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Circular misfitting inhomogeneity in a half-plane
L. STAGNI (ROMA)

THE ELASTICITY problem of a misfitting circular inclusion in an isotropic half-plane is treated.
Matrix and inclusion have different elastic constants, and the matrix outer boundary is either
traction-free or undeformable. The stress field at the boundaries and the strain energy of the
system are investigated, graphs showing that the elastic state is remarkably influenced by the
elastic constant difference. Physical implications of the obtained results are pointed out.

Rozpatrzono problem niedopasowanej mkIIJZjI kolowej w izotropowej poiplaszczyinie spre-
zystej. Matryca i inkluzja charakteryzuja si¢ réinymi stalymi sprezystosciami, a zewngtrzny
brzeg matrycy jest albo wolny od obciazen, albo nieodksztalcalny. Bada si¢ pole naprezenia
w poblizu brzegébw oraz energie odksztalcenia ukladu, a podane wykresy dowodza, ze stan
sprezysty ukladu zalezy w istotnym stopniu od roznicy stalych sprezystosci. Wskazano na
wnioski fizyczne plyngce z przedstawionych wynikow.

PaccmoTpena 3ajjaua HECOTJIACOBAHHOTO KPYTOBOrO BKIFOYEHHA B H30TPOIHOI ynpyroit nmoiy-
IUIOCKOCTH. Marpriia 1 BK/IOUYEHHE XAaPAKTEPH3YIOTCA PASHBIMH YIOPYTHMH MOCTOSHHBIMH,
2 BHEUIHsASA IPaHMIA MaTPHUBI WIH CBOOOJHA OT HArpysoK, WwiM Hefgedopmupyema. Hccie-
JIyeTcA Mojie HAMpsDKeHHHA BOMHIA rpaHAn K oHeprud AeOopMAllAH CHCTEMBI, 4 NpHBeIeHHbIE
rpadHKH ITOKasHIBAIOT, YTO YIPYrO€ COCTOAHHE CHUCTEMBI S33BHCHT B CYLIECTBEHHOH CTeIeHH
OT PasHHIIbI YIIPYTHX MOCTOAHHBIX. YKa3aHb! (hH3udecKue CJICHCTBHA BBLITEKAIONIAE H3 Mpek-
CTaB/IEHHBLIX PE3y/LTATOR.

1. Introduction

DuURING the investigation of phenomena characterized by the presence, within a solid,
of particles or fibres of a different material, it is often observed that these are located
near to outer surfaces. As a consequence, it appears desirable to integrate the well-known
elasticity solutions for inclusions in infinite media [I, 2, 3] by a detailed study of the
elastic fields around inclusions in bounded media.

In the present paper the simple, yet meaningful, case of a circular misfitting inclusion
in an isotropic elastic half-plane is treated. The purpose is that of displaying, together
with the effect of the outer boundary presence, the effect of the difference between the
elastic constants of matrix and inclusion. Because of this difference, the problem cannot
be reduced to a standard boundary-value one for a thoroughly homogeneous medium,
as in Ref. [2].

The geometry of the problem is sketched in Fig. 1. The outer boundary y = —h =
= —pfaj2 (B = 2) is assumed either traction-free or clamped (undeformable), and the
interface r = a is supposed perfectly adhering. The radius misfit ea is of the order of the
admissible displacements in linear elasticity.
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Fic. 1. Circular inclusion in a half-plane: geometry and notation.

2, The elasticity problem solution

The stresses o;; (i, j = x, y) may be written in terms of two functions y(z), ¢(z) of
the complex variable z = x+iy as follows:
Oyytivy, = ¢'(D)+'@D+2¢" @D +1"(),
Oxxt+0yy = 2I¢'(Z)+m],
where a prime denotes differentiation with respect to the argument and the bar denotes

complex conjugates. The functions xi(z), ¢;(z) and x:(z), ¢.(2) [subscript 1 refers to
matrix and subscript 2 to inclusion, except on expansion coefficients] may be written as:

H@=a 2: (Anl™"+Co2*),

o

$1() =a ) (BuL~"+D,0*"),

13 =a ) EL

n=1

$3@) =a ) R,

=1
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where ¢ = z/a and * = {+if. Within this framework the solution of the problem, i.e.
the complex coefficients A,, B,, C, D,, E,, F, (n from 1 to ), is given by the set of
linear equations:

Cp = M—nA,+(n*—A?)B,—ifn(n—1)B,_,],
" D, = M—A,+nB,—iB(n-1)5,.,],

A, = —p+¥P(K,+K),
Apsy = (n=1)B,_, +¢I?-+1-

B, = Q[H,+(n+2) Koy 1],
= 0 (T e

m=1

O -1
K= 0 (" oarcare

F, = [p+(1+¥)4,]2¥,
Fopr = (l"‘dj-l)[znn "("'—1)E -1ls
E, = (1+Q2"Y)B,—(n+2)F,,2,

where

2 { 1 for free boundary,
| =1/%, for clamped boundary,

p = 4l'¢G, [(x, —1+2D),
¥ = [(x, = 1) — (%, —1)]/(%, —1+2I'),
D = (I'ty —x,)[(2+ 1),
2 =T-1)/T%+1),
I' = G,/G,,

-4y for plane strain,
%= (3-»)/(1+») for plane stress

and G and » denoting shear moduli and Poisson’s ratios, respectively.

Actually, the boundary conditions at y = —pa/2 (either zero tractions or zero dis-
placements) are satisfied by the first two equations of the set, while the remaining equa-
tions satisfy the conditions at the interface (continuity and equilibrium [1]). Thus, the
required coefficients may conveniently be evaluated by the iteration method.

It is worth noting that the parameter p coincides with the equilibrium pressure at the
interface when the matrix is unbounded, and that if the inclusion is homogeneous
(i.e. G, = G, and v, = »,), then a closed-form solution is obtainable.
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3. Numerical examples and discussion

Some results of numerical calculation (all for plane strain and § = 3) of stresses at
the boundaries are presented in Figs. 2 to 5. The graphs are drawn for I" = 0.5 and
I' = oo (rigid inclusion) and for the following pairs of Poisson’s ratio values: »; = 0.3,
v, = 0.2 (solid lines); », =0, », = 0.5 (dashed lines); », = 0.5, », = 0 (dot-dashed
lines). Computer calculations were performed by retaining the first 30 terms of the in-
finite series, which in all the examples presented here gives satisfactory convergency. In
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Fic. 3. Dimensionless shear stress and normal stress at clamped boundary.



CIRCULAR MISFITTING INHOMOGENEITY IN A HALF-PLANE 303

| ot
i ] e
:“:; I e 2 I
2

< T
\‘ ~ '\
» A -
\ Y \‘
1 -8 ¢ ;
= o P NN,
S T b
L R NN e i
- - ==
\‘\ ‘______.-q-—'—'_--._'J \\\_______,_...-ﬂ ',.-
“\ "-—'—""'"”::-»-"""'1 . e T o
= o, % —lochad 2 -
-90° 1] 90° -80° 8] 80
- 'ﬂ-"

__B_
- """-.__‘
r T
op—T =" [ Ly e AeSr M.——ﬂ""- B i
— I/F_/ -
1 =
/
arét 7
S !
7
—al r=5 = ? 'zem _|
,'-
F
P L1 : L1
-gi® o g0® -ap® o 90®
? - -

FiG. 5. Dmensionless shear stress and normal stress at common interface. Clamped outer boundary.

the discission, cases of low and high values of I" will be referred to as soft and hard in-
clusion cases, respectively.

At the free boundary it is interesting to note the change of the sign of the stress ..
(see Fig. 2) at some distance from x = 0, and the high value that its maximum could
reach fo: relatively small misfits (Je] > 10~%). This behaviour of the stress field may
cause fricture of the material, starting from the surface.

Figure 3 shows plots of the tractions exerted on a clamped boundary. It is observed
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that if the inclusion is hard, then the maximum absolute values of o,,, and o,,, clearly
exceed |eG, |, which for |¢] > 10~ is generally comparable to, or larger than the critical
shear stress of the matrix; therefore, especially for low »,, plastic deformation on or
near the surface is likely to occur. Moreover, since the normal stress changes its sign
at some surface point, a bending torque results, working to detach the material from the
clamping substrate, .

Figures 4 and 5 show the normal and tangential stresses at the interface (which are
common to matrix and inclusion) for free and clamped outer boundary, respectively. As
expected, the presence of a free outer boundary lowers the pressure |a,,| at the interface,
while a clamped boundary enhances it. On the other hand, the graphs point out the
remarkable effect of the elastic constant difference. In particular, the shear o,5, which
is zero for an unlimited matrix, now for a hard inclusion may be comparable to p, de-
pending on the Poisson’s ratio values. A practical consequence is that the bond to the
matrix of a hard inclusion close to a plane surface may no longer be considered as a perfect
one, and a smooth, or partially adhering, interface should be assumed.

Finally, let us briefly consider the effect of the outer boundary on the strain energy
of the system. The strain energy W (per unit length normal to the plane) may be calculated
as the total work necessary to deform the matrix inner boundary and the inclusion’s
outer boundary. This easily leads to the simple expression:

W= —2W,Fp,

where W, = na?ep is the strain energy when the matrix is unbounded. Results of numer-
ical calculation of this equation have shown that the presence of a free boundary lowers
the strain energy, while a clamped boundary enhances it. In both cases the function
W(p) is monotonic. For a hard inclusion the change |W— W,,|/W,, is significant up to
about # = 7, and its maximum value (reached for f = 2) is about 0.5. Sensibly lower
figures are obtained for a soft inclusion.

Thus, for instance, nucleation and growth of a new phase should find relatively un-
favourable conditions when the specimen’s surface is clamped, and in this case the growth
centres, if any, should mostly be found in the specimen’s bulk. On the contrary, the
centres should form near or on the surface if the latter is free of tractions, especially if
they are hard. These features are actually observed, for example, in the f — « tin trans-
formation [4], and in all likelihood are responsible for the copious acoustic emission
detected during heating of tin specimens [S5].

It is also of some interest to consider the trend of the thermodynamic driving force
acting on the inclusion due to the presence of the outer boundary. This force, perpen-
dicular to the boundary, is given by

f= —3W/|oh = —2a~*(8W/3p).

Thus, under the action of f the inclusion is stimulated to migrate toward a free surface,
or toward the bulk if the surface is clamped. Moreover, it can be shown that at the same
distance from the surface a harder inclusion is subjected to a stronger attraction (free
surface) or repulsion (clamped surface).
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