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Influence of hinge line gap on aerodynamic forces acting 
on a harmonically oscillating thin profile· in an incompressible flow 
Part I 

S. FILIPKOWSKI and M. NOWAK (WARSZAWA) 

BY APPLYING the method of strongly singular integral equations the solution of the Birnbaum
Possio equations is derived for a system of two profiles (profile with a control surface) lying 
on one straight line parallel to the direction of flow at infinity. The solutions are then transformed 
to a form in which the pressure distributions and aerodynamical coefficients may explicitly be 
expressed in terms of the elementary functions and canoni~l forms of elliptic integrals. Only 
some of the integrals (concerning the wake in the gap and behind the profile) require numerical 
calculations. The influence of the size of the gap on the pressure distributions and aerodynamical 
coefficients (with various values of the frequency coefficient) is illustrated by graphs. 

Posluguj~c sicc metodami r6wnan calkowych silnie-osobliwych, otrzymano rozwi~e r6w
nania Birnbauma-Possio dla uldadu dw6ch profili (profilu ze sterem) le:iJlcych na jednej prostej, 
r6wnoleglej do kierunku przeplywu w nieskoriczono8ci. Nastccpnie przeksztalcono je do postaci, 
w kt6rej rozklady cisnien i wsp6lczynniki aerodynamiczne daj~ sicc wyrazic jawnie za pomoc~ 
funkcji elementarnych i kanonicznych postaci calek eliptycznych. Tylko nieliczne calki (dotyc~ce 
sladu wirowego w szczelinie i za profilem) wymagaj~ obliczen numerycznych. Wplyw \Yielko8ci 
szczeliny na rozklady cisnien i wsp61czynniki aerodynamiczne (dla r6inych warto8ci wsp6lczyn
nika czccsto8ci) zilustrowano wykresami. 

IlOCJiy>KHBWICL MeTO~aMH HHTerpaJibHLIX CHJILHO CHHI'YIDIPHLIX ypaBHeHHH, ll01I}"IeHO 
pemeHHe ypaaHeHWI EHpH6ayMa-11occuo ~ cuCTeMLI ~ayx npo<PuneH: (npo<PH.JIH c pyneM) 
ne>KaiiUIX Ha O,lUIOH np.RMOH, napaJICJILHOH HanpaBneHHlO Te'tleHH.R: B 6eCKOHe'tiHOCTH. 3aTeM 
npeo6pll30BaHO OHO . I< B~, B KOTOpOM pacnpe~eneHHH ~aaneHHH H a3pO~aMH'leCJ<He 
I<03$<PHUHeHTLI MO>KHO .R:BHLIM 00p330M Bblpa3HTb npH DOMO~H 3neMeHTapHbiX <PYHI<lUfH 
H KBHOHH'tleCKHX BJmOB 3nnHDTH'lecKHX HHTerpanoa. Ton&Ko HeMHorue HHTerpanbi (Kaca
ro~uec.a BHXpeaoro cne~a a ~enH H 3a npo<PuneM) Tpe6yroT 'lHCneHHbiX paC'leTOB. BnHHHHe 
BenH'tiHHLI ~enH Ha pacnpe~eneHWI ~aBneHHH H a3pO~HHaMH'leCI<He K03<P<PHI.UfCHTbl (~ 
pa3HbiX 3Ha'tleHHH: K03<P<PHlUieHTa 'tlaCTOTbi) HnniOCTpupoaaHo rpa<Pui<aMH. 

1. Introduction 

FUNDAMENTAL theoretical results concerning the pressure distribution on a harmonically 
oscillating profile in an incompressible flow were obtained in the thirties by THEODORSEN, 

KussNER, SCHWARTZ and others [1, 2]. A comparison of these results with experimental 
data demonstrates the practical applicability of the model used. The methods of. analysis 
of aerodynamic forces distributions on three-dimensional lifting surfaces developed later 
are based on similar assumptions and utilize the same scheme of linearization of the 
boundary conditions at the lifting surfaces and in the wake. The mathematical formulation 
of the problem is reduced to a singular integral equation relating the prescribed normal 
velocity distribution to the unknown distribution of pressure differences between both 
sides of the lifting surface. The singularity of the kernel gives the square root singularity 
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518 S. FIUPKOWSKI AND M. NOWAK 

of the functions describing the distribution of pressures on the leading edge and its deriv
ative on the trailing edge. The edges of the control surfaces are the discontinuity lines 
of the boundary condition (normal velocity distribution). For the function representing 
the solution of the integral equation, these lines are the logarithmic singularity lines. 
In the_ case when the lifting surface contains narrow gaps enabling the flow perpendicular 
to the surface, considerable irregularities of pressure distribution appear in the neighbour
hood of the gaps, thus making the numerical calculations more difficult. 

The scheme of a profile with a gap is shown in Fig. I. The normal velocity distribu
tion w(x, t) is prescribed along both segments modelling the profile with a control surface. 
If the gap ~ = f1- ex is large enough, the system may be treated as consisting of two profiles; 

X 

z 

FIG. 1. 

on the trailing edges of each of them the Kutta-Joukovski condition is satisfied, while 
on the leading edges square root singularities appear in the pressure distributions. With 
decreasing gaps the aerodynamic interaction between the two sections of the profile is 
increased, what results in considerable changes of the pressure distributions, mainly in 
the vicinity of points a and {J. With (}-+ 0 the weak singularity on the control surface 
(at {J) transforms in the limit into a logarithmic singularity when w(a, t) #= w({J, t), or 
into a regular point when the function w(x, t) is continuous. The changes at the point a 
are even more considerable since the zero pressure difference for (} > 0 is replaced either 
by a logarithmic singularity or by a (non-zero) finite value of the distribution function. 

Two particular cases of the model shown in Fig. i were examined in detail. The first 
one was concerned with the situation when a= {J since then the model is reduced to 
the classical one without a gap. The second case is connected with the investigations of 
aerodynamic interference of two profiles [3] and concerns large gaps (e.g. when ~ > 1). 
The most difficult case for the analysis yet, at the same time, the most interesting one 
(from the point of view of determining the aerodynamic forces on a profile with a control 
surface) corresponds to 0 < (} ~ 1 : very few papers are known to deal with this problem. 

In the paper by WHITE and LANDAHL [4] the stationary case of pressure distributions 
at a gap are investigated by means of fitting the asymptotic solutions. In the monograph 
by SEOOv [5] closed-form solutions are given for the forces acting on each segment of the 
profile in a stationary flow and for the apparent mass coefficients (in a flow with constant 
circulation). The complete, linearized non-stationary model of flow about a system of 
thin profiles with chords lying on a straight line, the effect of wakes being taken into 
account, was considered in (6, 7]. Various methods of determining the closed-form solu
tions for harmonically oscillating profiles were given there, but no effective method of 
calculation was devised. 
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INFLUENCE OF HINGE LINE GAP ON AERODYNAMIC FORCF.S .... PART I Sl9 

A comparison of the measurements of the pressure distributions on vibrating profiles 
with the results obtained by the classical methods of calculation leads to certain discrep
ancies which may be supposed to be due to the existence of the gap[8]. It becomes neces
sary to devise a method of evaluating the aerodynamic forces which would be useful also 
for arbitrarily small gaps. The only non-stationary solutions available [5] are concerned 
with a very particular case of motion with a constant circulation. 

The present paper retains the full linearization of the model of the phenomenon, but 
presents the rigorous solution of the problem of the effect of a gap on the pressure dis
tribution acting on the harmonically oscillating profile with the co~trol surface, and 
on the aerodynamic coefficients of the profile. The problem is solved by the method of 
singular integral equations (based on [7]), the solutions being then transformed to a form 
analogous to the well-known solution concerning a profile without gap [1, 2, 9). Both 
the pressure distribution over the profile and the ·aerodynamic coefficients are expressed 
in terms of elementary functions and canonical forms of elliptic integrals. Only a few 
integrals depending on the geometry of the system and on the frequency coefficient (and 
connected with the wakes) require numerical procedures. The method of calculating the 
aerodynamic coefficients is convenient for immediate applications in the analysis of flutter 
of the profile. 

Linearization of the boundary conditions in the vicinity of the gap represents a simp- · 
lification which sometimes may not be justified. For instance, in the case of a narrow gap 
one cannot exclude a considerable influence of the thickness of the profile . . This problem 
has not been studied so far but, on the other hand, it may be conjectured that the simplified 
linear model (representing a direct generalization of the classical model [1, 2]) may, in 
spite of that, make it possible to obtain certain technically important information as to 
the effect of the flow through the gap upon the aerodynamic forces. However, in the case 
of a thick profile the parameter ~ should be interpreted as a certain "effective" gap width, 
and· not as a real geometrical dimension to be measured in the existing structure. 

2. Formulation of the problem 

The profile with a control surface is placed in a uniform flow of an incompressible 
and in viscid fluid; the profile performs harmonic oscillations about the mean position 
(Fig. 1). The undisturbed flow velocity is U. The flow is described by the equation of 
continuity, Euler's equation of motion and by the boundary conditions at the profile 
and in infinity. In the case of a thin profile and small amplitude of vibration, the lineari.za
tion of the equations and the boundary conditions at the ·profile are permissible. The 
influence of the history of motion (being a characteristic feature of non-stationary flows) 
is manifested .here by the existence of the wake convected behind the profile at the velocity 
U of the unperturbed flow. The x-coordinate in Fig. 1 is normed by assuming the semi
chord b of the profile as a unit of length. According to the assumptions, the boundary 
conditions at the profile are prescribed on the segments ( -1, oc) and (/J, + 1) of the x-axis. 
The segments (oc, P) and ( + 1, ex:>) of the x-axis are the lines of discontinuity of velocities 
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520 S. FILIPICOWSKI AND M. NOWAK 

which constitute the wake convected at the velocity U. The vertical velocity at the profile 
is prescribed, and at an arbitrary instant of time t it may be given in the form 

w(x, t) = w(x)eivt, 

w(x) being the (complex) vibration amplitude. The problem consists in determining the 
distribution of pressure differences between the upper and lower profile surfaces 

LJp(x, t) = LJp(x)eM. 

The formulation presented here is based on the same assumptions as the classical 
formulation for solid profiles [1, 2] and the only difference consists in the fact that the 
boundary conditions are prescribed not on the entire segment ( -1, + 1) but along the 
line L consisting of two segments ( -1, a) and ({3, +I). As a result, the prescribed func
tion w(x) is also here related to the solution LJp(x) by means of the Birnbaum- Possio 
equation [2, 9] 

(2.1) w(x) = w J K(s) y(~)d~, 
L 

the (singular) kernel being given by 

(2.2) K(s) = 2~s - i~~· { Ci( Jsl) + i [ Si(s) + ~ ]} . 
Here w = vb/U is the frequency coefficient, s = w(x- ~)and y(x) is a function connected 
with the pressure distribution by means of the formula 

(2.3) LJp(x, t) = -eUy(x)eivt. 

Here e is the density of the medium. Along the trailing edge of each segment the Kutta
Joukovski condition y(a) = y(1) = 0 is fulfilled thus ensuring the uniqueness of solution 
of the integral equation (2.1). 

3. Solution of the Birnbaum-Possio equation 

The kernel (2.2) of Eq. (2.1) contains, in addition to the pole in the first term, an 
additional logarithmic singularity of the cosine integral function Ci(!sl). The typical 
methods of solving the singular integral equations [10] are based on the formulation and 
solution of an auxiliary Riemann bounckry-value problem of the analytical function 
constructed according to the singular part of the kernel. In the particular case of Eq. (2.1) 
in the formulation of_the Riemann problem, account must be taken of the multivalued 
logarithmic term of the kernel. 

The variables x and~ in Eq. (2.1) assume real values. In order to formulate the Riemann 
boundary-value problem, the right-hand side of Eq. (2.1) is analytically continued onto 
the entire complex plane z = x+ jy (xis the only variable occuring in the physical model). 

The imaginary unit j ~ y' -1 appearing in the analytic ·continuation is not connected 

with the imaginary unit i = y'- I introduced to the kernel (2.2) in order to express the 
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harmonic time-dependence, and hence ij :#:. -I. Taking into account the form of the 
kernel and separating the singular terms, we obtain 

(3.1) !l>(z) = ,},.j J {~~z +iwe..,<l-•>pn(,f' -z)+ P(~ -z))}y(E)d~, 
L 

where P(z) is a certain integral function of the variable z = x+ jy. The first term of (P(z) 
is expressed by a Cauchy-type integral and hence it represents a function analytical in 
the entire z-plane cut along the line L. The second term of the integrand in Eq. (3.1) 
possesses branchpoints in ~ = z and at infinity. Cutting the complex plane z = x+ jy 
along the x-axis for - 1 < x < oo and selecting the proper branch of the logarithm, the 
following limiting values may be obtained for z-+ x ±jO: 

In(~ -z)-+ lnlx -~1 

In(~ -z) -+ lnlx -~1 ±nj 
for 

~>X, 

~<X, 

this secures the uniqueness of (P(z) in the z-plane. Denoting the limiting values of (P(z) 
on the x-axis by (P+ (x) ·~ (P(x+.iO) and (P- (x) = (P(x-}0) and using the Plemelj-Sochock, 
formulae [10] for the Cauchy integral in Eq. (3.1), we arrive, on the basis of Eq. (2.1) 
to the following Riemann boundary-value problem along the entire x-axis: 

(3.2) 

(P+(x)-(P-(x) = 0 

(P+(x)+(P-(x) = 1jw(x) · 

(P+(x) -(P- (x) = -iwe-iwx.Q1 for 

(P+ (x) + (P- (x) = 2jw(x) 

(P+ (x) -(I)- (x) = -iwe-iwx.Q2 

-00 <X< -I, 
-I~x~cx, 

a.<x<P, 
p~x~I, 

l<x<oo 
with the following notations: 

Cl 1 

.01 = J ekDEy(~)d~ and !J2 = .01 + J ek»Ey(~)d~. 
-1 {J 

Moreover, the relations following from the form (3.1) of (P(z) are satisfied on L, 

(3.3) 

JC 

(J)+(x)-(1)-(x) = y(x)-iwe-iwx J eiOJEy(~)dE 
-1 

JC 

(J)+(x)-(P-(x) = y(x)-iwe-lwx[D1 + J e 10JEy(~)d~] 
{J 

-1~x~a., 

for 

The constants !J1 and .02 are determined from the Kutta-Joukovski conditions y(cx) = 

=y(l) = 0. 
The procedure of solving Eq. (2.1) may then be divided into the following stages: 
1) Solution of the boundary-value problem (3.2). The function (P(z) is expressed · in 

terms of w(x) and the constants .01 , D2 • 

2) Insertion of (P(z) into Eq. (3.3) and solution of the resulting system of the Volterra 
integral equations. 

3) Determination of the constants .Qh .02 from the Kutta- Joukovski conditions. 
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Stage 2) presents no serious difficulties since, with the notation 

<p(x) = ~+(x)-~-(x) for x e L, 

the simple set of integral equations (3.3) is solved to yield 

(3.4) 

X 

y(x) = <p(x) + iw J <p(E)d~ 
-1 

X 

y(x) = <p(x)+iw[D1 e-iwP+ J <p(E)dE] 
p 

-1 <X< (t, 

for 

{J<x<l. 

The solution of the boundary-value problem may be obtained directly by known methods 
[10] and to this end it is convenient to write it in the form 

(3.5) ~+(x) = G(x)~-(x)+g(x), 
the coefficient G(x) and the term g(x) being given by 

G(x) = -1 g(x) = 2jw(x) X EL, 

-oo<x<-1, 
(t<x<{J, 

1<x<oo. 

(3.6) 
for 

The canonical solution of the. homogeneous problem (obtained from Eq. (3.5) by setting 
g(x) = 0) in the class of functions bounded at the points z = a and z = 1 is given by 
the expression 

1 1 

(3.7) 
_ (z -1)2 (z- a)2 _ ,. /R2(z) 

X(z) - 1 1 - v-R-- . 
(z+I)2(z-{J)2 t(z) 

Here 
R1(z) = (z+ 1) (z -{J) and R2 (z) = (z -1) (z -(t). 

It is assumed in addition that Eq. (3.7) defines this branch of holomorphic function in 
the complex plane cut along L which has the following expansion with respect to the 
decreasing powers of z in the neighbourhood of the p()int at infinity: 

X( ) ,. / R2(z) -t -2 
z = Jl R

1 
(z) = 1 +a1.z +a2 z + .... 

The limiting values of X(z) on L are purely imaginary, and due to the assumption x+ (x) = 
= X(x), also x- (x) = - X(x). Using the canonical solution X(z) we immediately arrive 
at the known form of solution of Eq. (3.5), 

+OO 
X(z) f g(E)d~ 

~(z) = 2n/ X+(E) (E-z) +X(z)C. 
-oo 

Here C is an arbitrary constant. From the definition (3.1) it follows that 4>(- oo) = 0 
and hence, if the solution is required to vanish at infinity, we should assume C = 0. 
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The auxiliary function q>(x) = (J)+(x)-fP-(x) = 2(J)+(x) appearing in Eq. (3.4) has 
now the following form: 

It is evidently real-valued with respect to the imaginary unit j since v- --I R2 (x) _ ,; 1-x x-a 
T R1 (x) - I +x x-P 

for xeL 

and 

rJI R,<E> = y' 1 H E-fJ 
R2 (~) 1-~ ~-a 

for ~r::L 

and also 

y' R1 (E} _ y' E+ I E-{J 
R2 ( ~) - ~ - 1 ~- a for ~fL. 

The final stage in solving Eq. (2.1) is the determination of the constants !J1 an4 !J2. 
Substituting the values y(a) = y(I) = 0 in Eqs. (3.3) and (3.4), we obtain the two neces
sary equations 

ex 

(3.9) J q>(x)dx = e-'OJ(I.!J1 and 
-1 

1 

J q>(x)dx = e-IOJQ2 -e-lwfJQt. 
{J 

The expressions (3.4) and, (3.8) together with Eqs. (3.9) comp~etely determine the solution 
of the Bimbaum- Possio equation (2.1 ), though their direct application to the determina
tion of y(x) for a prescribed distribution w(x) would be very difficult. The next stage of 
the procedure should then consist in eliminating the· auxiliary function q>(x) and the 
indefinite integrals in Eq. (3.4), and also in further simplification of Eqs. (3.9). 

No assumptions concerning the size f5 = P-a. of the gap were made in solving Eq. 
(2.1 ). It is then possible to assume, in particular, that f5 _... 0 and to obtain the knowJ¥ 
solution for the profile without the gap. To this end it is sufficient to observe that on the 
basis of the first equation of the set (3.9) both expressions (3.4) assume in the limit the 
same form, and in the formula (3.8) the integral over the gap vanishes. The only necessary 
constant !J2 may be evaluated from the equation obtained as the sum of Eqs. (3.9). 

A certain physical interpretation may be ascribed to the individual terms of the solu
tion of the Bimbaum- Possio equation. The function q>(x) determines the total vorticity, 
on the profile with a control surface, while y(x) is termed, according to the definition, 
the bound vorticity. The relations (3.4) express, due to this interpretation, the law 
of conservation of circulation. 
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4. The set of equations determining the constants !J 1, fJ 2 

In order to determine the constants !J1 , D2 , we may use Eqs. (3.9) or any linear combina
tion of these equations. In particular, by summing up both equations we obtain an 
equation which is more convenient for calculations, 

J q;(x)dx = e-;w!J2 -(e-itu/J -e-~w«).Q1 • 
L 

Taking account of the form (3.8) of q;(x) and changing the order of integration, the follow
ing equation is obtained 

(4.la) 

with a structure similar to that corresponding to the profile without the gap [9]. In spite 
of the fact that we have not succeeded in express.ing the integrals occurring in Eq. 
(4.1a) in terms of known transcendental functions, we state that they represent relatively 
simple single integrals of elementary functions. 

In order to derive the second equation in a similarly simple form like Eo1. (4.1a), a change 
of variables proves to be useful. Since in Eqs. (3.9) elliptic integrals appear, the transfor
mation should be based on elliptic integrals. L~t us introduce two parameters 

1 

(4.2a) At = (~X+ 1)2 = __!_V 1 +ex 
1 • 1 ' 

(cx-1)2 1 -IX 

the moduls k and a complementary modulus k', 

(4.2b) , .. ;- .. / 2({1-cx) 
k = f 1 - k2 = V (1 +IX) (1 - {J) • 

The new variables u1 (x) and v1 (E) are defined by the transformations 

1 1 

(4.3a) 
(x+ 1)2 

A1 snu1 = 1 , 
(E -1)2 

A2 snv1 = 1 , 

(x-1)2 (E+ 1)2 

where snu= sn(u, k) is the Jacobi's elliptic function [11, 12]. The transformations (4.3) 
are not unique since the function sn is doubly periodic. To secure the single-valued trans
formations, the range of variability of u1 and v 1 is confined to the rectangles 

0 ~ Reu 1 ~ K, -K' ~ Imu1 ~ K', 

0 ~ Rev1 ~ K, -K' ~ lmv1 ~ K', 

where K = K(k) is the complete elliptic integral of the first kind for the modulus k, and 
K' = K(k'). Extending the real variable x to the entire complex plane z = x+ iy. it is 
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easily verified that the first condition of the set (4.3a) transforms the upper half-plane 
ofth~ variable z into the upper half of the rectangle mentioned before, Fig 2. Simultaneously, 
the line - oo < x < + oo is mapped onto the periphery of the rectangle (0, K, K +}k', jK'), 
its edges corresponding to the ends of the segments of L. And, similarly, the second con
dition (4.3a) generalized to the complex plane C = E+ifJ transforms the upper half-plane 

'...-------,K+J"K' jK'.-+-1-----13
-K+jK' jK 

0 -1 "K 0 +1 

-jK'L-------~K-jK1 -jK'''--..;...1-----_.oc_,K-jK' 
FIG. 2. 

of variable C into the interior of the rectangle (0, K, K-jK', - jK'), and the line - oo < 
< E < + oo into its periphery. The variable u1 is real-valued for x e [ -1, cc], and the 
variablev1 - forE e[p, 1]. 

Equally useful as uh v1 could also be the variables u2 (x) and v2 (E) defined by the 

relations 
1 1 

(4.3b) snu2 = -k--, snv1. = -k--. snu1 snv1 

Using the correspondence x-+ u2 and E-+ v2 shown in Fig. 2, we obtain 

(4.3c) 

The points at infinity of the variables x and E correspond, owing to Eqs. (4.3),. to the 
following values of u and v: 

1 1 
for X=± 00 snu1 = 1;" or snu2 ="I; 

and 

1 1 
for '= ± oo. snv1 ="I; or snv2 = 1;" 

The variable u2 is real-valued for x e [fJ, 1], while v2 -for E e [ -1, a]. 
Both transformations x +-+ u and E +-+ v are equivalent and in particular cases we should 

select the one which leads to simpler considerations or results. The range of variables u 
and v not only secures the uniqueness of the transformations ( 4.3) but also makes it possible 
to write the expression occurring in Eq. (3.8) in one form, valid for the entire range of 

variables x and E 

(4.4) 11
/ R2(x) = j, / 1-J.~ cnu1 _ j-. j 1-).~ snu2dnu 2 

t' R1(x) V 1-J.r snu1dnu1 - Jl 1-J.t cnu2 

6 Arch. Mech. Stos. 4/80 
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,/ R1(E) = _!_, / 1-At cnv1 = _!_, / I-Af snv2dnv2 
V R2(E) j Jl I -A~ snv1 dnv1 j V I -A~ cnv2 · 

Here sn, en and dn are the Jacobian elliptic functions for the modulus k = A1 A2 • 

The second equation determining the constants !J1 , !J2 is conveniently assumed as 
a linear combination of the expressions (3.9), 

Cl 

J rp(x)dx- ~ II(Af, k) J ~x)dx 
-1 . L . 

= e-ifllcx[Jl + ~ II(Af, k) (e-lm/1 -e-lo4)!J1 -
2! II(Af, k)e-tm!Jl 

with the notation 

g - •1(I -A 2) (I -A 2) - --;-=:::====:
2
==7.===:=:;:--

- y 1 2 - V (1-ei) {l + P> • 
and with 

K 

II(At, k) = f 1 :: 2 o - lsn u 

being the complete elliptic integral of the third kind. On using the relations 

2 
.. / Rt(~) ~-a = _ 2. cnv1 dnv1 

g V Rl(E) ~ + 1 '.) .fnf)l 

and 

; j V!:~=~ '~" = 24ll(At, k)- ~~~ ll(k
2
sn

2
v,,k)], 

-1 

we obtain, after·rearrangements, the equation 

/1 

( 4.5) iwD 1 J ~ cn:;;,~"1 ll( k2 sn2v1 , k) + gll(A t, k)] e-"'ld~ 
Cl 

+.01 [ ~ e- 1-+ gll(lt, k)(e_..,- e-""')] 

+iru.Q1 j [j cnv1 dnv1 11(k2 sn2v 1 , k) + gll(Af, k)] e-~eedE 
1 

snv1 · 

-D2gl1().f, k)e-im = -2 J cnv1 dnv1 II(k2sn2vb k)w(E)dE. 
L . snvt 

In. order to simplify the further transformations, the Jacobi's Z-function is introduced 
[11, 12]. If E r/( -1, a), then 

cnvtdn'Vt 11(k2sn2vh k) = K cnvtdn'Vt +KZ(vl) = KZ(v2)+j n2 • 
snv1 snv1 
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Both notations are equivalent. If E e( -1, a), the integral Il(k2m2v 1 , k) is singular and, 
considering its principal value, the constant term jn/2 should be subtracted from these 
expressions. On the basis of the definition of the Zeta function we have 

dZ(v) = dn2v __.; ~ 
dv K' 

here E = E(k) is the complete elliptic integral of the second kind. Taking into account 
the limiting values of the Z-function 

Z(O) = Z(K) = 0, Z(K+jK') = -i 2~, 
Eq. (4.5) may be integrated by parts. ne integral taken over the gap yields 

p 

iw J [i en";,~"' ll(k' sn2 v1 , k) + gll(Af, k)] e- io>ld~ 
at 

11 

= iw J PKZ(v2)- ~ + gll(Af, k)] d( e~=) 
• 

f1:a(IJ) 

= - ~ e-•--gll(At, k) (e_.., -e-'-)+jK J {dn2v2 - ;~-""dv,. 
f1:a(cx) 

Similar transformations of the second integral in Eq. (4.5) are slightly more complicated 
due to its infinite upper limit. The identity 

cnv1 dnv1 _ cnv1 _ k2 mv1 cnv1 
snv1 snv1 dnv1 · dnv1 

enables the first part of the integra·nd to be transformed to a form more suitable for calcu
lations. Taking into account the limits 

lim cnv1 dnv1 = -.!., 1imll(k2 m2vt, k) = Il(lj, k) 
E-+oo snv1 i E-+oo 

and 

we obtain 

CO 

iw f [j en";,:"• ll(k2 sn2 v1 , k)+gll(lt, k) ]e-'oofd~ 

= iW j [jK en";,~"' +jKZ(vJ+gll(lf, k)] e-..,td~ 
1 
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Returning back to the integration variable~' multiplying Eq. (4.5) by a constant factor 

- _!_ ... I l- ~~ and rearranging the terms, we arrive at the following form of the second 
K V 1-A.z 

equation determining the constants !J 1 , D 2: 

fJ fJ 

{ 
1 + p E e-Uoe J E- p e- 1

•E } 
(4.1b) -2- K f y'liij} dE- -· E-1 y'R(~) dE D, 

Cl Cl 

{ 
1 + P E foo e-t.e P- rt foo E + 1 e-U»E 

+ -2-K yR(E) dE--2- E-rt yR(E) dE 
1 1 

+iw[Joo (-.I Rt(E) -J)e-i•EdE+ e.-'-]}!J 
1 

V R2(E) JW ~ 

= ~ ... / : - ~! J cnv, dnvt ll(k2 .rn.zv,' k) w(E)dE. Jl - 2 L snv, 

Here y R(E) = y R(E + }0) is the limiting value of the function 
1 l 1 1 

yR(z) = (z+ 1)2 (z-1)1 (z-!X)2 (z-:P)i. 

Equations (4.1a) and (4.lb) tend at 6-+ 0 to the same form since 

I. 1 y' 1-.tf cnv1 dnv 1 n(k2 2 k) 1. }V R,(E) = y' 1+E 
1mK -1 12 .1..1.1 snf11 , = lDl R(~) 1 _~. /c .. l -A.z .f1JfJ1 cx .. fJ 2 , , 

If the function w(E) is represented by polynomials on all segments of L, the right-hand 
side integrals in Bqs. (4.1) may be evaluated analytically and written in terms of trans .. 
cendental functions (canonical forms of elliptic integrals). 

5. Preaare cllstribation oo the first segmeat (pro&le) 

The expression (3.4) determining the pressure distribution on the profile with a control 
surface may be transformed following the procedure used in the case of a profile without 
the gap, [9]. In order to simplify the integral occuring in the first expression of ( 4.3), it is 
convenient to consider the following linear combination of integrals: 

Jl Cl 

(S.I) I <p(x)dx- i J <p(x)dx-
2,!" [ U(u1 , Al, k)- i 11( A i, k)] I <p(x)dx 

-1 -1 L 

Jl =f. <p(x)dx- i e-"""D,- ~ f(u, Af, k)- i ll(Ai, k)] [e-"'D2 

http://rcin.org.pl



INFLUENCE OF HINGE UNE GAP ON AERODYNAMIC FORCES .... PART I 529 

(5.1) 
(cont.] 

Here 

-(e-iwP -e-'Q)(I).QJ) = ~ J A(ub vJw(E)dE 
L 

fJ 

+ i: .01 f {jA(u1 , v1)-2g[ II(u1 , lf, k)- i II(lf, k)]} e-1-tdE 
(X 

00 

+ i: .Q 2 J {jA(u., "•)-2g [n(u 1 , lf, k)- 'i II(lf, k) ]} e- .. ed~. 
1 

The functionii(u, A.2 , k) denotes the elliptic integral of the third kind defined by the formula 

u 

II(u, A_2, k) = J 1-::sn2v . 
0 

The function A(u, v) plays in the case considered the role of A 1(x, E) and A 2(x, E) in 
the classical case of a profile without the gap [9]. The fundamental properties of A (u, v) 
were derived and collected in the Appendix (published with Part 11 of the present paper). 
It can be used to perform the necessary integration by parts: 

i: f {jA(u1 , v1)- 2g [n(u1 , lf, k)- 'i II(.tt,k)]} d( e~= ) 
(X 

and 

On substituting these results in Eq. (5.1} and rearranging the terms, we obtain the simple 
relation 

X 

j. qJ(x)dx = ~ J A(u1 , v1)w(E)dE 
-1 L 
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"s(/J) "s(oo) 

+ ~ j [ .Q 1 J e-"'f ~~ A(u1 , v1)dv1 + .Q 2 J e-'-1 -~1 A( u., v1 )dv1]. 

Ds(cx) tls(l) 

The second and third integrals in ijq. (3.8) may be transformed by means of the formula 

... J R1(x) .. I R1 (E) ~ = 2 cnu1dnu1 dflt + .. I R2(x) .1..±_!_ dE 
J' R1 (.x) V R2 (E) E-x snu1 l-k2 Sn2UtSn 2v1 V R1(x) yR(E) 

to yield the required form of the expression determining the distribution of pressure 

(5.2) ( ) -~,I R2(.x) J-. I Rt(E) w(E) d+. 3_ J A*( ) (l:)dz: 
, .X - :n V Rt(.x) V Rl(E) E-.x J(J) :n fJ, u w 4!1 4!1 

L L 

00 

- 3_ cnutdnut ~ll(k2sn2ub k)J e-iwe d~]. 
g snut K 

1 
yR(E) 

In this formula the definition of the function A*( v, u) given · in the Appendix has been 
utilized. The first integral in Eq. (5.2) concerns the stationary solution, the second one 
is due to the apparent mas8. The term proportional to !J 1 expresses the effect of the wake 
in the gap between the profile and the control surface. The iast term is due to the action 
of the wake behind the trailing edge of the control surface. 

For IX·-+ {J the solution (5.2) is transformed to the classical solution for the profile 
without the gap. It is proved in the Appendix·that with k = 1 (i.e for IX = {J) 

A(u, v) = A1(x, E)=__!_ ln~l-xE+yf=Xl vf=Ell, 
2 1-xE-y'l-x2 yl-E 2 

and, simultaneously, 

-./ R2 (x) -./ Rt(E) = 

1
;1-x .. 1-l+E. 

V Rt(.x) V R2(E} 1 +.x V l-E 

The third term in Eq. (5.2) vanishes for IX-+ {1, while the fourth one tends to the limit 
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From each equation of the set (4.1) it follows that 

2 j' V!~~ w(~)d~ = iroD2[! (V~~: -'}e-•-<d~+ e;:] 
-1 1 

After eliminating the constant !J2 , the known solution is finally obtained: 

__ +I __ +1 
2 , I I - x J , I 1 + ~ w(~) . 2 J 

(5.3) y(x) = n V l+x V 1-~ E-x d~+uon At(X,~)w(~)d~ 
-lj -1 

_+IV_ 2 1-x 1+E 
- 3f [1-C(w)]-v l+x f I-~ w(~)d~, 

-1 

where 

HF>(ro) 
C{ro) = HF>(w)+iH~2>(co) 

is the Theodorsen function containing all the necessary information on the history of 
the motion. 

In the case of a finite gap (oc =F {J), the integrals in Eqs. (4.1) and (5.2) depending on 

the geometry of the system and on the frequency coefficient eo must be evaluated numer
ically since they could not be expressed in terms of known functions. These are the follow
ing four integrals taken over the gap: 

fJ {J 

f e-lwE f e-iwEdE 

It(w) =a yR(E) dE= -a y(I-Ez) (E-a) (p-E). ' 

(5.4) 

and the four integrals taken over the (infinite) wake behind the trailing edge of the oontrol 
surface 

(5.5) 
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(5.5) 
[cont.) 

00 

= f (-- /t(E+ I) (E-P) -I)e-iw'dE + e~iOI. 
1 

Jl (E-1) (E-«) zw 

The integrals (5.4) may easily be evaluated numerically by means of the Gauss - Jacobi 
quadratures. The method based on the interpolation formula by Everett (described in 
[13]) may be applied to the integrals (3.5). The square root singularity of the integrands 
forE--. 1 may be removed by using suitable linear combinations of integrals containing 
the Hankel functions~ 

In the case of the function w(E) represented by polynomials on each of the segments 
of the line L, all the remaining integrals occuring in Eq. (5.2) are expressible in terms 
of elementary functions and some other transcendental functions which are easily evaluated 
(canonical forms of elliptic integrals). 

Transformation ofEq. (5.2) to a form analogous to Eq. (5.3) by eliminating the constants 
!J1 , !J2 according to Eq. (4.1) is not purposeful since in the case of a profile with a gap 
there exist no functions depending exclusively on the frequency coefficient wand revealing 
similar properties as the Theodorsen function C( w ). 

6. Pressure distribution on the second segment (control· surface) 

Transformation of the second expression of Eq. (3.4) is based on the following com
bination of integrals: 

1 1 

J q>(x)dx- 'i J q>(x)dx- ~ [ll(u2 , ;.~, k)- 'i ll(.l.~. k)] J q>(x)dx 
~ p L 

1 

= J q>(x)dx- 'i (e-.. !.12 -e-""P.f.IJ- ~ [n(u2 , .l.~, k)- 'i ll(.l.L k)] 
~ 

2f· x [e-fm.Q2 :-(e-fa~P -e-lo4)!J1] =-;- A(u2, v2) w(E)dE 
L 

p 

+ i: !.11 J {jA(u 2 , v 2)- 2g [n(u 2, .l.L k)- ';; ll(.l.L k) ]k'""d~ 
Cl 
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CO 

+ i: .02 f {iA(u2 ,v2)-2g[ll(u2 , l~, k)- ~ ll(ltk)]}e- .. 'd'. 
1 

Performing the integration by parts and rearranging the terms, we obtain 

% 1 

!J1 e-iw/1+ J q>(x)dx = !J2 e-iw_ J q>(x)dx = ~ J A*(v, u)w(E)dE 
/1 % L 

f12(/1) f12( CO) 

+ !j[.Q, J e-<•f ~2 A(u2 ,v2)dv2 +.02 J .-.. E ~2 A(u 2 ,v2)dv2]. 

f12(1X) tll(l) 

Since dv2 = dv1 and, as shown in the Appendix, ~~. A(u2 ,v2) = _;!--A(u1 ,Vt), the 
vv2 u'Vl 

introduction of new variables u1 , v1 and comparison with the analogous relation for the 
first segment makes is possible to verify that the right-hand sides of the two relations 
are identical. Consequently, the forms of expressions defining r(x) must also be identical 
what proves that Eq. (5.2) determines the distributions of pressures on both segments, 
that is for arbitrary values of x E L. 
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