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Decomposition of non-stationary crack into discontinuity waves 

Z. WESOLOWSKI (WARSZAWA) 

THE IDEA that each elementary fracture produces a discontinuity wave was introduced and 
exposed in [1]. It was shown that in stationary case this idea leads to the already known 
formulae. In the present paper the non-stationary case is considered. It is shown that the 
method aHows to consider cracks in finite regions. The procedure follows closely to that given 
by EsHELBY in (2). 

Rozwai:anie ogranicza si~ do antyplaskiego stanu odksztalcenia. Zaklada sice, i:e kaZde ele
mentarne ~kni~ie powoduje powstanie fali niecillglosci. Fale te nakladajll sice na siebie dajllc 
calkowite przemieszczenie. Odpowiednie rozwai:ania dla przypadku stacjonarnego podano 
w [1]. W niniejszej pracy pokazuje sice, i:e r6wniez w przypadku niestacjonamym otrzymuje 
sice wla.Sciwe rezultaty. 

Paccy~eHWI OrpamttnlBaroTCH aHTHIIJIOCIUtM ,ll;e4JopM~OHHbiM COCTOHJ~~teM. I1pe,ll;IIOJI8-
raeTCH, tn'O KaH<,ll;aH :meMeHTapHaH Tpe~mia Bbi3bmaeT B03mu<HOBeHile BOJIHbi paapbma. 
3rn BOJIHbi H3KJia,ll;bmaroTCH ,ll;pyr Ha ,ll;pyra, ,IJ;aaan nomme nepeM~eHHe. Coo1'BeTCTBYIOIIUle 
paccy~eHWI AJU1 CT~OHapHOro CJiyqaH npJtBe,ll;eHbi B (1]. B HaCTO~eH pa6oTe OKa3biBaeTCH, 
tn'O TO>Ke B HeCT~I{OHapHOM CJiyqae llOJiyqaiOTCH npaBWII>Hbie pe3yJihTaTbi. 

1. Elementary wave 

CoNSIDER the propagation of a plane crack into a linear isotropic elastic medium. In 
the fixed Cartesian coordinate system (x, y, z), the crack occupies the half-plane, Fig. 1 

(1.1) X < rJ(I), y = 0, 

where fJ is a function of time t. 

y 

X 

FIG. 1. 
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The speed of the crack tip is 

(1.2) 

where a dot denotes the time derivative. 
The function inverse to 'Y](t) will be denoted by x(x), i.e. 

(1.3) t = x(x), X(fJ(t)) = t. 

Z. WESOtOWSKI 

Let us confine ourselves to the case for which the displacement vector is parallel to 
the z-axis and does not depend on z. Denoting the corresponding component by u we 
have 

(1.4) 

(1.5) 

u = u(x, y, t), 

1 
u xx+u V"= -2 U tt' 

• • .T c . 

c2 = p,/(!, 

where p, and e are the shear modulus and density of mass, respectively, and c is the pro
pagation speed of transverse waves. 

Further calculations are based on the following assumption: Each elementary fracture 
at (s, 0) of the length ds produces a discontinuity wave centered at x = s, y = 0. This 
wave starts at the instant x(s). Due to the isotropy of the material, its front is a cylinder 
of a radius c(t- x(s)). 

In order to find the displacement du of the elementary wave, we write the equation 
of motion (1.5) in the cylindrical coordinate system (r, 1J, z) (cf. Fig. I) 

I I 1 
(du) ,+ -(du) r+ -2(du) IHJ = -2 (du) rt• 

' r ' r · c · 

It has a solution 

(1.6) du = ;-,f!r-c(t-x(s))]sinD/2, 

where f is an arbitrary function and B a constant. Further, we shall prove that the special 
case of Eq. (1.6}, namely · 

(1.7) {

Bds 
yrsin0/2 

du= 
0 

for 

for 

r ~ c(t-x(s)), 

r > c(t-x(s)), 

is the discontinuity wave produced by elementary fracture of the length ds. Figure 2 
(courtesy of dr. J. F. Kalthoff, Freiburg) provides experimental evidence of elementary 
waves in steel. For details concerning experimental technique see for example [3]. 

In Cartesian coordinates Eq. (1.7) reads 

{
h(x,y, s)ds for r ~ c(t-x(s)), 

(1.8) du = 
0 for r > c(t-x(s)), 

(1.9) h B
. VJI'<x-s) 2 +y2 -(x-s) = stgny - . 

y(x-s)2+y2 

http://rcin.org.pl



DECOMPOSITION OF NON-STATIONARY CRACK 1:1'<10 DISCONTINUITY WAVES 263 

FIG. 2. 

Equation (1.7) and Eq. (1.8) equivalent to it are the basic solutions for crack propaga
tion in anti-plane strain. The quantity 

a 
(1.10) (du),y = oy du 

is proportional to the stress dryz· For y = 0 

(1.11) 

2. Total displacement 

du = 0 for 

(du),y = 0 for 

x-s > 0, 

x-s < 0. 

All the elementary waves add together and result in the total displacement. The 
displacement due to the fracture from x = a to x = 1)(t) is 

(2.1) 

f}(t) 

u(x,y,t)=J du(x,y,t,s). 
a 

Let us confine the calculations to the subsonic crack 

(2.2) 0 ~~<c. 
In this case the wave fronts of the elementary waves produced at points s1 , s2 , s3 , ... do 
not intersect each other and have the shape given in Fig. 3. It is seen that the waves 
produced near (1J{t), 0) do not contribute to u(x, y, t). Denoting by s the point where 
the latest wave contributing to u was produced, we have 

(2.3) 
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y 

X 

FIG. 3. 

Once the function x(s) is given, this equation may be solved for s(x, y, t). If x(s) is 
continuous, s is continuous, too. Note that for y = 0 there is 

x < s < 'Y}(t) for x < 'Y}(t); 

s < 'Y}(t) for x > 'Y}(t). 
(2.4) 

The inequalities follow either from Eq. (2.2) or directly from Fig. 2 (the wave fronts 
do not intersect each other). 

The formula (2.1) in accordance with Eq. (1.8) may be replaced by 
s(xyt) 

(2.5) u(x,y,t)= J h(x,y,t,s)ds, 
a 

(2.6) h B() 
V y(x-s)2 +y2 -(x-s) . = s ,- s1gny. 

J!'2 Jl(x-s) 2 +y2 

We pass to the proof that u as given by Eq. (2.5) satisfies the equation of motion 
(1.5). For the special case s = const, Eq. (1.5) is satisfied automatically because the 
integrand of Eq. (2.5) satisfies Eq. (1.5). For s = s(xyt) we proceed as follows. In ac
cordance with Eq. (2.5), 

-
s 

u,xx = J h,xxds+2h,xs,x+hs,xJo 
a 

-
s 

(2.7) u.n = J h,yyds+2h.i;,.,+hs,.,.,, 
a 

-
s 

u,rr = J h,uds+2h,,s,,+hs,,, 
a 
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-

1 s ( 1 ) (2.8) U,xx+U,n- e2 U,tt =! h,xx+h, 7 .,-Clh,tt ds 

+2(h •• S •• +h,,S,,- :2 h,,s,,) +h((s ... +S,.,- !2s ... ). 

The first term on the right hand side equals zero because h satisfies Eq. (1.5). In order 
to calculate the remaining terms differentiate Eq. (2.3) in turn with respect to x, y and t 
to obtain 

_ x-s 
s = -----,x x-s-x'er ' 

(2.9) - y s - ---=--~ 
·'~- x-s-x'er ' 

s " = - er ' r = Jl(x- S). 2 + y2. 
·- x-s-x'er 

From Eq. (1.3) it follows r.,'~ = I. Therefore the denominator in Eq. (2.9) may be written 
in the form 

Q = r[ x~s- ~ l 
It follows from Eq. (2.2) that it equals zero only for r = 0. 

Further differentiation of Eq. (2.9) gives 

s ... = ~2 l-x'cr+x'c(x~S)
2 

+S .• [x'cr-x'c(x~S)' +x"c(x-S)r]}. 

(2 10) _ 1 {< _) , (x-s) 2 
_ [ , y(x-s) , ]\ . s,.,7 = Q2 x-s -x e--,-+s,7 y-x e--r-+x er , 

_ 1 { [ (x -s)
2 

, 2 ]\ s,rt = Q2 s,t e--,- -er+ X e r . 

Taking into account the above relations and Eq. (1.8), we obtain 

(2.11) 

2(h _ h _ 1 h _ ) y'r-(x-s) 
,xS,x+ ,yS,y-~ ,tS,t = - rQ ' 

(
- _ 1 _ ). y r- ( x-s) 

h S,xx+s . .,.,-C2s,tt = rQ 

and, in accordance with Eq. (2.8), 

(2.12) 
1 

U xx+U .... --2 U tt = 0. . ,, e . 

This proves that u as calculated from Eq. (2.1) satisfies the equations of motion. 

7 Arch . Mech. Stos. nr 2/80 
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3. Stationary motion in infinite medium 

Consider first stationary motion. The crack tip moves with constant speed p < c. 
The amplitude B does not change in time and the function x(s) assumes the special form 

(3.1) 
s 

x(s) = -. 
p 

Equation (2.3) may be solved to give 

(3.2) 

The integration in Eq. (2.5) is elementary and leads to the expression 

(3.3) u = By2signyyy(x-s)2+y2 -(x-s)/~oo· 
The lower integration limit does not influence the function u. The upper limit, in accord 
with Eq. (3.2), gives 

(3.4) u = cy2signyyy(x-pt)2+(I-p2/c2)y2-(x-pt), 

where 

(3.5) 
B 

C = y'I+pfc · 

The stresses T.u and T1z are proportional to the derivatives"·" and u,1 • Differentiating 
u as given by Eq. (3.4), we obtain 

(3.6) 

(3.7) 
2 V (x-pt)2+(l-p2fc2)y2' 

,uy(I-p2 fc2) 
T 7Z = -=-~;::::::::::=::::;=:==:=::====:=:;:==.:- • 

2uy(x-pt)2+(I-p2fc2)y2 

Note that the displacement jump [ u] on the crack x < pt, y = 0 and the stress -r,s 
in front of the crack tip x > pt, y = 0 are 

(3.8) 
"tyz = Cyi-p2/C2 / yd, 

[u] = 2Cyd, 

where d is the distance from the crack tip. In each case, when the displacement jump 
and stress T1z satisfy (even locally) Eq. (3.8), the coefficient C will be called the crack 
strength. 

Let us pass to the calculation of the crack speed p. Consider the strip shown in Fig. 4. 
The work done by the external forces in time ~~ equals (stress -+ 0 for lxl -+ oo) 

(3.9) L = lim 2 J dx(,u ~") (~u ~~)I = Clpn,u~ty'l-p2fc2, 
h-+0 -oo uy ut y=h 

http://rcin.org.pl



DECOMPOSmON OF NON-STATIONARY CRACK INTO DISCON11NUITY WAVES 267 

X 

FIG. 4. 

is used to produce a crack of length plJt. If 'Y denotes the energy necessary to produce 
a unit area of crack, the energy needed in dt equals ypdt. The balance equation leads 
to the formula for the propagation speed 

p2 ')'2 
-=1---c2 n2p.2C . (3.10) 

The propagation speed increases if the crack strength increases. The maximum pro
pagation speed equals the sound speed c and corresponds to infinite crack strength. 
There exists minimum crack strength setting the crack in motion, namely 

(3.11) c,.,,. = .. I". V np. 

To the static case there corresponds p = 0. Denoting the displacement by u0 , in 
accord with Eqs. (3.4) and (3. 7), we have (for the crack tip situated at x = 0) 

(3.12) 

(3.13) 

Uo = C0 Jl2signyyyx 2+y2 -x, 

for x < 0, y = 0, 

for x > 0, y = 0. 

The full expressions for Txz and T1:z: may be obtained form Eqs. (3.6) and (3.7) by setting 
t = 0. 

4. Approximate theory of the crack motion in finite regions 

Due to the time changes of the boundary conditions and the reflections of waves 
produced by fracture, the crack speed p is a function of time t, p = p(t). In order to 
find an approximate solution, assume that p(t) is a piecewise constant function of time. 
Denote by s1 , s2 , ... , s,. ... fixed points on the x-axis, and by t1 , t2, ... , t,., ... the instants 
at which the crack tip is situated at s1 , s2 , ... , s,., .... Assume 

(4.1) 

7• 
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(4.2) 10 = 0 < 11 < 12 < ... < 111 _ 1 < 1,; < ... , 

(4.3) 

Denote by Um the actual displacement field at tm and by Um the additional displace
ment due to the fracture from Sm- 1 to sm. In accordance with Eq. (2.5), 

(4.4) f-;,.dsB'" . V y(x-s)2+y2-(x-s) ; 
"'" = -stgny ' ,,._, y'2 y(x-s)2+y2 

where Bm is a constant. Integration of Eq. (4.4) leads to 

(4.5) 

The latest wave contributing to u, is centered at s,.. The algebraic equation for sm 

(4.6) 

X 

FIG. 5. 
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(cf. Eqs. (2.3) and (3.2)) has the solution 

(4.7) 
p2 [ c2 

-~ (X-Sm-1)--(t-tm-J 
C -pm Pm 

+ Pc• V [(x-sm_ 1)-p(t-t._1)]
2+( 1-~;) y 2

]. 

Ifsm as calculated frQm the above formula is larger than sm, Sm > s.,, it means that all the 
waves produced in the n-th interval contribute to um and in Eq. (4.6) Sm = s"' should be 
taken. 

Figure 5 shows the fronts of elementary waves .Produced at 0, s1 , ... , s,, .... At the 
typical · point P the additional displacement due to the fracture from s0 to s, equals 

(4.8) u(P) = u1 +u2+ ... +um, m~ n. 

The displacement u(P) is influenced by all the waves produced in the intervals 1 , 2, ... 
. . . , m- I ; therefore 

(4.9) 
-
S1=St, S2=S2, ... , Sm-1=Sm-1· 

The latest wave contributing to u(P) is centered at sm given by the formula (4.7). In ac
cordance with the above, the contributions from the intervals 1, 2, ... , m-1, m are the 
following: 

(4.10) uk = B1 y'2signy}iy(x-sk) 2 +y2-(x-s1) 

( 4.11) 

-Bk y2signy V y(x-sk_J2 +y2-(x-s1_1), 

k <m, 

-By2signy V y(x-sm_J2+y2-(X-Sm- 1), 

~ = X-Sn-l -pn(t-tn-1). 

In both cases (4.10) and (4.11) the stresses Txz and Tyz may be calculated from Eq. (3.6). 
Of particular importance is the stress Tyz corresponding to points on the x-axis in 

front of the crack tip. At the instant tm_ 1 the crack tip is situated at x = sm_ 1 and the 
stress Tyz for x > sm-t, y = 0 is (cf. e.g. [4]) 

(4.12) 

The coefficient Dm_ 1 is influenced by u0 , all the waves produced between 0 and sm_ 1 , 

reflections and refractions of these waves, double reflections etc. Finally, it is influenced 
by changes of the boundary loads, possessing again the form of the waves. Only com
putational difficulties are involved when calculating Dm_ 1 • For t > tm_ 1 to the stress 
(4.12) are added the stresses due to the waves produced in the interval sm-t < s < 'Y)(t). 
Figure 6 shows the wave fronts for tm_ 1 < t < tm. The displacement Um at point P' is 
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y 

X 

FIG. 6 . 

. given by the formula (4.11). The first term does not influence the stress r1r at P'. The 
second term gives 

(4.13) Tyz = - .. ! • 
f X-Sm-1 

The crack is stress free, therefore the stress (4.13) must annihilate the already existing 
stress (4.12). It follows that the coefficients Bm and Dm are connected by the formula 

(4.14) 

In order to complete the solution, the formula must be obtained for Pm. Guided by 
the procedure exposed in Sect. 3, calculate first the work Lm done by the external 
forces in time t, provided the crack tip is situated between sm-t and sm 

(4.15) 

due to the fact that 

(4.16) 

I. ou I 0 tm- = , 
, ...... o oy y=h. X<f]<t> 

lim!_'!__ I = 0 
h-+0 0/ y=h, X>f](t) ' 

the work L is given by the formula, exactly following the formula (3.9) 

(4.17) Lm =I B~ / Pmnp,~q11-p~fc2 • 
+Pm C 
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This work has to be equal to i'Pm ~~ where y is the Griflith energy. Therefore, 

Pm B!p,2n2 -y2 
c = B!p2n2+y2" (4.18) 

From the above analysis an easy approximate treatment of the dynamic crack pro· 
pagation follows. The treatment is based on the following steps: 

1. Start with the known solution <"u1\x, y, t). 
2. Find from Eq. (4.12) the crack strength. 
3. Find from Eq. (4.14) the coefficient Bm and from Eq. (4.18) the crack speed Pm. 
4. Find from Eq. (4.11) the additional displacement u,.. 
5. Take into account reflections and refractions of u1 , u2 , ••• , u,. and calculate <iJ ac

cording to the formula u = u0 + u1 + 1... + u,. +reflected, refracted, doubly reflected ... 
waves produced between 0 and s,.. 

6. Repeat points 1-5 for n replaced by n + 1. 
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