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Influence of binge line gap on aerodynamic forces acting 
on a harmonically oscillating thin profile in an incompressible flow 
Part n 

S. FILIPKOWSKI and M. NOWAK (WARSZAWA) 

BY APPLYING the method of strongly singular integral equations, the solution of the Birnbaum
Possio equations is derived for a system of two profiles (profile with a control surface) lying 
on one straight line parallel to the direction of flow at infinity. The solutions are then transformed 
to a form in which the pressure distributions and ... aerodynamical coefficients may explicitly 
be expressed in terms of the elementary functions and canonical forms of elliptic integrals. 
Only some of the integrals (concerning the ~ake in the gap and behind the profile) require 
numerical calculations. The influence of the size of the gap on the pressure distributions and 
aerodynamical coefficients (with various values of the frequency coefficient) is illustrated by 
graphs. , 

Posluguj(lc si~ metodami r6wna6 calkowych silnie-osobliwych, otrzymano rozwi~nie r6w
nania Birnbauma-Possio dla ukladu dw6ch profili (profilu ze sterem) lei:clcych na jednej prostej, 
r6wnoleglej do kierunku przeplywu w nieskonczonosci. Nast~pnie przeksztalcono je do postaci, 
w kt6rej rozklady cisnien i wsp61czyn_niki aerodynamiczne daj(l si~ wyrazic jawnie za pomoe(l 
funkcji elementarnych i kanonicznych postaci calek eliptycznych. Tylko nieliczne calki (doty
CZ(lce sladu wirowego w szczelinie i za profilem) wymagaj(l obliczen numerycznych. Wplyw 
wielkosci szczeliny na rozklady ciSnien i wsp6lczynniki aerodynamiczne (dla r6:inych warto5ci 
wsp6lczynnika ~to5ci) zilustrowano wykresami. 

floCJiy>KHB!UICL MeTO.D;aMH IIHTerpll11&HbiX CHJILHO CmrryJUipHbiX ypaBHCHHH, IIOJI}"ICHO pe
lliCHHe ypaBHeHHSI EupH6ayMa-Tioccuo .D;JI.R: CHCTeMhi .n;Byx npo<l>HJieH: (npo<l>HJI.R: c pyneM) 
JIC>KaiUHX Ha O.n;HOH np.R:MOH, napaJIJICJILHOH HanpaBJieHHIO TelleHH.R: B 6eCKOHeliHOCTH. 3aTeM 
npeo6pll30B8HO OHO K BH.n;y, B KOTOpOM pacnpe.n;eJieHHSI .n;aBJICHHH H 83pO.n;HHaMHtlecKHe K034>
<i>HtmeHTbi MO>KHO .R:BHbiM o6pa30M Bblpll3HT:b npH IIOMO~H 3JICMeHT8pHbiX <i>YJ~K~mit H KSHo
HHqeCKHX BH.D;OB 3JIJIHIITH"QeCKHX HHTerpSJIOB. TOJibKO HCMHOrHe mrrerp8.11b1 (KaC&IO~ec.R:: 
BHXpeaoro cne.n;a B ~eJIH H 38 npo<t>HJieM) rpe6YJOT "tiHCJieHHbiX pacqeroB. BJIHRHHe BeJIHt:lHHhl 
IUeJIH Ha pacnpe.n;eneHH.R: .n;aBJieHHit H aapo.n;HHaMHtlecKHe Ko34><l>HtmeHTbi (.n;n.R: paaHbiX 
3HaqeHHH K034>4>HUHeHTa l:ISCTOTbl) HJIJIIOCTpHpOBaHO rpa<i>HKSMH. 

7. Evaluation of aerodynamic forces on a profile with a control surface 

IT HAS ALREADY been mentioned before that if the boundary conditions (that is the functions 
w(x)/U) may be described by polynomials along each of the segments, then there exists 
a simple method of calculation of the integrals appearing in Eqs. (5.2). In order to comply 
with the notations generally used [9], the parameters IX and {J determining the gap will 
now be replaced with e = {J and ~ = {J- IX. In further considerations the fundamental 
role will be played by a sequence of constants (elliptic integrals) 

(7.1) U" = _!__ J (x-e)" dx &- 0 1 2 .. ! 10r n = , , , ... 
J c f R(x) 
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satisfying the recurrence condition 

2n+3 ( ~) n+1 
(7.2) U,.+ 3 = - n+ 2 e+ T U,.+2+ n+ 2 [1-e(e+2~)]U.+ 1 

2n + 1 !_ (I - 2) U 
+ n+2 2 e '" 

which may be derived by the method described for example, in [14]. The integration 
contour C in Eq. (7.~) is either the complete line L or the segment (e, 1). In the first case 
the constants (7.1) are denoted by U~, and in the second case- by u;'. The recurrence 
formulae (7.2) are identical in both cases but differ by the first terms of the sequences. 
Direct calculation yields 

u~ = o, 
(7.3) u~ = -n, 

u;; = -gK, 

U~' = (1 +e)gK -2gll(l~, k), 

U'; = -eU~ -2£_+~gll(l~, k). 
g 

The sequences of the constants U~ and U~' form the basis for the definition of the additional 
sequences V~, V~~ and W~, W~': 

VII= ull+l +(1 +e)UII 
(7.4) for n = 0, 1, 2, .... 

W,. = u,+1 -(1-e)UII 

The first two integrals appearing in Eq. (5.2) may be (with w(x)/U = (x- e)•) expressed, 
after lengthy transformations, in terms of U11 and V,., 

a-1 

= [2U0(1)2(x)- V0(1)1(x)] (x-e)•- 2 v,._.,(x-e)'"(Pl (x) 
maO 

and 

J A*( v, u) (~- e)"dE = n! 
1 

{ [2U 0 412 (x)- V0 411 (x)](x-e)o+l 

11-1 

- 2U.u 412(x)-2 V.-.(x -•)'"+1411 (x)}, 
111=0 

where 

(7.5) (!) x _ ...!__-. /R2 (x) _-. /1-x(1 __ ~ ) 
1( ) - j V R1 (x) - V 1 +x x -e 

and 

(7.6) 
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Equations (4.1) yield in the present case the set of equations 

im14 (m)D1 +imJ4 (m)D2 = A,., 
(7.5) 

where 

and 

B - 2 J [ ... jf=If cnv .. dnfJ, _!_Il(k2 2 k)- .... / R, (E) ]<1:.- )"..~I: • - V r=Jf SllfJ, . K sn 'Vt' J V R2(E) ~ e u~ 
c 

537 

_l+e~ 2 (w. 2n+11+ew.) (1 ) U,.+t._.!. 
- 2 g •+t+n+l 2 .+ +e n+l K• 

Once the coefficients A., B,. are found, Eqs. (7.7) may be used to determine !11, !12 
and the pressure distribution 

(7.8) 
(!Ul 

lip(x) = -
2
-J.(x), 

where 

(7.9) J.(x) = ~- (I+ n': I) [2U04l1(x)- V0 4l1(x)](x-e)• 

- ; {V.- 1
; [I.(ro)D1 +J1(w)D1] 

n-l 

+ 2 ( V.-• + nl: 1 V.-•+,) (x- e)• + ni: 1 (x- e)" V, }411 (x) 
m•l 

+ ; ln! 1 u ... +l1(w)D1 +J1(w)D1 ]~1(x). 
If the boundary condition w(x)fU = (x-e)" is prescribed along the entire line L, then 

the sequence of constants U~ (n = 0, I, ... , n+ 1) should be substituted into the above 
expression (to be denoted later by /;(x)), while if it applies only to the second segment (at 
the first segment w(x) = 0), then the corresponding function f~' (x) will be obtained from 
thesequence u;'(n = 0, 1, ... ,n+l). 

Determination of the generalized forces on the profile is simple since the necessary 
integrals are easily expressed in terms of the elements of the sequence U,. and W,., and 
namely 

(7.10) 

J (x-e)"'fP1(x)dx = W,.+ 1 +~W,., 
c 

f( )ffC(/) ( )d l+e ( 2m+l ~ ) u,+l 1 ~ 
c x-e 1 x x = -2- Wm+t + m+ 1 2 W,. + m+ 1 g2 K . 
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The method of notation of the results used here enables us to pass directly to the limit 
t) --. 0. The recurrence formula (7 .2) red1;1ces after substitu~ion d = 0 to a formula relating 
three consecutive terms of the sequence. The initial elements are (with c) = 0) 

u~ = o, u;; = oo, 

U~ = -n, U~' = -arccose, 

U~ = e~, U~ = earccose- y1-e2
• 

It is seen that only the constant U~' is unbounded for ~--. 0; however, it occurs only 
in a linear combination with V~' and 

1 ~1-xe+ y'I-x
2 

,yl-e
2 

1· ~-x Iim[2U;{~2(x)- V~'~1 (x)) = -
2 

ln + --arccose. 
1 ... 0 l-xe-}"t-x2 y'J-el .1 +x · 

In addition, 

-v
l-x · . I +e -v1-x 

lim~1 (x)= -
1
+ and bm~l(x)=-2- -

1
-. 

~ ... o x ~ ... o +x 

Thus Eqs. (7.7) and (7.9) may be directly applied to arbitrarily smallgaps ~.If the boundary 
condition w(x)/U = ·P,(x) is prescribed in the form of an arbitrary polynomial of order n, 

11 

it may be written as P,.(x) = 2 a,.(x- e)"' and the pressure distribution is the linear 
m-=0 

combination 
11 

U2 
L1p(x) = ~ 2 a,.j,.(x) . 

..... o 

8. Degrees of freedom qd generalized forces 

If the profile and the control surface form rigid segments, the displacement of the 
system may be described by means of four generalized coordinates shown in Fig. 3. The 
coordinates h(t) and z(t) correspond to translations of the profile and the control surface, 
respectively while oc(t) is the rotation of that system about the axis placed at the point 
with the coordinate a, and {J(t) denotes the rotation· of the control surface about its nose. 

-1 e-tS -1 e-6-<t> 
FIG. 3. 
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For an arbitrary motion of a profile with a control surface, the definition of generalized 
coordinates leads to the following formulation of the boundary condition: 

w(Ux) = iw hb + (l +iro(x-a)]«+ (.

0 

z [I . ( )]p for 
1w b + +•w x -e 

-1 < x < e-6, 

e<x<+l. 

Here h, ex, t, p are the (complex) amplitudes of the generalized coordinates. 
The elementary pressure distributions corresponding to unit generalized coordinates 

are the following: 

Ap11(x) = e~
2 

iwf~(x), 

Apcx(x) = e~
2 

{[1 +iro(e-a)]/~(x)+irofi(x)}, 

Aps(X) = e~
2 

iwj;;(x), 

App(x) = e~
2 

U~'(x)+ic.of~')x)], 

the functions f~, J;;, f~, f~' being found from Eq. (7.9). The pressure distribution in an 
arbitrary motion of the profile is obtained by superposing the elementary distributions 

h z 
Ap(x) = Ap11(x)b+Llp11(x)ct+Aps(x)b+App(x)p. 

Each generalized coordinate corresponds to a suitable generalized force, and namely, 
in the case of the coordinates h and z these are the resultant forces L and P acting on the 
profile with a control surface and · the control itself, respectively, while the generalized 
forces M and T correspond to the coordinates and represent the respective couples. Hence 
we may write 

L = b f Ap(x)dx = e~• b(.z.. : +L.«+L. ~ H,P). 
L 

1 

P = b f Ap(x)dx = e~• b(P• : +P.oc+P. : +P,p), 
e . 

1 . 

T = b' J (x -e)L1p(x)dx = e~• b2 
( r. : + r. «+ r. ~ + r, 11). 

e . 

The sixteen aerodynamical coefficients L,., Lra, ... , T (being functions of the frequency 
coefficient ro and of the geometry of the system) are evaluated, by means of Eqs. (7.10), 
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in closed forms. The known solutions for a stationary flow and the Q.ttached mass coef
ficients [5] constitute particular cases of the general solution given here, and they may be 
obtained by disregarding all but the first (or second) terms in the expression (5.2) and by 
·suitable simplification of the expression (7.9). 

9. Examples of numerical calculations 

To illustrate the effect of a gap on the pressure distributions and the magnitudes of 
aerodynamical coefficients, the results of calculations concerning a profile with a 40% 
control surface (e = 0.2) are shown in Figs. 4-9 for various values of the frequency 
coefficients w and various gaps ~. The graphs illustrate the distributions of the pressure 
coefficient jump on the profile, that is of the parameter 

LJp 
c~ = euz 

-2-

for various modes of motion (degrees of freedom). In the upper parts of the graphs the 

5 
Imcp 
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&zO ~ ~ 
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FIG. 4. 
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distributions of the real part (Rec,) are given, that is of tbe component with phase comply
ing with the variation of the corresponding generalized coordinate. Lower parts of the 
graphs refer to the imaginary part distributions (lmc,) of the pressure coefficient jump, 
i.e. to the component with the shift n/2. Figures 4 and 5 are concerned with the same 
degree of freedom (displacement of the control surface) but with different frequency coef
ficients (w = 0.5 or :::; 1.0). The real part distribution c, depends in this case only slightly 
on the changes of the frequency coefficient and has a form similar to that corresponding 
to the stationary case [4]. The imaginary part (Imc,) which in the stationary case equals 
zero, increases with the · increasing frequency coefficient, the effect of the gap being man
ifested by a distribution discontinuity. ·Figures 6 and 7 illustrate the effect of the gap 
in the case when the profile moves with an undisplaced control surface. If <5 = 0, all the 
distributions (beyond the leading edge) are continuous but (even for an arbitrarily small 
gap) a singularity in the c,-distribution appears at the nose of the· control surface, and 
the pressure difference (Kutta-Joukovski condition) vanishes at the boundary of the gap. 

Consequently, the changes in the pressure difference at the profile affects the values 
of the aerodynamical coefficients which characterize the corresponding generalized forces. 
In Figs. 8 and 9 we can see examples of the inftuence of the gap on the values of certain 

,. 
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544 S. FILIPICOWSKI AND M. NOWAK 

aerodynamical coefficients. Separately shown are: (upper parts of the graphs) variation 
of the modulus of the ratio of the given coefficient to its value at d = 0, and (lower parts) 
variation of the argument denoting the phase shift produced by the gap. 

Appendix. Properties of the function A(u, v) 

The function A(u, v) is defined by the formula 

cnvdnv [ u ] (A.l) A(u, v) = -2 snv II(u, k2sn2v, k)- KII(k2sn2v, k) . 

Simple transformations make it possible to write it in the form 

Using known (cf. [12]) relations, each of the integrals in Eq. (A.2) may be expressed in 

terms QJ the Theta and Zeta Jacobi functipns. Z(v) = ~~~ 

Ifu = K, then 

Substituting these relations into Eq. (A.2), we obtain ·a particularly simple expression 

(A.3a) O(u+v) 
A(u, v) =In O(u -v) , 

which holds true for arbitrary u and v with the only important reservation that both in
tegrals in Eq. (A.2) should be non-sibgular. Theta functions being even, it follows that 
A(u, v) := A(v, u). Equation (A.3a) may also be used to obtain the limiting values of 
A(u, v) at the points v corresponding to the ends of the line L since 

A(u, 0) = A(u, K) ·= 0, 

(A.4a) 

A(u,jK') = jn ( 1- ~), A(u, -jK') = -jn( 1- ~ )· 

A(u, K+jK') = -jn ~, A(u, K-jK') = jn-~. 

If at least one of the integration contours in Eq. (A.2) contains such a point Po that 
1-k2 sn2v sn2 p0 = 0, then the corresponding integral (or both) should .be interpreted in 
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the sense of the Cauchy principal value. From the condition sn2p0 = 1/k2sn2v it follows 
that flo = v+ jK'. Taking now into account the range of variability of the arguments 
of the function A(u, v) shown in Fig. 2, we can find out that this result is true only i~ one 
of the arguments of A(u: v) is real and the other one belongs to one of the segments 

. , v-jK'e(O,u) K+:J"K' 
jK . I 

U+jK 

u 
0 t------c~>-----t K 

U-J'K' 
- "K' K-jK' 
J v<~-jK'e(O,u) 

FIG. 10. 

(jK', K+ jK') or ( -jK', K- jK'). From the correspondence of the variables x-+ u, ~-:-+ v, 
it follows that the variables x and ~belong then to the same segment of the line L; in 
such a case the relations (A.3a) and (A.4a) cease to hold true. 

In order to investigate the case of singular integrals, let us assume the variable u to 
be real-valued (lmu = 0) and 0 < u < K (Fig. 10). Due to the definition of the principal 
value of improper integrals, we obtain 

v±jK' e (O,u), 

when 
v±jK' tt (O,u). 

The sign of the additional term results from the condition of single-valuedness of the 
function ln[O(u-v)/O(u+v)] within the rectangle with corners at jK', K+ jK', K-jK', 
- jK'. Similarly, 

K l=tj ~ . v±jK' e (0, K), 

f k
2
snvcnvdnvsn

2
p, d = KZ(v)+ when 

1-k2sn2vsn2p, ft 
o ·· 0 v±jK' ~ (0, K). 

These expressions enable us to generalize the relation (A.3a) to the case of singular in
tegrals (under the assumption that lmu = 0) 

r ±jn(t-;) v±jK' e (0, u), 

(A.3b) O(u +v) I . u 
A(u,v) =In O(u-v) + ±1: K when v±jK' e (u, K), 

in remaining cases, 
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and to determine the limiting values 

lim A(u, v) = lim A(u, v) = 0 
o-+}K' o-+K+}K' 

(A.4b) 
lim A(u, v) = lim A(u, v) = 0 

v-+-)K' o-+K-JK' 

when v e UK', K+jK'), 

when v e ( -jK', K -jK'). 

The expressions (A.4) should be interpreted in such a way that if x EL, then the left
and right-hand limits for E approaching the ends of this segment of L to which x belongs 
differ from each other, the ,interior" limits being given by Eq. (A.4b), and the ,exterior" 
ones by Eq. (A.4a). 

For the variables u2 = Ut-jK' and v2 = Vt + jK', the following relation holds true: 

1 
8(ut +vt) _ 

1 
8(u2 +v2) 

n 8(ut -v1) - n 8(uz -Vz + 2jK') 

The sign of the last term should be opposite to the sign of Re(u-v). Using this relation 
and the formula (A.3b) we directly obtain 

(A.S) 
{
A(vz,u2) lm(ut -vt) = K', 

A( ut' Vt) = A(vJ 'uJ when Im(ut -vt) :F K', 

{
A(vt, Ut) 

A(u2, Vz) = A( ) when v2,Uz 

Im(v2 -u2) = K', 

lm(v2 -uz) :F K'. 

From the definition (A.l) of A(u, v) it follows that 

(A.6) a - cnvdnv [ 1 l 2 2 ] -a A(u, f1)- -2 1 k2 2 2 - K ll(k sn "' k) . u snv - sn usn v 

This expression may also be used in calculating the derivative oA(u, f1)/iJfJ under simul
taneous application of the formula (A.S). In particular, if x e L, then 

ll(k2sn2ult k)+ll(k2sn2u2 , k) = K 
and so 

(A.7) a - cnu t dnu t [ 1 . l 2 2 ] 
~. A(vt,uJ- -2 . 1 k2 2 2 - Kll(k sn u1 ,k) 
uvt snut - sn Ut sn f11 

- a A( ) - 2 cnu2dnu2 [ l l TT(k2 2 k2] - ~. V2,u2--
1 

k2 2 2 -K,1.1.1 snu2 , , 
uv2 snu2 - sn u2 sn f12 

independently of the assignation of E to any of the segments. 
With the notation 

« l 

(A. Sa) J A*(v,u)w(E)dE = J A(vz,u2)w(E)dE+ J A(vt,Ut)w(E)dE, 
L -l fJ 

true for any x e L, Eq. (A.S) may be used to obtain 

J A(uttv1)w(E)dE x ~ [-1, ex], 

(A.Sb) J A*(v, u)w(E)dE = L for 
L J A.(u2, V2)w(E)d~ X E [p, 1]. 

L 
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The function A(u, v) is defined by Eq. (A.l) for arbitrary values of 0 ~ k ~ 1. Of 
particular importance is the limiting case for k-+ 1 corresponding to a profile without 
the gap (~ = 0). On the basis of the known relations [11] concerning the limiting values 
of elliptic integrals, it may be written as 

lim ll(u, k2sn2v, k) = lim [-1
-2 - (u-

2
1 

snuln! + snusnv )] .. 
k-+1 k-+1 en v .-snusnv 

If the integral ll(u, k 2sn2v, k) is singular, its principal value should be evaluated by con
sidering the absolute value of the expression under the logarithm sign. In the particular 
case of u -+ K, 

Taking into accountthe additional property of dm; -+ cnv, we derive, by means ofEq. (A.l), 
a relation suitable for calculating the limits: 

(A.9) 1. A( ) 1. 1 1 + snusnv tm u,v = tm n . 
k-+1 k-+1 1-snusnv 

In the case of the singular function ll(u, k2sn2v, k), the absolute value of the expression 
under the logarithm sign should be taken in the formula (A.9). From the definition (A.3) 
it follows that 

1 1 

1 (x+1)2 {E-1)2 

snu1 snv1 = K ! . ! 
(x-1)2 (E+ 1)2 

and 
1 1 

1 (x-1)2 (E+1)2 

. snu2 snv2 = K ! ! . 
(x+1)2 (E-1)2 

with k = 1 and x, E e L we then obtain 

11+x, /1-E 
snu1 snv1 = v l-x V 1 +E and 

and so 

A( A( ) 1 1 ~1-xE+ y1-x2 J!'t-E2 I= A.(x, ~). ut ' v 1) = ~ J. u 2' v 2 = -2 n ~ 
1-xE- yl-x2 yl--E2 

With k = 1 and x e L, E ~ L we obtain, however, 

1 ,. /l+x .. /H ... /1-X,. j[t[ 
snu1snv1 =TV l-x V E+ 1 and snu2snv2=Jv 1+x Jl E-1 ' 

where 

http://rcin.org.pl



548 S. FILIPKOWSKI AND M. NOWAK 

and 

A(u2 , v2) = j[A 2(x, ~)+n]. 

The functions A 1(x, ~)and A 2 (x, ~)appear in the known method of solution of the 
Bimbaum equation [9]. From the derived properties it follows that A(u, v) combines 
the roles of both functions, even in the more general case of a profile with a gap. 
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