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Optimal design for global mechanical constraints(*) 

Z. MROZ (WARSZAWA) and A. MIRONOV (MOSCOW) 

OPTIMAL design of beams or plates with prescribed in-plane shape is discussed assuming the 
behavioural constraint in the form of a functional of stress, strain, or displacement. The op
timality conditions are derived and the adjoint problem for determination of the sensitivity 
operator is formulated. Simple examples of applicability of the derived conditions are presented. 

Rozwa7.a si~ problem optymalnego projektowania belek lub plyt o przyj~tym konturze przy 
zaloionych wi~ch w postaci funkcjonalu nap~nia, odksztalcenia lub przemieszczenia. Wy
prowadzono warunki optymalizacji i sformulowano stowarzyszony problem okreslenia opera· 
tora wrailiwo§ci. Przedstawiono proste przyklady zastosowania wyprowadzonych warunk6w. 

PaccMaTpHBaeTCH npo6neMa o~am.uoro npoeKTHpOBaHWI 6anoK HJIH IlJlHT c ~ 
KOHTypOM, npH ~aHHbiX CBH3HX B BH.,Ite <i>yui<qHOHaJia HanpiDKeHHH, ,n;e<l>opM~ HJIH 
nepeMe~emm. Bbme,n;eHhi yCJIOBHH OnTHMH3aiUIH H c<l>opMyJIHpoBaua accoUHHpoBaHHaH 
npo6neMa onpe,n;eneHHH oneparopa liYCTBHTem.HoCTH. Tipe,n;crasneHbl npocrble npHMepbi 
npHMeHeHHH Bbme,n;eHHbiX yCJioBHif:. 

1. Introduction 

IN THE PRESENT paper we shall discuss the optimal design problem of structures for any 
form of global mechanical constraints imposed on the design. By the term "global con
straint", we shall understand an integral equality or inequality expressed in terms of ki
nematic or static state variables and the design variables. We shall restrict our discussion 
to the case of structures of prescribed layout so that only dimension variables are to be 
determined. Thus, in the case of plates, shells or beams, the median plane and the in-plane 
shape are specified with loading and supports but cross-sectional properties such as 
thickness or reinforcement distribution may be varied in order to achieve an optimal 
solution. This problem was discussed, for instance, in [1-3] for the case of mean stiff
ness, local deflection or free frequency constraints. Here a more general formulation is 
presented for which the constraint functional does not coincide with the functional whose 
stationarity characterizes the solution of a boundary-value problem. In Sect. 2 the general 
optimality conditions will be derived and in Sect. 3 the adjoint problem associated with 
the sensitivity operator will be discussed. For the linear analysis problem, the optimality 
conditions can be explicitly expressed in terms of strains or stresses of the original and 
adjoint problems. . 

(*) The present paper was written when Dr A. Mironov was a visiting Research Fellow at the In
stitute of Fundamental Technological Research in Warsaw. The work of the first author was supported 
through the Maria-Sklodowska Curie Fund. 
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506 Z. MR6Z AND A. MIRONOV 

It turns out that the identification and optimal design problems belong to the class 
of problems described in this paper. The analogy between these two types of problems 
is briefly discussed in Sect. 4. 

2. General derivation of the necessary optimality conditions 

Let the solution of the analysis pro9lems be governed by a minimum of a certain 
functional with respect to the state function q, that is 

(2.1) I(q, s)--+ minq, dl I - 0 Y. - - qe: q, 
dq q -=Qo 

where q e Yq may be, for instance, the displacement or the stress field and se Y.s denotes 
the design function, for instance, the varying thickness or other cross-sectional parameter 
of the plate. In particular, the functional I may coincide with the potential or complementary 
energy of the nonlinear, elastic structure; Yq and Y.s denote the appropriate Sobolev 
spaces. 

Let the, optimal design be governed by a minimum of another functional 

(2.2) G(q, s)--+ mins, se Y,, 

where G is understood to comprise both the usual cost function and the global constraint. 
For instance, when the optimal design problem is aimed at minimizing 

(2.3) J = J F(s)dx--+ mins 

subject to the global constraint 

(2.4) H = J K(q, s)dx-H0 ~ 0, 

the functional (2.2) takes the form 

G(q, s) = J F(s)dx+ l [ J K(q, s)dx -H0 ], 

where dx may denote, respectively, the element of length or area and l denotes the Lag
rangian multiplier. 

Let s0 be a stationary value of Eq. (2.2) and q0 be the corresponding value of the state 
function. Then 

(2.5) 

Consider a small variation of the design function, s1 = s0 + ds. Then 

(2.6) 
dq 

ql = qo+ Ts ds = qo+Sds = q0 + dq,s, 

where S = ~ denotes the sensitivity operator. In fact, S maps any variation ds E Y, 

into the space Y4 , that is 

(2.7) dq. = Sds. 
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OPTIMAL DESIGN FOR GLOBAL MECHANICAL CONSTRAINTS 507 

For a physically or geometrically nonlinear problem the sensitivity operator depends on 
the actual values q and s, S = S(q, s). 

Since q = q0 , s = s0 is the optimal design, we have the stationarity condition(~) 

(2.8) 
6G 6G 

6G = Ts :6s+ dq :S6s = 0, 

where ~~ and ~: denote the variational Gateaux derivatives of the functional G. Since 

Eq. (2.8) is valid for any sand Eq. (2.8) is a linear functional of 6s, the stationarity conditions 
can be written as follows: 

(2.9) 6G + 6G S = O. 
6s 6q 

Let us note that when the constraint (2.4) coincides with the functional (2.1), the condi
tion (2.9) can be reduced to a much simpler form, not involving the operator S. In fact, 
then we have 

(2.10) 

and since the solution of a boundary-value problem satisfies 

(2.11) _E_I = 0 
6qq=Qo ' 

the following stationarity condition follows from Eq. (2.10) 

(2.12) 
61

-= -A!!_ I= 10 , 
6s 6s ' 

and this condition does not depend on the sensitivity operator S. Let us note that the 
optimality conditions (2.12) are equivalent to those derived in [1, 2, 3] where also the 
conditions for global minimum were discussed (cf. also [8, 9]). 

In a more general case, however, when I and G are arbitrary, the sensitivity operatorS 
occurs in the stationarity condition (2.9). Obviously, this operator should be known for 
any given design s. 

In order to derive the relationship between S and the derivatives of the functional/, 
consider a sequence of solutions corresponding to varying s. The equilibrium solutions 
are represented by points P1 , P2 , ••• P,. in the function space, Fig. 1, corresponding to 
a minimum of the functional/. The path P1-P2-P3 , ••• is a locus of points representing 
solutions for consecutive ·values of the design function s. For any value of s the equilibrium 
solution satisfies the stationarity condition 

(2.13) 
61 Tq (q, s) = 0 

(1) The double dot between the two symbols denotes the global scalar product integrated over the 
structure domain whereas the single dot denotes the local scalar product at a particular structure point. 
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508 z. MR.6Z AND A. MIR.ONOV 

and the variation of Eq. (2.13) along the path P1 -P2 -P3 , ••• , P, vanishes, that is 

d2I d2I ( d2I d2I ) 
(2.14) dq2 dq,+ dqds ~s = ~2 S+ ~qds ~s = 0. 

Equation (2.14) together with the optimality condition (2.9) and the stationarity condition 
(2.1) constitute the set of equations governing both the analysis and the synthesis problems. 

I 

.5 

FIG. 1. Evolution of equilibrium solutions P~, P 2 , P3 for varying design function s. 

This equation can also be derived in a more formal way by considering the variation of 
both the design and the state functions, thus 

(2.15) s = s0 + ds, q = q0 +S~s+ ~q' = q0 + dq,+ dq' 

and the associated variation of the functional I 

(2.16) AI = ~! :<Is+ ~~ :(<lq' +Sds)+ ~ [ !~! (<lq' +S<ls)2 

~q ~q ] 
+2 ~s~q ds:(~q' +S~s)+ ~82 <5s 2 + .... 

The stationarity of I at P 1 (q0 , s0) requires the first derivative of I with respect to q to 
vanish and the stationarity of I at P2(q~+S~s, s+ ~s) with respect to q occurs when the 
variation terms linear in ~q' vanish, that is 

(2.17) 
~2I ~2I 
<5q2 S~s: ~q' + ~s~q ~s: ~q' = 0 

and since Eq. (2.17) represents a bilinear functional valid for arbitrary dei' satisfying the 
boundary conditions, the condition (2.14) is obtained from Eq. (2.17). 

Consider now the particular case when 

(2.18) I(q, s) = A(q, s)-a(q, s), 

where A denotes the .quadratic and a linear functionals of q. 
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The condition (2.14) now takes the form 

<PA ~21 
(2.19) ~q2 ~q.,+ ~s~q ~s = 0. 

Let us note that ~~ = B(s) is a self-adjoint operator not depending on q. Introduce 

the adjoint problem defined by the operator equation 

~2A ~G 
(2.20) ~q2 q* = B(s)q* = - ~q 

and the boundary conditions assuring the integral equality 

(2.21) Bq*:q = Bq:q* 

valid for any q satisfying the boundary condition5 of the initial analysis problem. Instead 
of Eq. (2.17), we can now write 

(2.22) aa ~21 * B~q.,:q* = Bq*:~q., = -- :~q., = --- ~s:q oq ~sdq 

and the optimality condition (2.8) can now be presented in the form 

~21 ~G ~G 
(2.23) ~G = ~s~q ~s:q*+ & :ds = Bq~s:q*-b~s:q*+ & :~s = 0, 

where b = !2

: is a linear operator not depending on q. Introducing the adjoint opera-. usuq 
tors B* and· b* so that 

(2.24) Bq~s:q*-bds:q* = B*q*:qds-b*q*:~s, 

the stationarity condition (2.23) can be explicitly expressed in the form 

dG 
(2.25) B*q*:q-b:q*+ Ts = 0, 

that is in terms of the solution of the adjoint problem (2.20). 
An alternative formulation of the optimization problem associated with Eq. (2.19) 

and (2.2) can be presented by starting from the operator equation of the problem(l), 
similarly as in [5] 

(2.26) L(s)q = f(q, s) 

and for small variations ~q and ~s, we have 

(2.27) L., dsq + Lq~q = fq dq +f., ds 

where the subscripts denote differentiation with respect to s or q, and f denotes the dif
ferentiable function of q and s. The optimization problem (2.2) can be regarded as the 
problem constrained by Eq. (2.26), hence introducing the functional 

(2.28) G' = G-i:[L(s)q-f(q, s)], · 

(2) This operator equation can be identified, for instance, with the displacement equations of the 
linear elasticity theory. 

5 Arch. Mech. Stos. 4/80 
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we may consider its variation 

(2.29) 

setting 

(2.30) 
- - ~G 

L*l.-f*l.-- = 0 
q ~q 

the optimality condition takes the form 

(2.31) 
~G - -Ts -Ltl.:q-ff:l. = 0, Lq-f = 0. 

In Eqs. (2.29)-(2.31), the operators L*, t:, ft are adjoint to L, f4 and fs. Let us note that 
we neglected boundary terms assuming proper boundary conditions. Equation (2.30) now 
defines the adjoint problem and Eq. (2.31) is the optimality condition. The Lagrangian 
multiplier i is now the adjoint function to q. The analogy between Eq. (2.31) and (2.25) 
can easily be traced. 

3. Adjoint systems for stress and deftection constraints 

In, this section we shall discuss the optimality conditions and adjoint systems for the 
case when global constraints are imposed on stress state or displacements within the 
structure, and the material is linearly elastic. 

3.1. Global stress coostraint 

Let Q and q be generalized stresses and strains interrelated by the constitutive law 

(3.1) Q = D(s)q, 

where D(s) denotes the stiffness matrix depending on the design function s(x) which may 
be, for instance, th~ variable plate thickness. Varying s, we obtain from Eq. (3.1) 

(3.2) - ~Q = D~q+Ds~sq = ~Q' + ~Q" 
and since ~ is the statically admissible stress field satisfying equilibrium equations and 
boundary conditions for vanishing surface tractions, we can write 

(3.3) 

since &t is the kinematically admissible strain field. The optimization problem can now 
be formulated as follows: 

(3.4) minGj. = J <lJ(Q, s)dx, subject to C = J F(s)dx ~ C0 , 

where 4' = <lJ(Q, s) does not need to coincide with the stress ~nergy function W = W(Q, s)~ 
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Let us now define the adjoint system. Consider the structure of the same shape and 
support conditions with no external loading but subjected to the initial strain 

(3.5) 
. iJf/J 

q' = iJQ . 

The corresponding residual stress and strain states are Qr and qr, and the total strain q0 

satisfies the equality, Fig. 2. 

(3.6) 

Q 
I I 

I .l 
I I 

I I 
I I I I I 0 

I I 0' 

I I 

I 
I 

I 
I 

0 

Clo 

FIG. 2. Decomposition of initial strains and stresses, 
qo = q'+q', Qo = Q'+Q:. 

Using Eqs. (3.2), (3.5) and (3.6), we can write 

(3.7) - J af/J J aq, J . J atP lJG = oQ · <5Qdx + as <5sdx = (q0 -qr) · <5Qdx + fu <5sdx 

= J -qr · ( <5Q' + <5Q")dx + f ~~ . <5sdx = - J nqr · <5qdx 

In Eq. (3.7) we used the virtual work equalities 

(3.8) 

Considering now the functional 

(3.9) 

its first variation in view of Eq. (3.7) can be expressed as follows: 

(3.10) ~G = J ( -q" · D,q+ ~~ +i.F,) ~sdx = 0 

S* 
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and the stationarity condition takes the form 

(3.11) 
atP . dF . 

f(· D.q- os .. = ,t ds = AF., 

which depends on the solution of initial and adjoint problems. In the particular case, 
when tP = W, then q' = 0 and the optimality condition derived in [2] is obtained. 

An alternative derivation can be provided by starting from the constraint expressed 
in terms of strains, that is 

(3.12) minG'I. = J v:'(q;s)dx, subject to C = J F(s)dx ~ C0 • 

Let us write the inverse relations to Eqs. (3.1) and (3.2) 

(3.13) q = E(s)Q, 

(3.14) <5q = E<5Q +E. <5sQ = ~q' + 6q" 

and E = o- 1 is the compliance matrix. 
To define the adjoint system, let us consider the same structure under no external 

loading, but loaded by the initial stress Q', such that 

(3.15) Q' = Dqi = 01p oq 
and Q' = Q0 -Q1

, where Q' = Dq' and Q 0 = Dq0
, Fig. 2. Now the variation of G' 

equals 

(3.16) ~G' = J ~: · 6qdx+ J Z ~sdx = J (Q~ -Q') · ~qdx+ J ~~ 6sdx 

= J Q 0 
• E~Qdx+ J Q 0 

• E.6sQdx+ J ~~ 6sdx = J ()Q · q0dx 

+ J Q0 
• E.Q<5sdx+ J ~~ ()sdx = J Q 0 

• E,~Q6sdx+ J ~~ 6sdx. 

In deriving Eq. (3.16) we used the virtual work principle 

(3.17) J Q' · 6qdx = J bQ · q9dx = 0. 

Considering the functional G = G' + A.(C- C0), its variation is expressed as follows: 

(3.18) ~G = J[Q•· E,Q+ a: +l '!]dx+~l(C-C0) = 0 

and the stationarity condition requires that 

(3.19) Qo • E Q + otp = -., oF C C 
s as /1. os , = O· 

It is easy to show the equivalence of Eqs~ (3.11) and (3.19). Since DE = I, where I 
is the unit matrix, we have 

(3.20) D,~E+DE, = 0, hence E, = -ED.~E, D., = -DE.D 
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and in view of Eq. (3.14) there is 

(3.21) ( OVJ ) = ofP + ofP ( oQ ) = oljJ - i DE Q 
os q os oQ os q os q ! ' 

where ( }q denotes the derivative taken at constant q. Using Eq. (3.21), the optimality 
condition (3.19) can easily be retransformed into Eq. (3.11). 

The adjoint systems for global stress constraints were applied in [4], though their 
direct mechanical interpretation was not presented. 
Example 1. Consider a beam for which the bending moment M = M(x) is ,a linear function 
of curvature k = k(x) and a nonlinear function of thickness h = h(x), that is M = rxh"'k, 

where a is a cross-sectional stiffness parameter. Let the optimal design problem be formu
lated as follows: 

(3.22) minG = J M"dx, subject to C = J hdx ~ C0 • 

The functional G now has the form 

(3.23) G = J M11dx+A[jhdx-C0 ] =a." Jh"'"k"dx-;.[jhdx-C0 ]. 

The initial curvature field of the ad joint beam now is 

(3.24) ki(x) = nM11
-

1 = a."nh"'<n-1)~- 1 • 

The adjoint problem is reduced to determining the curvature field k 0 = k0 (x) and the 
residual moment field Mr = Mr(x) induced by the initial curvature field ki(x) defined 
by Eq. (3.24). Since there is 

(3.25) s = h, of/J = o 
os ' 

dF =I 
ds ' 

the optimality condition (3.11) now reads 

(3.26) krma.h"'- 1 k = A 

or, using Eqs. (3.24) and (3.25), we have 

(3.27) ~k0kmh"'- 1 -~"+lmnk"h"'"- 1 = A 

that is the condition expressed in terms of curvatures of the initial ahd adjoint systems. 
Let us note that for varying thickness, the adjoint system will correspond to non-vanishing 
Mr(x) and ~(x) for all values of n. Eqation (3.27) relates k 0 , k and h; thus an optimal 
value of h can be found from Eq. (3.27) through an iterative procedure. 

3.2. Global displacement constraint 

Consider now the constraint imposed on the lateral displacement of the beam or plate 

(3.28) G = J g(u)dSe ~ Ko, 

where Se denotes the portion of the middJe surface area. For the adjoint system, let us 
introduce the traction over Se 

(3.29) P,.= 
og(u) 

ou 
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and denote the corresponding solution by Q", q", u". The adjoint plate or beam is identi
cally supported as the initial system but loaded only by the traction P". 

Consider the following optimization problem: 

(3.30) min G, subject to J F(ds)dx ~ C0 

and introduce the functional G = G+ ).[ F(s)dx- C0 ) . Now we have 

(3.31) 

Since by virtue of Eq. (3.14), there is q = EQ+E.,~sQ, the integral (3.21) can be 
reduced to the form 

(3.32) ~G = J Q" · E6Qdx + J Q" · E, dsQdx = J dQ · f(dx 

+ J Q" · E .. Qdsdx = J Q" · E.,Qdsdx = - J tf · D.,q~dsx 
and 

(3.33) ~G = J Q"·E,Qdsdx+l ~ dsdx+dl(J F(s)dx-c0 ] = 0. 

Thus the stationarity conditions take the form 

(3.34) Q" · E,Q = -l ~~, d). [J F(s)dx -Co] = 0. 

Eumple. Consider, for instance, a cantilever beam, built-in at x = 0 and loaded by a con
centrated force Pat its tip x = 1. Let the optimization problem be formulated as follows: 

(3.35) 
I 

minG = J Pluldx subject to 
0 

I 

J hdx-Co ~ 0, 
0 

where p is a constant factor and G can be regarded as a mean compliance. In this case 
the adjoint beam is loaded by the uniform pressure p. = P over its length. Thus the bend-: 
ing moments are 

(3.36) M= -P(l-x), M = - p(l-x)2 
• 2 

and if the compliance E = a,h-m, the Qptimality condition (3.34) provides 

(3.37) 

It is seen that now the adjoint structure is analogous to that discussed by SHIELD and 
PRAGER [6] who considered stationarity of the mutual energy of two systems with respect 
to a design .variable. 
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4. Identification problems 

The discussion carried out in the preceding section can directly be applied to a class 
of identification problems for which the cross-sectional stiffness parameters are to be de
termined from a set of experimental measurements of stress, strain or displacement. 

Assume that the displacement is measured at n points of the plate, u = u1, i = I, 2, ... , 
... , n. Let the calculated displacement field for the assumed stiffness matrix D be u(x). 
Assume the plate to be uniform but the stiffness matrix to depend on several stiffness pa
rameters s1 , s2 , s3 , ••• , thus D = D(s1 , s2 , s3 , ••• ). Our aim is to determine these para
meters in order to minimize the distance between the measured and the predicted displace
ments. Let the measure of this distance be 

11 

(4.1) G1 = -}}; tt1(u -u1)
2

• 

1=1 

Introduce the adjoint plate or beam loaded by concentrated loads 

(4.2) aGll P, = tt1(u-u1) = --au X=X1 

at test points. Denote the actual state in the original structure by Q, q, u and the adjoint 
state by Q", q", u•. Following Eqs. (3.32) and (3.20), we can write 

11 11 

(4.3) t}G1 = ~ ~s, f Q" · E.,Qdx = -}; t}s,f cf · D.1qdx. 
i-1 i=l 

The stationarity condition requires each integral occurring in Eq. (4.3)to vanish. However, 
Eq. (4.3) can be used directly in evaluating the functional gradient oGfos1 at each iteration 
step, similarly as it was done in [7]. Let us note that s1 can be assumed in some cases as 
orthotropy coefficients of the plate. Assume now that strain measurements are . obtained 
at n points, q = q, i = l, 2, ... , n. Assuming the distance function in the form 

u 

(4.4) I \, 2 G2 = 2 ~ {J,(q -q,) 
i-1 

let us introduce the initial stresses Q' for the adjoint system applied at the test points 

(4.5) Q' fJ oG21 = ,(q-q,) =--oq X=XI 

and, according to Eq. (3.16), the variation of G2 equals 

11 11 

(4.6) t}G2 = ~ t}s,f Q0
• E.,Qdx = - ~ ~s,f q0 • o.,qdx. 

1=1 i=l 

Obviously, the initial stresses Q' correspond to localized distortions q' at the measurement 
points, cf. Fig. 2. . 
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5. Concluding remarks 

The present work provides a general discussion of the optimality conditions for global 
behaviour constraints expressed as any functional of stress, strain or displacement. For 
linear elastic structures the optimality conditions can be expressed directly in· terms of 
the states of original and adjoint problems. In particular, for global stress or strain con
straints the adjoint problem is reduced to the initial stress or strain problems. For non
linear structures, the sensitivity operator can be obtained by solving a linear boundary 
value problem, from which the variations in state functions can be expressed in terms 
of variations of design variables. The identification problems can be treated within the 
same general formulation. 
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