conditions [11, 12]:
(i) steady boundary conditions

—wo =0, w, =0,
%’_=0, %‘;1=—[%]25imp at r=1,
(ii) unsteady boundary conditions
—we =0, w, =0,
3;0 = 0, ‘?3";;’ = —[%]zimpcosh at r=1.

We shall also require that the solution be nonsingular within the tube.

3. Solution of the problem

It is well known [13] that the solution of Eq. (2.11) with the boundary condition w, =
=0atr=11is

G.1) wo(r, 1) = I%] [Beost+ (1 —A)sini],
where
_ ; _ ber ()
A= .Dbel(m')'f'Cber(ﬂr), Cs= m‘)— N
_ . _ bei(®)
B = Dber(w’)—CbCI(dr), D= m)—.

If we substitute Eq. (3.1) into Eq. (2.12), we obtain
0 Gal’ dB dA
—|a® — (V2,) — V* = == iy o R sl
(3.2 [a r (Vo) —V w] [ ] costp{B 7 (1—-4) 5

dB
dr

Since we expect g, to contain terms independent of time we write

dd| .. dA dB

(3.3) Yo = Yoo+ Yoae>".
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The governing equations and the boundary conditions for y,, and y,, are

(34) V‘%o = [—] [ . A)“E“ cosg,
. o _ Moo _ | Ga r
(i) 6:0 e 0, _a;o. - —[E] sing,
- oo _ %00 _
(“) “aTlr-l B l'. I a'P r=1 B 0’

K 2
(3.5) Vpor—2iaiV7yp,, = % {B L r1-02 [ -0 & ]}cos«p, |
: 002 _ o2 —
% N W TE P

2

In contrast to Zalosh and Nelson’s method of solution of the problem, where some
difficulties were encountered at high ferquencies, we shall apply another method.
If we seck the solutions of Egs. (3.4) and (3.5) of the forms

36 - [ﬂrp R

. Yoo po [\] @,
2

3.7 Yoz = [%] F,(r)cose,

we obtain

(3.8) Q*F, =g'(r),

(3.9) Q?F, —2ia*QF,; = P'(r),

where '
14 1

¢= —’ Tdr
g = Bz"'—(;"—éz. P = Ez_‘(é_"“)i +iB(4-1).

The function F, and F, should satisfy the following boundary condition:
Fo(1) =1, Fo(1)=0
F,(1) =0, F,(1)=0
Fo(1) =0, Fi(1) =0
F,1)=1, F;(1)=0
The general solution of the equation
(3.10) Q%, =0

@

(i)
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is
Fo = C,r+C3rlnr+C3 "l__ +C4r’,

where C; (i = 1, 2, 3, 4) are constants.
Now it is easy to find the general solution of Eq. (3.8)

Fo =¢o+Dir+D,rinr+D; % +D,r?,
where D; (i = 1, 2, 3, 4) are constants and

- bt f’d 3rfr’lrdr+—-l—jr’dr—-r3fr3a‘r
qbo—?nr Trorgr—wz—o nrg 2}_0 g Tu gdr.

Since we require our solution be nonsingular within the tube, i.e

¢0(0)+‘DL+ Dg(l'i‘b"')ir‘o'-% < o,

r=0

we have D, = Dy = 0.
In view of boundary conditions we find
(3.11) ¢o = Py(y)cosychy+P,(y)sinyshy+ P3(y) (cosyshy+sinychy)
+P,(y) (cosyshy —sinychy) + Ps(z) (coszshz+sinzchz)+ Pg(z)sinzshz
+ P4(z) (coszshz —sinzchz)+ Pg(z)coszchz —9Cylny
3C C?+D? 75 30D

e e T S S
where z = 2y and
5D 30D
P(y) = - y*+30Cy———,
¥y
75 29 30C

C 73
P3(y) = TJ"‘FTDJ’:—'WC,

Pyy) = —(14—5 Dy‘+}0y=-3on),
o) C?+D?
Py = - 2154,
C*+D?* 1
Pi() = 1552,
_ C*+D* ,
Pi(e) = —5g— 7"
02 2
Piy =3 D

64
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Here L,(0) and L,(0) can be found from the recursion formulae:

) 1
L,(0) = Incosychy— 21—}’ (cosyshy+sinychy) ——-Jo(-2),

1 : 1
L,(0) = Insinyshy — 3 (COsyshy—smychy)—TJg(—Z},

J;(m) = y™cosychy — —r;vy"'"(cosyshy+ sinychy)+ m(mz—l) J,(m=2),

Jo(m) = y"sinyshy + %y"‘"(cosyshy —sinychy)+ m(n;— B Ji(m-=2),

where

¥y

L,(m) = fy"lny(cosyshy —sinychy)dy,
0
¥

Ly(m) = f y"Iny(cosyshy+sinyshy)dy,
0
y

Ji(m) = f y™(cosyshy —sinychy)dy,
0

¥
Jo(m) = fy"'(cosyshy +sinychy)dy.
0

We will mark thatas y — 0

D D
cosychy — E;—— = % (cosychy—1) -5 0.

Now we have to solve the equation

(3.13) Q(QF;—2ia’F,) = P/
or

(3.19) Q¢ = r*pP,
where

(3.15 QF, —2ia?F, = ¢.

The general solution of Eq. (3.14) is
r 3 r Dz
0 9

where D, and D, are constants.
Lety = pr,

y y
a 3
P=—= and ¢ =2 fy-"pdy+—fy’de,
vz : v 3
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then
D
P’dr = —¢+Dy+ —yz—.
where
i iC)2
3.16) o(y) = w z%(coszshz+sinzchz)—2zsinzshz
- .g_ (coszshz —sinzchz)+ -;— coszchz} - igf {—z’(coszshz —sinzchz)
+2zcoszchz— % (coszshz+sinzchz)+ % Bnzihs } D;:C
X ‘ —i(2y= ~Tiy+ -ﬁ—) cos(i—1)y+ (3y2+6i)f.,[(i—1)y]}.
Therefore,
QF;—2ia’F, = p°¢,(y)
or
2
(3.17) r2 ddf;‘ +r d—jri —F,—2i0r?F, = r3,.
Substitution of = = ar)/2i = ar(1+i)into Eq. (3.17) gives
d*F,  dF, ir? D,
2 il | 2 i e e
(3.18) vttt —(1+1)F, 57 $@+Dit —2 = 4(x).

The general solution of the homogeneous equation is
8o = C111(7)+C,K,(v),

where C; and C, are constants and I, and K, are the first and second solutions of the
Bessel function of first order, respectively. Let us seek a solution of Eq. (3.18) in the form

Fa(7) = Ci(DI1(1)+ C2 (DK (7).

Making use of algebra we find
(3.19)  Fy(7) = [D3+D; 8,(7)+ Do, (z)+y1(v)); (v) + [Dy+ Dy 85(7)

+Dj (1) ¥ 21K, (7),
where

71(7) = — E}ff @Ky dr, () = -i—;—z-f %l dz,
o 0

T

8:(v) = [ Kyydv, 8:(x) = [ ol dv,
0

[}

Ky _ 3 Iy,
(1) = Bf dr, ay(7) = af %dr

T
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and

Ii(7) Ky = K,(o7)
LK, (@-L(MK(®)’ ' LHEKE@-LO-L@K()
Since for r = 0 the function K;(7) becomes infinite, and the velocity on the axis of the
tube must be finite, the constants D, and D, are necessarily equal to zero. From Eq. (3.19)
it follows that
(3:20) Fy(7) = [D3+7.(0))i(7)+ [Dy+72(2)]K, (7).
Unknown constants in this formula are determined by the boundary conditions (i) and (ii)
S _ 1 yili K —y; K} -y
R 2 K,I;-KI, L

yili—y: 1, K,

Iu =

s s
Di="kr-xr, ">

1 LK, yiliK -y KT _
D=1 - ~“RE-&L ™
DY =1I,+ yili-v: LK,

KIL-KiI, '»
where the functions X, (1), I;(7), Ki(7), I1(7), 1(7), and y,(7) are calculated at the wall:
Tl,=1 = (1+i)a. Then the final results are
F3(v) = [D3+y, () y(v)+ [Di+72(1)]K(7),
Fi(v) = DY+ 71 (D1 () + [DE+y2(RIKy (7).
Therefore the expressions for ¢} and yj§ are

(3.21)

v = [ﬁ [F5+ Real(F5 e*")]cos g,
(3.22)
] [F3 + Real(F% e*¥)]cos¢.

It is possible now to write the stream function y, of Zalosh and Nelson’s problem (unsteady
fully-developed flow of a viscous fluid in a slightly curved tube with a wall which is
not porous).

2
Yo = [%] [F§ + Real(F; e*")]cosg.
Furthermore, Eqs. (3.1) and (3.22) can be used to evaluate the right-hand side of
Eq. (2.13): _
2 6w1 Tu(w'."l/i_) ¢ o3in o
(323) Viw, - Real (2F+F,) —=—L =" (" +€*")¢sing.
Tolaiy/ 1)

The right-hand side of this equation suggests a solution of the form

3
(3.29 Wy = -“12— [-%-] sinpReal{G, (r)e" + G3(r)e*"}.
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Substituting Eq. (3.24) into Eq. (3.23), two linear ordinary differential equations for G,
and G are obtained:

B
QG, -G, = [ZFO a +F2lnld dA]

% +F a

dA dA dB
+l[2Fo‘d— —FoReat 55— e +F1m 5 ]

. dB dA dA dB
QG;—32%iG; = [anm ¥ —Fm i ]'H[aneal Py +F3im o ]

or

dr? r dr
d*G, . 1 dG, ( - 1) _ .
drz +‘;-$—— 3¢l+?'2' GS__FZ.E}-(B_IA)‘

The boundary conditions for G, and G; are G,(1) = 0 and G;(1) = 0. We shall also
require that G,(r) and G5(r) be nonsingular within the tube.
It is easy to find that

2
&G, _ 1 dG, ( lcl_(mw,)—w—m)-

1 sin(ari /i)

B—id = = "
l sin(ai /7 ) r
i(B-—iA) - 1 o l/fcos(aril/zf]—sin(wil/i'] '
sin (i /i) r
Let 7, = a:r]/? and 7, = arl/ 3i; then we shall have for G, and G, the equations

d G dG
(3.25) i -+ 1?~‘-~(r¥+l)ﬁ'n = (),

da*G dG,
(3.26) 3. i e Tam Tes "('Fz'['l)GS Ba(r)

and the boundary conditions Gl[a ]/ :'t) = 0and G‘,(u: |/ 3::) = 0. Here
Bi(4) = QFE+FE) 5 (B—id) and B() = F§ - (B—i4)

have different values for cases of the porous and not porous wall.
After some algebraic transformations one can find
Gi(z) = Di(n)I(z)+ D5 (1) Ky(7y),
G4(72) = DA (1) I;(z2)+ D4 () Ky(72),
where

Di() = f pu0) Tdr— f B rar+CL,

Dﬂ(r)—-fﬁ,(r)dr—fﬂ,(r) area,
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23¢) = [ . Frar+ [ ) rarh,
L] 0

Di() = f Ba(r)dr+ f B 7 an ‘ ~dr+Cy.
Using boundary conditions for G,(7,) and Gs(7,), we find C§ = C§ = 0

p day/i dervi)  Kilery/it
“ i[(all//: fﬂl( )(I;((w'l/l_’} Il(ary]’/u )))

_ _ki(ey/3i) K (ory/3i) (ur|/31t)
Gy L{xy/3) fﬁ’()(l,(m/ﬁ) 1(&"/3“))

Results

Velocity profiles across the radii ¢ =% of the steady part of the secondary flow,

lying in the plane of a cross-section, are illustrated in Figs. 2-4, where % = 0.13,
a=1,5,10.

For low frequency and % less than about 0.13 there is no region of negative radial
velocity. Thus the centrifugal force gradient drives the fluid towards the outer wall. When
% > 0.13 and the frequency parameter « is moderate and high, there is a region where

the steady part of the flow directed towards the inner wall along a horizontal diameter.

ul

=Y

1
e

kafwv=013 =1
FiG. 2.



ulj

Oi" 1
¢ -\*-—__-/0‘5 1 r
ka/wv=013 o=5
FiG. 3.
ul
0 L [T—
0z 03 r

ka/wv=013 =10
FiG. 4.

Ga/wv=013 =5
FiG. 5.

[473]
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Ga/wv =073 a=5

FiG. 6.

The velocity distribution in the secondary flow plane is best displayed by means of
the stream function. The results reveal that the secondary flow is composed of a steady
component and a component oscillating at the second harmonic of the applied pressure
lines of constant stream-function values; they represent the secondary motion which is
superimposed on the axial-velocity flow field. Typical contours of the steady part of this
function are shown in Figs. 5 and 6 for steady and unsteady blowing, respectively. Here

—Gi=0.13, o =35
@y
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